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SUFFICIENT AND NECESSARY CONDITIONS FOR
EQUILIBRIUM UNIQUENESS IN AGGREGATIVE GAMES

PIERRE VON MOUCHE AND TAKESHI YAMAZAKI

ABSTRACT. Sufficient and necessary conditions for an aggregative game to have a
unique Nash equilibrium are identified. In particular, an improvement of a result
of Gaudet and Salant (1991) for Cournot oligopolies is obtained. The results
are proved by exploiting the general relation between Nash equilibria and fixed
points of the (virtual) aggregate cumulative best reply correspondence.

1. INTRODUCTION

The result of [3], restated in Section 2 as Theorem 2.1, is a milestone in oligopoly
theory. It deals with sufficient and necessary conditions for a homogeneous Cournot
oligopoly game to have a unique equilibrium and concerns a variant of a result in
[4]. Contrary to the latter result, it considers the whole equilibrium set.

The proof in [3] also is much more elementary than the proof in [4] which deals
with Cournot equilibria as solution of a complementarity problem to which differ-
ential topological fixed point index theory is applied. The more simple nature of
the proof was realized by using the in oligopoly theory popular Selten-Szidarovzsky
method (in particular the idea in [5]) which reformulates the n-dimensional equi-
librium fixed point problem for the best reply correspondence as a 1-dimensional
one. The 1-dimensionality makes that in general no deep theorems like Brouwer’s
fixed point theorem are needed for establishing equilibrium existence. This method
in fact applies to correspondences with a special factorisation property and so its
setting is not necessarily a game theoretic one (see [7] and references therein).

As in Theorem 2.1 conditional profit function are quasi-concave and there is a
finite market satiation point, its part 1 on equilibrium existence also would follow
from an equilibrium existence result a la Nikaido-Isoda. So the most interesting
parts in Theorem 2.1 are parts 2 and 3 about equilibrium semi-uniqueness, i.e. that
there exists at most one equilibrium.

A shortcoming of Theorem 2.1 is that assumption (2.2) below concerns a strong
variant of the first Fisher-Hahn condition (see Remark 1 below) which is one of
the reasons that Theorem 2.1 does not imply much simpler results that assume the
usual condition. Another is that the price function can, due to the finite market
satiation point, not be everywhere positive.

In our article, we provide by Theorem 4.1 a generalisation of Theorem 2.1 which
can deal with aggregative games. The article is intended to be a mathematical
rigorous variant of some results in chapter 3 in [8]. Also we will use the Selten-
Szidarovzsky method. Theorem 4.1 not only implies Theorem 2.1 but also improves
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intrinsically on it by removing among other things the above mentioned shortcom-
ings. Theorem 4.1 is divided into a part dealing with existence and in a part dealing
with uniqueness. The smoothness conditions in the existence part are weaker than
in the uniqueness part. Due to a result in the appendix, our existence proof could
be provided without referring to the implicit function theorem, but the uniqueness
proof does.

2. THE RESULT OF GAUDET AND SALANT REVISITED

The setting for the result of [3] is a homogeneous Cournot oligopoly with firms
1,...,n with action set R, strictly increasing cost functions ¢; : R — R and a
decreasing price function p : Ry — R such that for some positive real number v
one has p(y) > 0 (0 <y <v) and p(y) =0 (y > v). We refer to v as the market
satiation point of p. So writing, for a € R, a := Y ', a, the profit function
u; : Rt — R of firm 4 is given by

ui(x) = p(x)zi — ¢i(w:).

Concerning smoothness it is assumed that p is continuous and that the restriction
p[[o’v] and every ¢; is twice continuously differentiable. This defines a game in
strategic form. Denote its set of (Cournot) equilibria by E. It is well-known (also
see Theorem 4.1(1)) that e < v for every e € E.

