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It is proved that if T is a continuous mapping on the complete metric space Xinto
itself satisfying the inequality, then T has a unique fixed point. Further, it is shown
that the condition that T be continuous is unnecessary if q (or p) = 1.

L. G. Huang and X. Zhang [15] (see also [35]) used the concept of cone metric
spaces as a generalization of metric spaces. They have replaced the real numbers (as
the co-domain of a “metric”) by an ordered Banach space. The authors described
the convergence in cone metric spaces and introduced their completeness. Then
they proved some fixed point theorems for contractive mappings on cone metric
spaces. Recently, in [1,18] and [31] some common fixed point theorems were proved
for maps on cone metric spaces. However, in [1, 15, 18, 19] and [34] the authors
usually use the normality property of cones in their results.

D. Ilić and V. Rakočević [19] introduced quasi-contractive mappings in cone met-
ric spaces, and proved a fixed point theorem for such mappings, when the underlying
cone is normal. Z. Kadelburg, S. Radenović and V. Rakočević [22], without using
the normality condition, proved related results, but only in the case when contrac-
tive constant λ ∈ (0, 1/2). Later, Haghi, Rezapour and Shahzad [32] and also Gajić
and V. Rakočević [12] proved same results without the additional assumption and
for λ ∈ (0, 1) by providing a new technical proof; see ( [11, 14, 16]) for the more
related results.

In this article we study fixed point results for the new extensions of Fisher’s
quasi contraction to cone metric space, and we give some generalized versions of
the fixed point theorem of Perov. As corollaries we have generalized some results
of Zima [36] and Borkowski, Bugajewski and Zima [4] for a Banach space with a
non-normal cone. The theory is illustrated with some examples. It is important
to mention that the main result in this paper could not be derived from Fisher’s
result by the scalarization method, and indeed improves many recent results in cone
metric spaces.

Consistent with [15] (see, e.g., [1–3,7,12,17,21,31,34] for more details and recent
results), the following definitions and results will be needed in the sequel.

Let E be a real Banach space. A subset P of E is called a cone if:

(i) P is closed, nonempty and P ̸= {0} ;
(ii) a, b ∈ R, a, b ≥ 0, and x, y ∈ P imply ax+ by ∈ P ;
(iii) P ∩ (−P ) = {0}.
Given a cone P ⊆ E, we define the partial ordering ≤ with respect to P by x ≤ y

if and only if y − x ∈ P . We shall write x < y to indicate that x ≤ y but x ̸= y,
while x ≪ y will stand for y − x ∈ intP (interior of P ).

The cone P in a real Banach space E is called normal if

(1.2) inf{∥x+ y∥ : x, y ∈ P and ∥x∥ = ∥y∥ = 1} > 0,

or, equivalently, if there is a number K > 0 such that for all x, y ∈ P ,

(1.3) 0 ≤ x ≤ y implies ∥x∥ ≤ K ∥y∥ .
The least positive number satisfying (2.2) is called the normal constant of P . It is
clear that K ≥ 1.

Definition 1.1. Let X be a nonempty set, and let P be a cone on a real ordered
Banach space E. Suppose that the mapping d : X ×X 7→ E satisfies:
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(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y ;
(d2) d(x, y) = d(y, x) for all x, y ∈ X ;
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

It is known that the class of cone metric spaces is bigger than the class of metric
spaces.

Example 1.2. Let E = l1, P =
{
{xn}n≥1 ∈ E : xn ≥ 0, for all n

}
, (X, ρ) be a

metric space and d : X ×X 7→ E defined by d (x, y) =
{

ρ(x,y)
2n

}
n≥1

. Then (X, d) is

a cone metric space.

Example 1.3. LetX = R, E = Rn and P = {(x1, . . . , xn) ∈ Rn : xi ≥ 0}. It is easy
to see that d : X ×X 7→ E defined by d(x, y) = (|x− y|, k1|x− y|, . . . , kn−1|x− y|)
is a cone metric on X, where ki ≥ 0 for all i ∈ {1, . . . , n− 1}.

