


354 P. V. MOUCHE AND T. YAMAZAKI

intrinsically on it by removing among other things the above mentioned shortcom-
ings. Theorem 4.1 is divided into a part dealing with existence and in a part dealing
with uniqueness. The smoothness conditions in the existence part are weaker than
in the uniqueness part. Due to a result in the appendix, our existence proof could
be provided without referring to the implicit function theorem, but the uniqueness
proof does.

2. The result of Gaudet and Salant revisited

The setting for the result of [3] is a homogeneous Cournot oligopoly with firms
1, . . . , n with action set R+, strictly increasing cost functions ci : R+ → R and a
decreasing price function p : R+ → R such that for some positive real number v
one has p(y) > 0 (0 ≤ y < v) and p(y) = 0 (y ≥ v). We refer to v as the market
satiation point of p. So writing, for a ∈ Rn, a :=

∑n
l=1 al, the profit function

ui : Rn
+ → R of firm i is given by

ui(x) = p(x)xi − ci(xi).

Concerning smoothness it is assumed that p is continuous and that the restriction
p�[0, v] and every ci is twice continuously differentiable. This defines a game in

strategic form. Denote its set of (Cournot) equilibria by E. It is well-known (also
see Theorem 4.1(1)) that e < v for every e ∈ E.

Defining for a firm i and (aggregate action of the other firms) z ∈ R+ the reduced

conditional profit function ũ
(z)
i : R+ → R by

(2.1) ũ
(z)
i (xi) = p(xi + z)xi − ci(xi),

the result in [3] essentially is:

Theorem 2.1. Suppose for every i ∈ N :

ci
′(xi) > 0 (xi > 0),

for every y ∈ [0, v [ there exists αi,y < 0 such that

(2.2) p′(y)− ci
′′(xi) ≤ αi,y (xi ≥ 0)

and for every z ∈ [0, v [

(2.3) ũ
(z)
i is strictly pseudo-concave on [0, v − z [.

Let

N> := {k ∈ N | p(0) > c′k(0)}
and for x ∈ X with x < v

qk(x) := − xkp
′′(x) + p′(x)

p′(x)− ck ′′(xk)
(k ∈ N).

(1) #E ≥ 1.
(2)

∑
k∈N> with ek>0 qk(e) < 1 (e ∈ E) ⇒ #E = 1.

(3) E = {e} ⇒
∑

k∈N>
qk(e) ≤ 1. ⋄
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Remarks. (1) Formula (2.2) concerns a strong variant of (what we call) the first
Fisher-Hahn condition (for firm i), i.e. of

(2.4) p′(y)− ci
′′(xi) < 0 (0 ≤ xi ≤ y < v).

(2) In Theorem 2.1, every ũ
(z)
i is strictly quasi-concave. (Indeed: for z ≥ v,

ũ
(z)
i = −ci is strictly decreasing, and, for z < v, ũ

(z)
i is continuous, strictly quasi-

concave on [0, v − z [ and strictly decreasing on [v − z,+∞ [.)
(3) The so-called marginal revenue condition is

(2.5) yp′′(y) + p′(y) ≤ 0 (0 ≤ y < v)

and the second Fisher-Hahn condition is

(2.6) xp′′(y) + p′(y) ≤ 0 (0 ≤ x ≤ y < v).

If p is decreasing, then (2.5) ⇔ (2.6). And (cfr. with Remark 7) we have ((2.4) ∧
(2.6)) ⇒ (2.3).

(4) If the marginal revenue condition and the first Fisher-Hahn condition hold,
then, using Remark 3, qk(e) < 0 (e ∈ E) and thus Theorem 2.1(2,3) (trivially)
holds. However, as shown in [1], for this case a much more simple equilibrium
uniqueness proof exists.

3. Assumptions

Consider a game in strategic form with player set N := {1, . . . , n}, for player i a
strategy set Xi and payoff function ui. So every Xi is a non-empty set and every ui
a function X1 × · · · ×Xn → R. We denote the set of strategy profiles X1 × · · · ×Xn

also by X. For i ∈ N , define Xı̂ := X1×· · ·×Xi−1×Xi+1×· · ·×Xn. We sometimes
identify X with Xi ×Xı̂ and then write x ∈ X as x = (xi;xı̂).