Defining for a firm i and (aggregate action of the other firms) z € Ry the reduced

conditional profit function ﬂz(»z) :Ry — R by
(2.1) a7 (1) = plai + 2)2; — eilxy),
the result in [3] essentially is:
Theorem 2.1. Suppose for every i € N:
¢i'(x;) >0 (z; > 0),

for every y € [0,v [ there exists o, < 0 such that
(2.2) P'(y) =i’ (i) < @iy (zi > 0)
and for every z € [0,v |
(2.3) &gz) is strictly pseudo-concave on [0,v — z|.
Let

N> = {k € N |p(0) > c(0)}
and for x € X with x < v

_wp'(x) +p'(x)
= e e BN

(1) #E > 1.
(2) Xken. with e,>0k(€) <1l (e € E) = #E=1.
3) E={e} = Xpen. ar(e) <1. 0
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Remarks. (1) Formula (2.2) concerns a strong variant of (what we call) the first
Fisher-Hahn condition (for firm 7), i.e. of

(2.4) P(y) — e’ () <0 (0 <z <y <w).
(2)

(2) In Theorem 2.1, every @, is strictly quasi-concave. (Indeed: for z > w,

ﬂgz) = —¢; is strictly decreasing, and, for z < v, agz) is continuous, strictly quasi-
concave on [0,v — z [ and strictly decreasing on [v — z,+00.)

(3) The so-called marginal revenue condition is

(2.5) yp"(y) +9'(y) <0 (0 <y <wv)
and the second Fisher-Hahn condition is
(2.6) xp”(y) +7'(y) <0 (0 <z <y <w).

If p is decreasing, then (2.5) < (2.6). And (cfr. with Remark 7) we have ((2.4) A
(2.6)) = (2.3).

(4) If the marginal revenue condition and the first Fisher-Hahn condition hold,
then, using Remark 3, gx(e) < 0 (e € E) and thus Theorem 2.1(2,3) (trivially)
holds. However, as shown in [1], for this case a much more simple equilibrium
uniqueness proof exists.

3. ASSUMPTIONS

Consider a game in strategic form with player set N := {1,...,n}, for player i a
strategy set X; and payoff function u;. So every X; is a non-empty set and every u;
a function X; x --- x X;; — R. We denote the set of strategy profiles X1 x --- x X,
also by X. For ¢ € N, define X; := X7 X+ x X;_1 X X411 X -+ - x X,,. We sometimes
identify X with X; x X; and then write x € X as x = (z;;X;).

For i € N and z € X; the conditional payoff function ugz) : X; — R is defined

(z)

by w; (z;) := ui(x;;z) and the best-reply correspondence R; : X; — X; is defined
by R;(z) := argmax ugz). A strategy profile x is called a (Nash) equilibrium if
x; € RZ(Xi) (’L S N)
From now on we always assume the following Assumptions a—k.
a. Forie N: X; =Ry and T; := ZleN\{i} Xp. Let Y := > v X0
b. For each player ¢ € N and z € T; there exists a function ﬂ,gz) :X; - R
such that ugz) = &EZ) (z € X;). We call ﬂz(fz) the reduced conditional payoff
function of 1.
c. Fix v € Y U {400} with v # 0 such that in case v # +oo for every i € N

and z € T;
argmax ’l](-Z) _ argmax ﬂgz) T[O, v—2z| #0if z < v,
' {0} if 2 > .
Let Y, = { [[8,;)][ llff v i izz (We alsvays oan ake v = 400)

(2)

d. Every @, is continuous and for z < v differentiable on [0,v — z [.
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e. For every i € N there exists a continuous function ¢; : X; x Y, — R such
that for every z € [0,v[ and x; € [0,v — z | (using also Euler’s notation D
for derivatives)

D'I]SZ) (.T}Z) = ti(xi, x; + Z)

f. Each function ¢;(0, -) is decreasing.

g. For every i € N and y € [0,v [, t;(+,y) is strictly decreasing.

h. If v = +o0, then for every i € N there exists r; € X; such that t;(z;, x;+2) <
0 for every z € T; and z; € X; with x; > r;.

i. If v # 400, then t;(x;,v) <0 (x; € X; \ {0}).

j. For every i € Ny :={k € N | t,(0,0) > 0} and for every y € Y, with
t;(0,y) > 0, there exists an x; € X; with ¢;(z;,y) < 0.

k. For every i € N and z € [0,v ], ﬂgz)

Remarks. (5) Although X; =T; =Y = R, we often write X;,7; and Y instead
of R.. Doing this may be helpfull for the generalisation where also other strategy
sets are allowed.