Example 1.4 ([7]). Let E = C1[0, 1] with ∥x∥ = ∥x∥∞ + ∥x′∥∞ on P = {x ∈ E :
x(t) ≥ 0, t ∈ [0, 1]}. This cone is not normal. Consider, for example,

xn(t) =
1− sinnt

n+ 2
and yn(t) =

1 + sinnt

n+ 2
.

Since, ∥xn∥ = ∥yn∥ = 1 and ∥xn + yn∥ = 2
n+2 → 0, it follows by (1.1) that P is

non-normal.

Let X be a nonempty set and n ∈ N.

Definition 1.5. A mapping d : X ×X 7→ Rn is called a vector-valued metric on X
if the following statements are satisfied for all x, y, z ∈ X.

(d1) d(x, y) ≥ 0n and d(x, y) = 0n if and only if x = y where 0n = (0, . . . , 0) ∈ Rn;
(d2) d(x, y) = d(y, x);
(d3) d(x, y) ≤ d(x, z) + d(z, y).

If x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, then x ≤ y means that xi ≤ yi,
i = 1, . . . , n. This partial order determines normal cone P = {x = (x1, . . . , xn) ∈
Rn : xi ≥ 0, i = 1, 2, . . . , n} on Rn, with the normal constant K = 1. A nonempty
set X with a vector-valued metric d is called a generalized metric space.

Throughout this paper we denote by Mn,n the set of all n × n matrices, by
Mn,n(R+) the set of all n×n matrices with nonnegative elements. It is well known
that if A ∈ Mn,n, then A(P ) ⊆ P if and only if A ∈ Mn,n(R+). We write Θ for the
zero n × n matrix and In for the identity n × n matrix. For the sake of simplicity
we will identify row and column vector in Rm.

A matrix A ∈ Mn,n(R+) is said to be convergent to zero if An → Θ as n → ∞.

Theorem 1.6 (Perov [27, 28]). Let (X, d) be a complete generalized metric space,
f : X 7→ X and A ∈ Mn,n(R+) be a matrix convergent to zero, such that

d(f(x), f(y)) ≤ A(d(x, y)), x, y ∈ X.

Then:

(i) f has a unique fixed point x∗ ∈ X;



342 M. CVETKOVIĆ AND V. RAKOČEVIĆ

(ii) the sequence of successive approximations xn = f(xn−1), n ∈ N converges to
x∗ for all x0 ∈ X;

(iii) d(xn, x
∗) ≤ An(In −A)−1(d(x0, x1)), n ∈ N;

(iv) if g : X 7→ X satisfies the condition d(f(x), g(x)) ≤ c for all x ∈ X and
some c ∈ Rn, then by considering the sequence yn = gn(x0), n ∈ N, one has

d(yn, x
∗) ≤ (In −A)−1(c) +An(In −A)−1(d(x0, x1)), n ∈ N.

For completeness of the paper and convenience of the reader, in Section 2 we
collect some basic definitions and facts which are applied in subsequent sections.

2. Preliminaries

In the following we suppose that E is a Banach space, P is a cone in E with
intP ̸= ∅ and ≤ is the partial order on E with respect to P.

Let {xn} be a sequence in X, and x ∈ X. If for every c in E with 0 ≪ c, there is
n0 such that for all n > n0, d(xn, x) ≪ c, then it is said that {xn} converges to x,
and we denote this by limn→∞ xn = x, or xn → x, n → ∞. If for every c in E with
0 ≪ c, there is n0 such that for all n,m > n0, d(xn, xm) ≪ c, then {xn} is called
a Cauchy sequence in X. If every Cauchy sequence is convergent in X, then X is
called a complete cone metric space.

Let us recall [15] that if P is a normal cone, even in the case intP = ∅, then
xn ∈ X converges to x ∈ X if and only if d(xn, x) → 0, n → ∞. Further, xn ∈ X is
a Cauchy sequence if and only if d(xn, xm) → 0, n,m → ∞.