For i ∈ N and z ∈ Xı̂ the conditional payoff function u
(z)
i : Xi → R is defined

by u
(z)
i (xi) := ui(xi; z) and the best-reply correspondence Ri : Xı̂ ( Xi is defined

by Ri(z) := argmax u
(z)
i . A strategy profile x is called a (Nash) equilibrium if

xi ∈ Ri(xı̂) (i ∈ N).
From now on we always assume the following Assumptions a–k.

a. For i ∈ N : Xi = R+ and Ti :=
∑

l∈N\{i}Xl. Let Y :=
∑

l∈N Xl.

b. For each player i ∈ N and z ∈ Ti there exists a function ũ
(z)
i : Xi → R

such that u
(z)
i = ũ

(z)
i (z ∈ Xı̂). We call ũ

(z)
i the reduced conditional payoff

function of i.
c. Fix v ∈ Y ∪ {+∞} with v ̸= 0 such that in case v ̸= +∞ for every i ∈ N

and z ∈ Ti

argmax ũ
(z)
i =

{
argmax ũ

(z)
i �[0, v − z [ ̸= ∅ if z < v,

{0} if z ≥ v.

Let Yv :=

{
[0, v] if v ̸= +∞,
[0, v [ if v = +∞.

(We always can take v = +∞.)

d. Every ũ
(z)
i is continuous and for z < v differentiable on [0, v − z [.
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e. For every i ∈ N there exists a continuous function ti : Xi × Yv → R such
that for every z ∈ [0, v [ and xi ∈ [0, v − z [ (using also Euler’s notation D
for derivatives)

Dũ
(z)
i (xi) = ti(xi, xi + z).

f. Each function ti(0, ·) is decreasing.
g. For every i ∈ N and y ∈ [0, v [, ti(·, y) is strictly decreasing.
h. If v = +∞, then for every i ∈ N there exists ri ∈ Xi such that ti(xi, xi+z) <

0 for every z ∈ Ti and xi ∈ Xi with xi ≥ ri.
i. If v ̸= +∞, then ti(xi, v) < 0 (xi ∈ Xi \ {0}).
j. For every i ∈ N> := {k ∈ N | tk(0, 0) > 0} and for every y ∈ Yv with

ti(0, y) ≥ 0, there exists an xi ∈ Xi with ti(xi, y) ≤ 0.

k. For every i ∈ N and z ∈ [0, v [, ũ
(z)
i is strictly pseudo-concave on [0, v − z [.

Remarks. (5) Although Xi = Ti = Y = R+, we often write Xi, Ti and Y instead
of R+. Doing this may be helpfull for the generalisation where also other strategy
sets are allowed.

(6) Under Ass. a concerns one of the possible ways to define an aggregative game.
Under Ass. a sufficient for Ass. b–e to hold (with v = +∞) is that for every i ∈ N the
following assumption holds: there exists a smooth enough function πi : Xi×Y → R
such that ui(x) = πi(xi,x) (x ∈ X). (Indeed, then take ũ

(z)
i (xi) = πi(xi, xi+z) and

ti = (D1 +D2)πi.)
(7) Sufficient for Ass. k to hold is that for every i ∈ N , z ∈ [0, v [ and xi ∈

[0, v − z [ we have: ti(xi, xi + z) = 0 ⇒ (D1 +D2)ti(xi, xi + z) < 0.
(8) Ass. e and i imply: v ̸= +∞ ⇒ ti(0, v) ≤ 0.

(9) In Ass. c: if v ∈ ]z,+∞ [, then argmax ũ
(z)
i = argmax ũ

(z)
i �[0, v − z].

4. Main result

Denoting the set of equilibria by E, our main result is the following.

Theorem 4.1. Suppose Assumptions a–k hold.

(1) If e ∈ E, then e ∈ [0, v [. And if #E ≥ 2, then 0 ̸∈ E.
(2) #E ≥ 1.
(3) If for every i ∈ N> also the assumptions

l. there exists δi < 0 and a continuously differentiable function t̃i : ]δi,+∞ [×
]0, v [ → R such that t̃i = ti on R+ × ]0, v [,

m. D1t̃i < 0,
hold, then
I.

∑
k∈N> with ek>0−

D2tk
D1tk

(ek, e) < 1 (e ∈ E) ⇒ #E ≤ 1.