(6) Under Ass. a concerns one of the possible ways to define an aggregative game.
Under Ass. a sufficient for Ass. b—e to hold (with v = +00) is that for every i € N the
following assumption holds: there exists a smooth enough function m; : X; xY — R
such that u;(x) = m;(z;,x) (x € X). (Indeed, then take agz) (x;) = mi(x;, x; + z) and
t; = (D1 + D2)7Ti.)

(7) Sufficient for Ass. k to hold is that for every i € N, z € [0,v[ and z; €
[0,v — z[ we have: t;(z;,x; +2) =0 = (D1 + Da2)ti(zi,x; + z) < 0.

(8) Ass. e and i imply: v # +00 = t;(0,v) <0.

(2)

i

is strictly pseudo-concave on [0,v — 2 [.

(9) In Ass. c: if v € |z, 400, then argmax 4, = argmax ﬁgz) 110, v — z]-

4. MAIN RESULT
Denoting the set of equilibria by F, our main result is the following.

Theorem 4.1. Suppose Assumptions a—k hold.
(1) Ifec E, thene € [0,v]. And if #FE > 2, then 0 ¢ E.
(2) #E > 1.
(3) If for every i € N~ also the assumptions )
1. there exists 0; < 0 and a continuously differentiable function t; : |;, +o0 [
J0,v[ — R such that t; = t; on Ry x ]0,v],
m. Dqt; <0,
hold, then
Dot
I Zk€N> with ex>0 —ﬁ(ek,g) <l(e€eF) =#E<1.

Dot
I E={e} = > jen. —Drler,e) <1 0
Proof. (1) First statement: we may suppose v # +o00. By contradiction suppose
e € E/ with e > v. We have, e; € argmax aiﬁ) (j €N).

es
Case where there exists j € NV with e; < v: now, by Ass. ¢, e; € argmax ﬂ;i i
[0,v—e;[ C [0,v —e;[ and so e < v, a contradiction.
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Case where there is no j € N with e; < v: now e; > v (j € N) and therefore, by
Ass. ¢, e = 0. Again a contradiction. o

Second statement: by way of contradiction, suppose a,b € E with 0 = a # b.
Fix i with b; > 0. As 0 € E, Ass. e implies ;(0,0) = D@{”(0) < 0. By part 1,
b < v. Now the contradiction ¢;(0,0) < 0 = t;(b;,b) < ¢;(0,b) < ¢;(0,0) follows:
the second inequality holds as b is an equilibrium with b; € Int(X;), the third follows
with Ass. g and the fourth with Ass. f.

(2), (3) See Section 6. O

Remarks. (10) By Ass. f and 1: Dsti(0,y) < 0 (k € N5) and y € ]0,v[. So

Proposition 5.1(4) below implies in Theorem 4.1(3), writing gx(e) := — gf;: (ex,e),

that ey k() < Ypens @) < Ypens with o020 4 (©):

5. METHOD

Define the reduced best reply correspondence R; : Ty — X; by
Ri(z) := argmax ﬂgz).

Note that R;(z) = Ri(z) (z € X;).

Proposition 5.1. (1) Every R; is singleton-valued. (So the correspondence R;
can and will be interpreted as a function T; — X;.)
(2) Each function R; is bounded.
(3) Ifi € N\ N, then R; = 0.
(4) For everye € E and i € N \ N> it holds that e; = 0. ©

Proof. (1) Fix z € Tj. If z > v, then by Ass. ¢, Ri(z) = {0}. Now suppose
z < v. By Ass. ¢, Ri(z) = argmax ﬂgz) 10,0 — 2 [ As, by Ass. k, ﬂgz) 10,0 — 2]
is strictly quasi-concave, we have #Ri(z) < 1. Case v < +oo: by Remark 9,
3 (2)
implies #Rz(z) > 1. Case v = H+o0: by Ass. h, for z € T; and z; > r; we have
Dﬁgz)(aﬁi) = ti(x;, xi+2) <0. So ﬂgz) is strictly decreasing on [r;, 400 [. This implies

Ri(z) = argmax @ M0, v — 2] Ass. d together with the Weierstrass’ theorem

Ri(z) = argmax agz) I [0,7;]. Again, the Weierstrass’ theorem implies #Ri(2) > 1.
Thus #R;(z) = 1.