Let (X, d) be a cone metric space. Then the following properties are often used
(particulary when dealing with cone metric spaces in which the cone need not be
normal):

(p1) If u ≤ v and v ≪ w then u ≪ w ;
(p2) If 0 ≤ u ≪ c for each c ∈ intP then u = 0 ;
(p3) If a ≤ b+ c for each c ∈ intP then a ≤ b ;
(p4) If 0 ≤ x ≤ y, and a ≥ 0, then 0 ≤ ax ≤ ay ;
(p5) If 0 ≤ xn ≤ yn for each n ∈ N, and limn→∞ xn = x, limn→∞ yn = y, then

0 ≤ x ≤ y ;
(p6) If 0 ≤ d(xn, x) ≤ bn and bn → 0, then xn → x ;
(p7) If E is a real Banach space with a cone P and if a ≤ λa, where a ∈ P and

0 < λ < 1, then a = 0 ;
(p8) If c ∈ intP , 0 ≤ an and an → 0, then there exists n0 such that for all n > n0

we have an ≪ c.

From (p8) it follows that the sequence {xn} converges to x ∈ X if d(xn, x) → 0
as n → ∞ and {xn} is a Cauchy sequence if d(xn, xm) → 0 as n,m → ∞. In
the situation with a non-normal cone we have only one part of Lemmas 1 and 4
from [15]. Also, in this case the fact that d(xn, yn) → d(x, y) if xn → x and yn → y
is not applicable.

We write B(E) for the set of all bounded linear operators on E and L (E) for
the set of all linear operators on E. B(E) is a Banach algebra, and if A ∈ B(E)
let

r(A) = lim
n→∞

∥An∥1/n = inf
n

∥An∥1/n,
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be the spectral radius of A. Let us remark that if r(A) < 1, then the series
∑∞

i=0A
n

is absolutely convergent, I −A is invertible in B(E) and
∞∑
i=0

An = (I −A)−1.

Furthermore, if ∥A∥ < 1, then I −A is invertible and

∥(I −A)−1∥ ≤ 1

1− ∥A∥
.

3. Main results

In this section we prove our main results. We start with some auxiliary results.

Lemma 3.1. Let (X, d) be a cone metric space. Suppose that {xn} is a sequence
in X and that {bn} is a sequence in E and bn → 0, n → ∞. If there exists n0 ∈ N
such that 0 ≤ d(xn, xm) ≤ bn for each n ≥ n0 and each m ≥ n0, then {xn} is a
Cauchy sequence.

Proof. For every c ≫ 0 there exists n1 ∈ N such that bn ≪ c, n > n1. It follows
that 0 ≤ d(xn, xm) ≪ c,m > n > max{n0, n1}, i.e., {xn} is a Cauchy sequence. �
Lemma 3.2. Let E be Banach space, P ⊆ E cone in E and A : E 7→ E a linear
operator. The following conditions are equivalent:

(i) A is increasing, i.e., x ≤ y implies A(x) ≤ A(y).

(ii) A is positive, i.e., A(P ) ⊂ P .

Proof. If A is monotonically increasing and p ∈ P , then, by definitions, it follows
p ≥ 0 and A(p) ≥ A(0) = 0. Thus, A(p) ∈ P , and A(P ) ⊆ P .

To prove the other implication, let us assume that A(P ) ⊆ P and x, y ∈ E are
such that x ≤ y. Now y − x ∈ P , and so A(y − x) ∈ P . Thus A(x) ≤ A(y). �
Definition 3.3. Let (X, d) be a cone metric space. A map f : X 7→ X such that
for some A ∈ B(E), r(A) < 1 and for some fixed positive integers p and q, and for
every x, y ∈ X, there exists

u ∈ Fp,q
f (x, y) ≡

{
d(f rx, fsy), d(f rx, f r′x), d(f sy, f s′y) :

0 ≤ r, r′ ≤ p and 0 ≤ s, s′ ≤ q

}
.

such that

d(fpx, f qy) ≤ A(u),

is called (p, q)−quasi-contraction (Fisher’s quasi-contraction, F quasi-contraction)
of Perov type.