II. E = {e} ⇒
∑

k∈N>
−D2tk

D1tk
(ek, e) ≤ 1. ⋄

Proof. (1) First statement: we may suppose v ̸= +∞. By contradiction suppose

e ∈ E with e ≥ v. We have, ej ∈ argmax ũ
(eȷ̂)

j (j ∈ N).

Case where there exists j ∈ N with eȷ̂ < v: now, by Ass. c, ej ∈ argmax ũ
(eȷ̂)

j �
[0, v − eȷ̂ [ ⊆ [0, v − eȷ̂ [ and so e < v, a contradiction.
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Case where there is no j ∈ N with eȷ̂ < v: now eȷ̂ ≥ v (j ∈ N) and therefore, by

Ass. c, e = 0. Again a contradiction.
Second statement: by way of contradiction, suppose a,b ∈ E with 0 = a ̸= b.

Fix i with bi > 0. As 0 ∈ E, Ass. e implies ti(0, 0) = Dũ
(0)
i (0) ≤ 0. By part 1,

b < v. Now the contradiction ti(0, 0) ≤ 0 = ti(bi,b) < ti(0,b) ≤ ti(0, 0) follows:
the second inequality holds as b is an equilibrium with bi ∈ Int(Xi), the third follows
with Ass. g and the fourth with Ass. f.

(2), (3) See Section 6. �

Remarks. (10) By Ass. f and l: D2tk(0, y) ≤ 0 (k ∈ N>) and y ∈ ]0, v [. So

Proposition 5.1(4) below implies in Theorem 4.1(3), writing qk(e) := − D2tk
D1tk

(ek, e),

that
∑

k∈N qk(e) ≤
∑

k∈N>
qk(e) ≤

∑
k∈N> with ek>0 qk(e).

5. Method

Define the reduced best reply correspondence R̃i : Ti ( Xi by

R̃i(z) := argmax ũ
(z)
i .

Note that Ri(z) = R̃i(z) (z ∈ Xı̂).

Proposition 5.1. (1) Every R̃i is singleton-valued. (So the correspondence R̃i

can and will be interpreted as a function Ti → Xi.)

(2) Each function R̃i is bounded.

(3) If i ∈ N \N>, then R̃i = 0.
(4) For every e ∈ E and i ∈ N \N> it holds that ei = 0. ⋄

Proof. (1) Fix z ∈ Ti. If z ≥ v, then by Ass. c, R̃i(z) = {0}. Now suppose

z < v. By Ass. c, R̃i(z) = argmax ũ
(z)
i �]0, v − z [. As, by Ass. k, ũ

(z)
i �]0, v − z [

is strictly quasi-concave, we have #R̃i(z) ≤ 1. Case v < +∞: by Remark 9,

R̃i(z) = argmax ũ
(z)
i �[0, v − z]. Ass. d together with the Weierstrass’ theorem

implies #R̃i(z) ≥ 1. Case v = +∞: by Ass. h, for z ∈ Ti and xi ≥ ri we have

Dũ
(z)
i (xi) = ti(xi, xi+z) < 0. So ũ

(z)
i is strictly decreasing on [ri,+∞ [. This implies

R̃i(z) = argmax ũ
(z)
i � [0, ri]. Again, the Weierstrass’ theorem implies #R̃i(z) ≥ 1.

Thus #R̃i(z) = 1.

(2) Case v ̸= +∞: Ass. c implies that z ≥ v ⇒ R̃i(z) = 0 and z < v ⇒
R̃i(z) < v − z ≤ v.

Case v = +∞: as, by the proof of part 1, R̃i(z) = argmax ũ
(z)
i � [0, ri].

(3) If z ≥ v, then R̃i(z) = 0. Now suppose z < v. Let a = R̃i(z). By contradiction

we prove that a = 0. So suppose a ̸= 0. By Ass. c, a ∈ ]0, v − z [. As, by Ass. d, ũ
(z)
i

is differentiable on [0, v − z [, we have, by Fermat’s theorem, Dũ
(z)
i (a) = 0. By Ass.

e, ti(a, a+ z) = 0. So, with Ass. g and f, 0 = ti(a, a+ z) < ti(0, a+ z) ≤ ti(0, 0) ≤ 0,
a contradiction.

(4) This follows with part 3. �
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For i ∈ N>, we define the correspondence bi : Yv ( Xi by

bi(y) := {xi ∈ Xi | ti(xi, y) = 0}.

By Conditions g and i every bi is at most singleton-valued. For i ∈ N>, we define
the virtual cumulative best reply function b̃i : Yv → R of player i by

b̃i(y) :=

{
the unique element of bi(y) if bi(y) ̸= ∅,

0 if bi(y) = ∅.

The adjective ‘virtual’ refers to the fact that bi is not the same as (but is closely
related to), what is called in [6], the cumulative best reply correspondence Bi : Yv (
R defined by Bi(y) := {xi ∈ Xi | y− xi ∈ Ti and xi ∈ R̃i(y− xi)}. (The function b̃i
corresponds to the function gi in [3], but is in its very detail different.) For i ∈ N>,
let

Y
(ess)
i := {y ∈ Yv | bi(y) ̸= ∅} ⊇ {y ∈ Yv | b̃i(y) > 0} =: Y

(ess+)
i .

Lemma 5.2. Suppose i ∈ N>.

(1) For y ∈ Y
(ess)
i , b̃i(y) is the unique element of Xi with ti(b̃i(y), y) = 0.

(2) For every xi ∈ Xi and y ∈ Yv:

b̃i(y) · ti(b̃i(y), y) = 0 and ti(xi, y) = 0 ⇒ xi = b̃i(y).

(3) v ̸= +∞ ⇒ b̃i(v) = 0.

(4) For y ∈ Yv: y ∈ Y
(ess+)
i ⇔ ti(0, y) > 0.

(5) For y ∈ Yv: y ∈ Y
(ess)
i ⇔ ti(0, y) ≥ 0. ⋄

Proof. (1), (2) Direct consequences of the definitions involved.
(3) By part 2 and Ass. i.

(4) ‘⇒’: so b̃i(y) > 0. By parts 2 and 3, ti(b̃i(y), y) = 0 and y ̸= v. With Ass. g,

ti(0, y) > ti(b̃i(y), y) = 0.
‘⇐’: As ti(0, y) > 0, Ass. j implies that there exists xi ∈ Xi\{0} with ti(xi, y) = 0.

So, by part 2, b̃i(y) = xi > 0.

(5) ’⇒’: if y ∈ Y
(ess)
i , then apply part 4. If y ∈ Y

(ess)
i \ Y

(ess+)
i , then b̃i(y) = 0

and part 1 gives ti(0, y) = 0.
’⇐’: if ti(0, y) > 0, then apply part 4. If ti(0, y) = 0, then 0 ∈ bi(y) and so

0 ∈ Y
(ess)
i . �

Proposition 5.3. If e ∈ E and i ∈ N>, then ei = b̃i(e). ⋄

Proof. As e ∈ E and Xi = R+, we have ei > 0 ⇒ ti(ei, e) = Du
(eı̂)
i (ei) =

Diui(e) = 0, and ei = 0 ⇒ ti(ei, e) = Diui(e) ≤ 0. So, if ei > 0, then b̃i(e) = ei

and if ei = 0, then by Lemma 5.2(4), e ̸∈ Y
(ess+)
i and so b̃i(e) = 0 = ei. �

Lemma 5.4. Suppose v = +∞ and i ∈ N>.

(1) If y ≥ ri, then y − b̃i(y) ∈ Ti and [b̃i(y) > 0 ⇒ R̃i(y − b̃i(y)) = b̃i(y)].

(2) There exists yi > 0 such that b̃i(y) ≤ y
n for all y ≥ yi. ⋄
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Proof. (1) First statement: if b̃i(y) = 0, then this statement holds. Now sup-

pose b̃i(y) > 0. By Lemma 5.2(2), ti(b̃i(y), y) = 0. By Ass. h, ti(y, y) < 0. So

ti(b̃i(y), y) > ti(y, y). By Ass. g, b̃i(y) < y. Thus y − b̃i(y) ∈ Ti.

Second statement: as b̃i(y) > 0, ti(b̃i(y), y) = 0 holds. As y−b̃i(y) ∈ Ti, we obtain

Dũ
(y−b̃i(y))
i (b̃i(y)) = ti(b̃i(y), y) = 0. Ass. k implies b̃i(y) ∈ argmax ũ

(y−b̃i(y))
i =

R̃i(y − b̃i(y)).
(2) By contradiction suppose there does not exist such an yi. This implies the

existence of a sequence (ym) in R+ with limit +∞ and b̃i(ym) > ym/n for all m.