The results in the next theorem are applied to the cone metric spaces in the
case when cone is not necessary normal, and Banach space should not be finite
dimensional. This extends the results of Perov for matrices, and also as a corollary
we generalize Theorem 1 of Zima [36].
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Theorem 3.4. Let (X, d) be a complete cone metric space and P be a cone with
intP ̸= ∅. Suppose the mapping f : X 7→ X is a (p, q)−quasi-contraction of Perov
type, A(P ) ⊆ P and let f be continuous. Then f has a unique fixed point in X and
for any x ∈ X, the iterative sequence {fnx} converges to the fixed point.

Proof. We will assume that p ≥ q.
Let x ∈ X be arbitrary. We shall show that {fnx} is a Cauchy sequence. First

we prove that

(3.1) d(fnx, fpx) ≤ (I −A)−1A(ω(x)), n ≥ p,

where
ω(x) =

∑
0≤i<p

d(f ix, fpx).

Clearly, (3.1) is true for n = p. Suppose that (3.1) is true for each m ≤ n0 − 1, and
let us prove (3.1) for m = n0 ≥ p+ 1.

Because f is (p, q)−quasi-contraction, there exist i, j ∈ N, such that

(3.2) d(fn0x, fpx) ≤ A(d(f ix, f jx)).

(1) If i, j ≤ p, then

d(fn0x, fpx) ≤ A(d(f ix, fpx) + d(fpx, f jx))

≤ A(ω(x)) ≤ (I −A)−1A(ω(x)).

Remark that we have used that i ̸= j in this inference, but if i = j (3.1) evidently
holds.

(2) If p < i < n0, j ≤ p then (3.1) and (3.2) imply

d(fn0x, fpx) ≤ A(d(f ix, fpx)) +A(d(fpx, f jx))

≤ A(I −A)−1A(ω(x)) +A(ω(x))

= (I −A)−1A(ω(x)).

(3) For p < i < n0, p < j < n0, we have

d(fn0x, fpx) ≤ Ak(d(f i0x, f j0x)),

where i0 < p or j0 < p and 1 < k.
Assume that at least i0 < p.

d(fn0x, fpx) ≤ Ak(d(f i0x, fpx)) +Ak(d(fpx, f j0x))

≤ Ak(ω(x)) +Ak(I −A)−1A(ω(x))

≤ (I −A)−1A(ω(x)),

since j0 ≤ j < n0, so the inequality (3.1) holds in this case.
(4) For i = n0, j ≤ p, the triangle inequality, A(P ) ⊆ P and (3.2) imply

d(fn0x, fpx) ≤ A(d(fn0x, fpx)) +A(d(fpx, f jx))

≤ A(d(fn0x, fpx)) +A(ω(x)),

so (3.1) is satisfied.
(5) Finally, consider i = n0 and p < j ≤ n0.
If j = n0, it follows d(f

n0x, fpx) ≤ A(0) i.e. d(fn0x, fpx) = 0.
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Otherwise,

d(fn0x, fpx) ≤ A(d(f jx, fn0x)),(3.3)

and there exist i0 ≤ j0 ≤ n0, i0 < p and some 1 < k0 such that

d(f jx, fn0x) ≤ Ak0(d(f i0x, f j0x)).

If j0 ≤ p, then (3.1) follows by the last inequality and (3.3). Notice that if j0 < n0,
then

d(fn0x, fpx) ≤ A1+k0(d(f i0x, f j0x))

≤ A1+k0(d(f i0x, fpx)) +A1+k0(d(fpx, f j0x))

≤ A1+k0(ω(x)) +A1+k0(I −A)−1A(ω(x))

= A1+k0(I −A)−1(I −A+A)(ω(x))

≤ (I −A)−1A(ω(x)).(3.4)

But if j0 = n0, then

(3.5) d(fn0x, fpx) ≤ A1+k0(d(f i0x, fpx)) +A1+k0(d(fpx, fn0x)).

Then, for some k1 ≥ 1 and i1 ≤ j1 ≤ n0, i1 < p, d(fpx, fn0x) ≤ Ak1(d(f i1x, f j1x)),
so by (3.5) we get

(3.6) d(fn0x, fpx) ≤ A1+k0(d(f i0x, fpx)) +A1+k0+k1(d(f i1x, f j1x)).