Now, by part 1 for m large enough, R̃i(ym − b̃i(ym)) = b̃i(ym) > ym/n. It follows

that limm→+∞ R̃i(ym − b̃i(ym)) = +∞. As, by Proposition 5.1(2), R̃i is bounded,
this is absurd. �

We define the function b̃ : Yv → R by

b̃ :=
∑
k∈N>

b̃k

and refer to b̃ as a aggregate virtual cumulative best reply function. We denote the
set of fixed points of b̃ by fix(b̃). We understand by the Nash-sum function the
function σ : E → R defined by σ(e) := e and we call an element of σ(E) Nash-sum.

Proposition 5.5. (1) σ is injective.

(2) If y ∈ fix(b̃), then with e ∈ X defined by ei = b̃i(y) (i ∈ N>) and ei = 0 (i ∈
N \N>), it holds that e = y and e ∈ E.

(3) σ(E) = fix(b̃). ⋄

Proof. (1) By contradiction suppose a,b ∈ E with a ̸= b and a = b =: y.
Fix i ∈ N with bi > ai. As a,b ∈ E, we have Diui(b) ≥ 0 ≥ Diui(a), so
ti(bi, y) ≥ ti(ai, y). But, by Ass. g, ti(bi, y) < ti(ai, y).

(2) e =
∑

k∈N\N>
ek +

∑
k∈N>

ek =
∑

k∈N>
ek =

∑
k∈N>

b̃k(y) = b̃(y) = y. Fix

i ∈ N . We have to prove that ei = R̃i(eı̂). If eı̂ = v, then, as e ≤ v, ei = 0. Also,

by Ass. c, R̃i(v) = 0. Now further suppose eı̂ < v. We have Du
(eı̂)

i (ei) = ti(ei, e).

Case i ∈ N \ N>: by Ass. f, Du
(eı̂)

i (ei) = ti(0, e) ≤ ti(0, 0) ≤ 0. By Ass. k,

u
(eı̂)

i �[0, v − eı̂ [ is pseudo-concave. Therefore 0 ∈ argmaxu
(eı̂)

i �[0, v − eı̂ [. So, by

Ass. c, 0 ∈ R̃i(eı̂).

Case i ∈ N> and ei = 0: as 0 = ei = b̃i(e), we have e ̸∈ Y
(ess+)
i and so, by

Lemma 5.2(4), ti(ei, e) = ti(0, e) ≤ 0. As above 0 ∈ R̃i(eı̂) follows.

Case i ∈ N> and ei ̸= 0: noting that b̃i(y) > 0 and therefore ti(b̃i(y), y) = 0, we

have ti(ei, e) = 0. As above ei ∈ R̃i(eı̂) follows.
(3) ‘⊆’: suppose y = e with e ∈ E. By Propositions 5.1(4) and 5.3, y =∑
k∈N ek =

∑
k∈N>

ek =
∑

k∈N>
b̃k(e) = b̃(e) = b̃(y). ‘⊇’: by part 2. �

Lemma 5.6. Suppose i ∈ N>.

(1) Y
(ess)
i = R+ or Y

(ess)
i = [0, si] for some si ∈ Yv \ {0}.

(2) If Y
(ess)
i = [0, si], then b̃i(y) = 0 for every y ∈ Yv with y ≥ si.
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(3) b̃i : Yv → R is continuous.

(4) Y
(ess+)
i = R+ or Y

(ess+)
i = [0, wi [ for some wi ∈ ]0, v [.

(5) If Y
(ess+)
i = [0, wi [, then wi ∈ Y

(ess)
i , ti(0, wi) = 0 and b̃i(wi) = 0. ⋄

Proof. (1) By Lemma 5.2(5), Y
(ess)
i = {y ∈ Yv | ti(0, y) ≥ 0}. As ti(0, ·) is decreasing

and Yv is an interval, also Y
(ess)
i is an interval. As ti(0, 0) > 0, 0 ∈ Y

(ess)
i follows.

The continuity of ti(·, 0) and ti(0, 0) > 0 imply that the interval Y
(ess)
i is proper and

that Y
(ess)
i is closed in Yv. This implies the desired result.

(2) By Lemma 5.2(5), ti(0, si) ≥ 0 and ti(0, y) < 0 (y ∈ Yv with y > si). If
y = si = v, then apply Lemma 5.2(3). If y = si < v, then the continuity of ti
implies ti(0, si) = 0 and thus b̃i(si) = 0. Finally, for y ∈ Yv with y > si, we have,

using Ass. g, ti(xi, y) < 0 (xi ∈ Xi) and therefore b̃i(y) = 0.