Again, if j1 < n0, as in (3.4), we have (3.1). Otherwise,

d(fn0x, fpx) ≤ A1+k0(d(f i0x, fpx)) +A1+k0+k1(d(f i1x, fpx))

+A1+k0+2k1(d(f i1x, fn0x)).

Hence, for arbitrary n ∈ N,

d(fn0x, fpx) ≤ A1+k0(d(f i0x, fpx))

+
n−1∑
m=1

A1+k0+mk1(d(f i1x, fpx)) +A1+k0+nk1(d(f i1x, fn0x))

≤
n−1∑
m=0

A1+k0+mk1A(ω(x)) +A1+k0+nk1(d(f i1x, fn0x))

≤ (I −A)−1A1+k0(ω(x)) +A1+k0+nk1(d(f i1x, fn0x))

≤ (I −A)−1A(ω(x)) +A1+k0+nk1(d(f i1x, fn0x)).

However, A1+k0+nk1(d(f i1x, fn0x)) → 0, n → ∞. For each c ≫ 0 there exists
nc ∈ N such that A1+k0+nk1(d(f i1x, fn0x)) ≪ c for n > nc, so

d(fn0x, fpx) ≤ (I −A)−1A(ω(x)) + c, c ≫ 0,

i.e. d(fn0x, fpx) ≤ (I −A)−1A(ω(x)).

Thus, by induction, we have obtained (3.1) for every n ∈ N. Now, let us prove

that, for each n,

(3.7) d(fnx, f jx) ≤ (I −A)−1(ω(x)), j = 0, 1, 2, . . . , p.
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This follows by (3.1), since

d(fnx, f jx) ≤ d(fnx, fpx) + d(fpx, f jx)

≤ (I −A)−1A(ω(x)) + ω(x)

= (I −A)−1(ω(x)).

Because f is a (p, q)−quasi-contraction, and according to the (3.7) we get that
for n > m ≥ p, m = kp+ r, 0 ≤ r < p, k ≥ 1

d(fnx, fmx) ≤ Ak(d(f ix, f jx)) ≤ Ak(I −A)−1(ω(x)),

where 0 ≤ i ≤ j ≤ n and i ≤ p.
Remark that Ak(I − A)−1(ω(x)) → 0, k → ∞ (m → ∞), implies that {fnx} is

a Cauchy sequence in X. We will prove that z = lim
n→∞

fnx ∈ X is a unique fixed

point of f .
Since f is a continuous, it follows that fz = z. The uniqueness of z follows from

the definition of (p, q)−quasi-contraction. �

In the particular case of Theorem 2 when q = 1 (or p = 1), the condition that f
be continuous is unnecessary (see [10]). We then have

Theorem 3.5. Let (X, d) be a complete cone metric space and P be a cone, int(P ) ̸=
∅. Suppose the mapping f : X 7→ X is a (p, 1)−quasi-contraction of Perov type,
A(P ) ⊆ P . Then f has a unique fixed point in X and for any x ∈ X, the iterative
sequence {fnx} converges to the fixed point.

Proof. Let x be an arbitrary point in X. Then, as in the proof of Theorem 3.4, the
sequence {fnx} is a Cauchy sequence in the complete cone metric space X and so
has a limit z in X. For n > p, we now have

d(z, fz) ≤ d(z, fnx) + d(fnx, fz)

= d(z, fnx) + d(fpfn−px, fz)

≤ d(z, fnx) +A(un),

where

un ∈
{
d(f rfn−px, fz), d(f rfn−px, z), d(f rfn−px, f r′fn−px), d(z, fz) : 0 ≤ r, r′ ≤ p

}
.

But,

d(f rfn−px, fz) ≤ d(f rfn−px, z) + d(z, fz),

so, since lim
n→∞

fnx = z, for each c ≫ 0 we may choose n0 for which

d(fnx, z), d(fnx, fmx) ≪ c, n,m ≥ n0. Choose n > n0 + p, then

d(z, fz) ≤ c+A(d(z, fz)) +A(c) for any c ≫ 0.

By observing c = c
n , n ∈ N, we get d(z, fz) ≤ A(d(z, fz)) i.e. fz = z because

(I −A)−1(P ) ⊆ P . Uniqueness obviously follows. �

When p = q = 1, we have the following corollary:
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Corollary 3.6. Let (X, d) be a complete cone metric space and P be a cone with
intP ̸= ∅. Suppose the mapping f : X 7→ X is a (1, 1)−quasi-contraction of Perov

type (Ćirić’s quasi-contraction), that is for some constant A ∈ B(E), r(A) < 1 and
A(P ) ⊆ P and for every x, y ∈ X, there exists

u ∈ C(f, x, y) ≡ {d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)},

such that

d(fx, fy) ≤ A(u).

Then f has a unique fixed point in X and for any x ∈ X, the iterative sequence
{fnx} converges to the fixed point.

Remark 3.7. Let us remark that Du [8] has investigated the equivalence of vectorial
versions of fixed point theorems in generalized cone metric spaces and scalar versions
of fixed point theorems in (general) metric spaces (in usual sense). He has shown
that the Banach contraction principles in general metric spaces and in TVS-cone
metric spaces are equivalent. His theorems also extend some results in Huang and
Zhang [15], Rezapour and Hamlbarani [31] and others.

Du [8] has used the nonlinear scalarization function ξe and function dξ as follows:
Let dξ = ξe ◦ d, where ξe is defined by

ξe(u) = inf{r ∈ R : u ∈ re− P},

for each u ∈ E for some e ∈ intP . Then dξ is a metric on X by Theorem 2.1 of [8]. If
T is a Fisher’s quasi-contraction with λ ∈ (0, 1), and for some fixed positive integers
p and q, then applying Lemma 1.1 of [8], we have

dξ(T
px, T qy) ≤ λ ·max

{
dξ(T

rx, T sy), dξ(T
rx, T r′x), dξ(T

sy, T s′y) :(3.8)

0 ≤ r, r′ ≤ p and 0 ≤ s, s′ ≤ q

}
.

Hence, Theorem 4.2 of [11] directly follows from Fisher’s result by Theorem 2 of [10].
However, if T is a Fisher’s quasi - contraction restricted with a linear bounded map-
ping, we cannot conclude that there exists some λ ∈ (0, 1) such that (3.8) is satisfied,
and so Theorem 3.4 could not be derived from Fisher’s result. Therefore, Theorem
3.4 indeed improves the corresponding result of [10]. Similar observations are valid

for the Ćirić’s quasi-contraction of Perov type and for the Banach’s contraction of
Perov type [5]. For some more recent results see [20,23,24].

Remark 3.8. Let us remark that the initial assumption A ∈ Mn,n(R+), in Perov
theorem, is unnecessary. Based on the previous comments, we obtain the next
result, were we do not suppose that A(P ) ⊆ P.

Theorem 3.9. Let (X, d) be a complete cone metric space and P be a normal
cone with a normal constant K. Let the mapping f : X 7→ X be a continuous
(p, q)−quasi-contraction of Perov type, K∥A∥ < 1 Then f has a unique fixed point
in X and for any x ∈ X, the iterative sequence {fnx} converges to the fixed point.
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Proof. Without loss of generality, we may assume that p ≥ q. Let x ∈ X be
arbitrary, and

η(x) =
∑

0≤i<j≤p

∥d(f ix, f jx)∥.

We shall prove that

(3.9) ∥d(fnx, fpx)∥ ≤ K∥A∥
1−K∥A∥

· η(x), n ≥ p.

Obviously, the inequality (3.9) holds for n = p. Suppose that (3.9) holds for every
n ≤ n0 − 1, n0 > p. If n = n0, then

(3.10) d(fn0x, fpx) ≤ A(d(f ix, f jx)),

where i, j ∈ {0, . . . , n0}. Few different cases will be discussed.
(1) If 0 ≤ i, j ≤ p, then

∥d(fn0x, fpx)∥ ≤ K∥A∥ · η(x) ≤ K∥A∥
1−K∥A∥

· η(x).