(3) Consider the function ti : Xi × Y
(ess)
i → R. By Lemma 5.2(1), for y ∈

Y
(ess)
i it holds that b̃i(y) is the unique element of Xi with ti(b̃i(y), y) = 0. With

Lemma 5.2(3): v ∈ Y
(ess)
i ⇒ ti(0, v) = 0. Part 1 and Ass. e,g and i imply that

Theorem 7.1 in the appendix applies. This theorem guarantees that b̃i is continuous

on Y
(ess)
i . Now with parts 1 and 4 it follows that b̃i is continuous.

(4) Analogous to part 1, noting that v ̸∈ Y
(ess+)
i by Lemma 5.2(3).

(5) As wi ̸∈ Y
(ess+)
i , ti(0, wi) ≤ 0 holds. As Y

(ess+)
i ⊆ Y

(ess)
i , part 1 implies

wi ∈ Y
(ess)
i and so ti(0, wi) ≥ 0. Thus ti(0, wi) = 0 and so b̃i(wi) = 0. �

Proposition 5.7. The function b̃ : Yv → R has a fixed point. ⋄

Proof. If N> = ∅, then b̃ = 0 and 0 ∈ fix(b̃). Now suppose N> ̸= ∅. Lemma 5.6(3)

guarantees that b̃ is continuous. By Lemma 5.6(4), b̃(0) > 0.
Case where v ̸= +∞: according to Lemma 5.2(1) we have for every i ∈ N> that

Y
(ess)
i = [0, si] where si ∈ ]0, v]. According to Lemma 5.2(3) we have b̃(v) = 0. It

follows that b̃ has a fixed point.
Case where v = +∞: Lemma 5.4(2) implies the existence of y > 0 such that

b̃(y) ≤ y for every y ≥ y. Again, it follows that b̃ has a fixed point. �

For the next lemma remember that, for i ∈ N>, Y
(ess+)
i = R+ = Yv or Y

(ess+)
i =

[0, wi [ ⊂ Yv for some wi ∈ ]0, v [.

Lemma 5.8. Suppose Assumptions l and m (in Theorem 4.1) hold. Let i ∈ N>.

(1) b̃i is differentiable at every y0 ∈ Y
(ess+)
i with y0 ̸= 0 and Db̃i(y0) =

− D2ti
D1ti

(b̃i(y0), y0).

(2) If Y
(ess+)
i = [0, wi [, then b̃i(y0) = 0, at every y0 ∈ [wi, v [ and b̃i is semi-

differentiable at wi with D−b̃i(wi) = −D2ti
D1ti

(b̃i(wi), wi) ≤ 0 = D+b̃i(wi).
⋄

Proof. By the definition of Y
(ess+)
i , b̃i = 0 on [wi, v [. Thus D+b̃i(wi) = 0. The

other statements can be proved with the implicit function theorem. As the proof
of part 1 is a routine one, we only provide here the proof of the other statements



EQUILIBRIUM UNIQUENESS 361

in part 2. This proof is a little bit technical due to the fact that (0, wi) is not an
interior point of the domain of ti.

Let W ′
i := ]δi,+∞ [ × ]0, v [ By Lemma 5.6(5), wi ∈ Y

(ess)
i , b̃i(wi) = 0 and

ti(0, wi) = 0. As wi ∈ ]0, v [, we have 0 = t̃i(0, wi). By Ass. l, the function
t̃i : W ′

i → R is continuously differentiable and, by Ass. m, D1t̃i(0, wi) ̸= 0. The
implicit function theorem guarantees that there exists an open neighbourhood Ui

of 0 in R, an open neighbourhood Vi of wi in R with Ui × Vi ⊆ W ′
i and a unique

function Ψi : Vi → R with Ψi(Vi) ⊆ Ui such that

{(Ψi(y), y) | y ∈ Vi} = {(xi, y) ∈ Ui × Vi | t̃i(xi, y) = 0}.
In addition: this function Ψi is continuously differentiable. So we have t̃i(Ψi(y), y) =

0 (y ∈ Vi). As b̃i is, by Lemma 5.6(3), continuous, there exists an open neighbour-

hood Si of wi in R such that b̃i(y) ∈ Ui (y ∈ Si). Now t̃i(Ψi(y), y) = 0 (y ∈
Si ∩ Vi ∩ ]0, wi]). Also t̃i(b̃i(y), y) = ti(b̃i(y), y) = 0 (y ∈ Si ∩ Vi ∩ ]0, wi]). It follows

that b̃i = Ψi on Si ∩ Vi ∩ ]0, wi] and so b̃i is left differentiable at wi. Differentiating
the identity t̃i(Ψi(y), y) = 0 (y ∈ Si ∩ Vi ∩ ]0, wi]) gives for y = wi

D−b̃i(wi) = DΨi(wi) = −D2t̃i

D1t̃i
(Ψi(wi), wi) = −D2t̃i

D1t̃i
(0, wi) = −D2ti

D1ti
(0, wi).

By Ass. f we have D2ti(0, wi) ≤ 0. Thus, with Ass. m, D−b̃i(wi) ≤ 0. �
Before stating the next result we note that Lemmas 5.2(3) and 5.6(4) imply:

N> ̸= ∅ ⇒ fix(b̃) ⊆ ]0, v [.

Proposition 5.9. Suppose N> ̸= ∅ and b̃ is at every w ∈ fix(b̃) semi-differentiable

with D−b̃(w) ≤ D+b̃(w).

(1) If at each w ∈ fix(b̃) it holds that D+b̃(w) < 1, then #fix(b̃) ≤ 1.

(2) If b̃ has a unique fixed point w, then D−b̃(w) ≤ 1. ⋄

Proof. LetN(g) be the set of zeros of the function g : Yv → R defined by g(y) := b̃(y)−
y. So fix(b̃) = N(g).

(1) By contradiction suppose #fix(b̃) ≥ 2; so #N(g) ≥ 2 by part 1. As D−g ≤
D+g < 0 on N(g) and g is by Lemma 5.6(3) continuous, it follows that g has at
most one zero. This is a contradiction.

(2) By contradiction suppose D−b̃(w) > 1. So g(w) = 0 and D−g(w) > 0. As

g(0) > 0 and g is continuous, g has a zero in ]0, w [. So #fix(b̃) ≥ 2, a contradiction.
�

6. Proof of Theorem 4.1(2,3)

(2) By Proposition 5.7, fix(b̃) ̸= ∅. Proposition 5.5(3) implies E ̸= ∅.
(3) First note that Lemma 5.8 implies that for every k ∈ N> the function b̃k is

at every y ∈ ]0, v [ semi-differentiable with D−b̃k(y) ≤ D+b̃k(y). This implies that

b̃ is at every w ∈ fix(b̃) with y ̸= 0 semi-differentiable with D−b̃ ≤ D+b̃.
I. Having part 1, we may suppose that 0 ̸∈ E. By Proposition 5.1(4) this implies

N> ̸= ∅. We shall prove that the continuous function b̃ has at most one fixed point;
then #E ≤ 1 follows from Proposition 5.5(3). Proving that b̃ has at most one fixed
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point now will be done by verifying the condition in Proposition 5.9(1). So suppose

w ∈ fix(b̃). It follows that

D+b̃(w) =
∑
k∈N>

D+b̃k(w) =
∑

k∈N> with b̃k(w)>0

D+b̃k(w)

=
∑

k∈N> with b̃k(w)>0

Db̃k(w)

=
∑

k∈N> with b̃k(w)>0

−D2tk
D1tk

(b̃k(w), w).

Here the second equality holds by Lemma 5.8(2) and the third and fourth by
Lemma 5.8(1). By Proposition 5.5(3), w ∈ σ(E). Fix e ∈ E such that w = e.

Now for k ∈ N>, by Proposition 5.3, ek = b̃k(w). With this, as desired,

D+b̃(w) =
∑

k∈N> with ek>0

−D2tk
D1tk

(ek, e) < 1.

II. Suppose E = {e}. If e = 0, then the desired result (trivially) holds. Now

suppose e ̸= 0. By Proposition 5.5(3), fix(b̃) = {e}. Also N> ̸= ∅. By Proposi-

tion 5.9(2), D−b̃(e) ≤ 1. Now (using Ass. f for the below inequality)∑
k∈N>

−D2tk
D1tk

(ek, e) =
∑
k∈N>

−D2tk
D1tk

(b̃k(e), e)

=
∑

k∈N> with b̃k(e)>0

−D2tk
D1tk

(b̃k(e), e)

+
∑

k∈N> with b̃k(e)=0

−D2tk
D1tk

(b̃k(e), e)

≤
∑

k∈N> with b̃k(e)>0

D−b̃k(e) +
∑

k∈N> with b̃k(e)=0

D−b̃k(e)

=
∑
k∈N>

D−b̃k(e) = D−b̃(e) ≤ 1.