(2) If p < i < n0 and j ≤ p (analogously i ≤ p, p < j < n0), then the induction
hypothesis and the triangle inequality imply

∥d(fn0x, fpx)∥ ≤ K2∥A∥2

1−K∥A∥
· η(x) +K∥A∥ · η(x)

=
K∥A∥

1−K∥A∥
· η(x).

(3) In this case, consider p < i, j < n0. There exist i0, j0 < n0, i0 < p such that

∥d(f ix, f jx)∥ ≤ (K∥A∥)k∥d(f i0x, f j0x)∥,
for some k ≥ 1. The inequality (3.9) is satisfied if i0 = j0. If j0 ≤ p, then

∥d(fn0x, fpx)∥ ≤ (K∥A∥)k+1 · η(x) ≤ K∥A∥
1−K∥A∥

· η(x).

Otherwise,

∥d(fn0x, fpx)∥ ≤ (K∥A∥)k+1
(
∥d(f i0x, fpx)∥+ ∥d(fpx, f j0x)∥

)
≤ (K∥A∥)k+1

(
η(x) +

K∥A∥
1−K∥A∥

· η(x)
)

≤ K∥A∥
1−K∥A∥

· η(x),

because K∥A∥ < 1.

(4) Assume that i = n0. By

∥d(fn0x, fpx)∥ ≤ K∥A∥∥d(fn0x, fpx)∥+K∥A∥∥d(fpx, f jx)∥,
if j ≤ p, (3.9) evidently follows.

Otherwise, if p < j < n0, there exist some i0 ≤ j0 ≤ n0, i0 < p and k0 ≥ 1 for
which

∥d(fn0x, f jx)∥ ≤ (K∥A∥)k0∥d(f i0x, f j0x)∥.
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Evidently, for j0 ≤ p, (3.9) is satisfied. Similarly as previously shown in the proof
of Theorem 3.4, (3.9) holds if j0 < n0 by induction hypothesis.

If j0 = n0, then again as in the proof of Theorem 3.5, there are some i1 ≤ j1 ≤ n0,
i1 < p and k1 ≥ 1 that satisfy ∥d(fpx, fn0x)∥ ≤ (K∥A∥)k1∥d(f i1x, f j1x)∥. Then

∥d(fn0x, fpx)∥ ≤ (K∥A∥)1+k0∥d(f i0x, fpx)∥+ (K∥A∥)1+k0+k1∥d(f i1x, f j1x)∥.
Again, if j1 < n0, (3.9) easily follows. If j1 = n0, then after m − 1 more steps, we
get

∥d(fn0x.fpx)∥ ≤ (K∥A∥)1+k0∥d(f i0x, fpx)∥

+
i=m−1∑
l=1

(K∥A∥)1+k0+lk1∥d(f i1x, fpx)∥

+(K∥A∥)1+k0+mk1∥d(fpx, fn0x)∥.
Analogously as in the proof of Theorem 3.4, the inequality (3.9) is satisfied in this
case.

Hence, (1)-(5) imply that the inequality (3.9) holds for any n ≥ p.

Let n ≥ m > 2p, m = (k + 1)p + r, k ∈ N, 0 ≤ r < p. To estimate d(fnx, fmx),
observe p ≤ in,m ≤ jn,m ≤ n and k ≥ 1 for which

∥d(fnx, fmx)∥ ≤ (K∥A∥)k∥d(f in,mx, f jn,mx)∥.
Then

∥d(fnx, fmx)∥ ≤ 2(K∥A∥)k+1

1−K∥A∥
· η(x),

by (3.9) and triangle inequality. So, {fnx} is a Cauchy sequence in a complete cone
metric space X, thus lim

n→∞
fnx = z for some z ∈ X. Since f is a continuous, fz = z.

Obviously, z is a unique fixed point of f in X because K∥A∥ < 1. �
Theorem 3.10. Let (X, d) be a complete cone metric space and P be a normal cone
with a normal constant K. Suppose that the mapping f : X 7→ X is a (p, 1)−quasi-
contraction of Perov type, K∥A∥ < 1. Then f has a unique fixed point in X and
for any x ∈ X, the iterative sequence {fnx} converges to the fixed point.

Proof. Let x be an arbitrary point in X. Then, as in the proof of Theorem 3.9, the
sequence {fnx} is a Cauchy sequence in the complete cone metric space X and so
has a limit z in X. For n > p, we now have d(fnx, f(z)) ≤ A(un), where

un ∈
{
d(f rfn−px, fz), d(f rfn−px, z), d(f rfn−px, f r′fn−px), d(z, fz) : 0 ≤ r, r′ ≤ p

}
.

But, recall that lim
n→∞

d(fnx, z) = 0 and lim
n,m→∞

d(fnx, fmx) = 0. Since

d(z, fz) = lim
n→∞

d(fnx, fz) ≤ A(d(z, fz)),

and P is a normal cone, from the norm inequality ∥d(z, fz)∥ ≤ K∥A∥∥d(z, fz)∥, we
get fz = z. Uniqueness obviously follows. �

When p = q = 1, we have the following corollary:
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Corollary 3.11. Let (X, d) be a complete cone metric space, P a normal cone with
a normal constant K. If the mapping f : X 7→ X is a (1, 1)−quasi-contraction

of Perov type (Ćirić’s quasi-contraction), that is for some operator A ∈ B(E),
K∥A∥ < 1 and for every x, y ∈ X, there exists

u ∈ C(f, x, y) ≡ {d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)},
such that

d(fx, fy) ≤ A(u),

then f has a unique fixed point in X and for any x ∈ X, the iterative sequence
{fnx} converges to the fixed point of f .

Example 3.12. Let E = CR([0, 1], ∥ · ∥∞) and P = {f ∈ E : f(t) ≥ 0}. (X, ρ) a
metric space and d : X×X 7→ E defined by d(x, y) = ρ(x, y)φ, where φ : [0, 1] 7→ R+

is continuous. Then (X, d) is a normal cone metric space and the normal constant
of P is equal to K = 1.

To apply our results let us consider the solution of the equation (I − Q)x = b,
where b ∈ E is given, I,Q ∈ B(E) and ∥Q2 − αQ∥ < 1 − α, 0 < α < 1 (see
Theorem 3 of [33]). Let us take X = E, ρ(x, y) = ∥x − y∥, and define T : X 7→ X
by T (x) = b+Q(x). Now, it is easy to see that T is continuous. If xn, x0 ∈ X and
xn → x0, that is d(xn, x0) → 0, then

∥d(T (xn), T (x0))∥ = ∥d(Q(xn), Q(x0))∥ ≤ ∥Q∥ · ∥d(xn, x0)∥ → 0.

Let us remark that T (T (x)) = b + Q(b) + Q2(x) , so T 2(x) − T 2(y) = Q2(x − y).
Thus

T 2(x)− T 2(y) = Q2(x− y)

= (Q2 − αQ)(x− y) + (αQ)(x− y)

= (Q2 − αQ)(x− y) + (αT (x− y).

Hence,

∥T 2(x)− T 2(y)∥ ≤ ∥(Q2 − αQ)∥ · ∥x− y∥+ |α| · ∥T (x− y)∥,
and

∥T 2(x)− T 2(y)∥ ≤ (∥(Q2 − αQ)∥+ α)max{∥x− y∥, ∥T (x− y)∥}.
It follows

∥T 2(x)− T 2(y)∥φ ≤ (∥(Q2 − αQ)∥+ α)max{∥x− y∥φ, ∥T (x− y)∥φ}.
Finally we have

d(T 2(x), T 2(y)) ≤ A(u),

where u∈{d(x, y), d(Tx, Ty)} andA∈B(E) is defined byA(u)=(∥(Q2−αQ)∥+α)u,
u ∈ E.

Because 0 ≤ λ = ∥(Q2 − αQ)∥ + α < 1we can apply Theorem 3.9 to conclude
that there is a unique x ∈ E such that T (x) = x, i.e., (I −Q)x = b. Moreover, for
any z ∈ X, the iterative sequence {Tnz} converges to the fixed point x of T .
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weakly compatible pairs on cone metric spaces, Fixed Point Theory and Applications (2009),
Article ID 643840, 13 pages
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