�

7. Applications

As Theorem 4.1 deals with abstract aggregative games, one may wish to have
applications to concrete games. Although there is a whole list of assumptions in
this theorem, they are less demanding than they may look.

The reader is invited to check that Theorem 4.1 implies Theorem 2.1. (Take
ti(xi, y) = p′(y)xi + p(y) − ci

′(xi), where p′(v) should be understood as a left de-
rivative, t̃i(xi, y) = p′(y)xi + p(y) − c̃′i(xi) where c̃i(xi) = ci(xi) (xi ≥ 0) and
c̃i(xi) := ci(0) + c′i(0)xi +

1
2c

′′
i (0)x

2
i (xi < 0).)

Besides Cournot oligopolies there are many others aggregative games, like Bertrand
oligopolies, public good games, contest games, smash-and-grab games, search games
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and joint production games ([1, 2, 8]). It is tempting to find out in how far
Theorem 4.1 applies to these games. We only look here to transboundary pol-
lution games with global transboundary pollution, being a special type of a pub-
lic good game. In such a game the players choose an emission level (in order
to produce) which causes transboundary pollution. Xi is the set of country i’s
possible emission levels. An emission of a country not only causes damage in
this country but also abroad. Country i gains (monetary) benefits Pi(xi) and
faces (monetary) damage costs Di(

∑
l∈N xl). This leads to the net benefits func-

tion fi(x1, . . . , xn) := Pi(xi) − Di(
∑

l∈N xl). Now consider the case Xi = R+,
Pi : R+ → R twice differentiable and strictly concave and Di : R+ → R twice
differentiable and convex, D′

i > 0, limxi→+∞ P ′
i(xi) = 0 and limy→+∞D′

i(y) = +∞.
Theorem 4.1 applies to this situation (with v = +∞).

Appendix

Theorem 7.1. Suppose T is a proper interval of R with 0 ∈ T ⊆ R+ and f :
R+×T → R is continuous. If for every t ∈ T , there exists a unique a⋆(t) ∈ R+ with
f(a⋆(t), t) = 0 and f(a, t) < 0 for every a > a⋆(t), then the function a⋆ : T → R is
continuous. ⋄

Proof. Fix t ∈ T with t > 0. If we can prove that a⋆ � [0, t] is continuous, then it
follows that a⋆ : T → R is continuous. As the graph of a⋆ � [0, t] is closed, continuity
of a⋆ � [0, t] follows if we can show that a⋆ � [0, t] is bounded.

Let t ∈ [0, t]. As f(a⋆(t), t) = 0 and f(a, t) < 0 for a > a⋆(t), we can fix
a(t) > a⋆(t) such that f(a(t), t) < 0. As f is continuous at (a(t), t), there exists an
open ball Br(t)(a(t), t) in R+ × [0, t] with radius r(t) > 0 around (a(t), t) on which
f is negative.

Let Z := ∪t∈[0,t] Br(t)(a(t), t) and Z ′ := ∪t∈[0,t] (t− r(t), t+ r(t)). Z ′ is an open

covering of the compact set [0, t]. So there exists t1, . . . , tm ∈ [0, t] such that [0, t] ⊆
∪m
i=1(ti − r(ti), ti + r(ti)). We may suppose that a(t1) ≥ a(tk) (1 ≤ k ≤ m).
Now fix t ∈ [0, t]. Take k ∈ {1, . . . ,m} such that t ∈ (tk − r(tk), tk + r(tk)).

Then (a(tk), t) ∈ Br(tk)(a(tk), tk) and therefore f(a(tk), t) < 0. This implies a⋆(t) <

a(tk) ≤ a(t1). So with z = a(t1), f(a, t) < 0 for all a > z and t ∈ [0, t] and therefore
a⋆ � [0, t] ≤ z, thus a⋆ � [0, t] is bounded. �

Closing words

Thanks to Willem Pijnappel for providing Theorem 7.1.
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