(2) Case v # +o00: Ass. ¢ implies that z > v = Ri(z) =0 and z < v =
Ri(z) <v—2z<w.

Case v = 400: as, by the proof of part 1, R;(z) = argmax ﬂgz) I 10, 7]

(3) If z > v, then R;(z) = 0. Now suppose z < v. Let a = R;(z). By contradiction
(2)

we prove that a = 0. So suppose a # 0. By Ass. ¢, a € |0,v — z[. As, by Ass. d, 4,
is differentiable on [0,v — z [, we have, by Fermat’s theorem, Dﬂgz)(a) = 0. By Ass.
e, ti(a,a+z) = 0. So, with Ass. g and f, 0 = ¢t;(a,a+ z) < t;(0,a+ z) < ¢;(0,0) <0,
a contradiction.

(4) This follows with part 3. O
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For i € N~, we define the correspondence b; : Y, —o X; by
bi(y) == {xi € X; | ti(zs,y) = 0}.

By Conditions g and i every b; is at most singleton-valued. For ¢ € N~ , we define
the virtual cumulative best reply function b; : Y, — R of player i by

P the unique element of b;(y) if b;(y) # 0,
i(y) 0 if b;(y) = 0.

The adjective ‘virtual’ refers to the fact that b; is not the same as (but is closely
related to), what is called in [6], the cumulative best reply correspondence B; : 'Y, —o
R defined by B;(y) :=={z; € X; |y —z; € T; and x; € Rz(y —;)}. (The function b;
corresponds to the function g; in [3], but is in its very detail different.) For i € N,
let

Y™ = {y e Y, [bily) # 0} 2 {ye Yo |bily) > 0} = v,
Lemma 5.2. Suppose i € N~.

(1) Forye Yi(ess), bi(y) is the unique element of X; with t;(b;(y),y) = 0.
(2) For every z; € X; and y € Yy,:

bi(y) - ti(bi(y),y) =0 and t;(z;,y) =0 = ;= bi(y).

(3) v # +o0 = bi(v) = 0.
(4) ForyeY,: ye€ YZ-(QSSJF) & (0,y) > 0.
(5) Fory€eY,: ye€ Yi(ess) & t(0,y) >0. ¢

Proof. (1), (2) Direct consequences of the definitions involved.
(3) By part 2 and Ass. i. )
(4) ‘=" S0 bi(y) > 0. By parts 2 and 3, t;(b;(y),y) = 0 and y # v. With Ass. g,

ti(0,y) > ti(bi(y), y) = 0.
‘=" Ast;(0,y) > 0, Ass. j implies that there exists z; € X;\{0} with ¢;(z;,y) = 0.

So, by part 2, Bl(y) =x; > 0.

(5) '=" ify € Yi(ess), then apply part 4. If y € Yi(ess) \Y;(essﬂ, then b;(y) = 0
and part 1 gives ¢;(0,y) = 0.

<" if t;(0,y) > 0, then apply part 4. If ¢;(0,y) = 0, then 0 € b;(y) and so
0 € v ™) 0

Proposition 5.3. Ife € F and i € N~, then e¢; = Ei(g). o

Proof. As e € E and X; = Ry, we have ¢; > 0 = t;(e;,e) = Dugei)(ei) =
Djui(e) =0, and ¢, =0 = t;(e;,e) = D;u;(e) < 0. So, if e; > 0, then b;(e) = ¢;
and if e; = 0, then by Lemma 5.2(4), e ¢ Y;(QSSJF) and so Bi(g) =0=c¢,. O

Lemma 5.4. Suppose v =400 and i € N.

(1) Ify =7, theny = bi(y) € Ty and [bi(y) >0 = Ri(y — bi(y)) = bi(y)].
(2) There exists J; > 0 such that bi(y) < L for all y > 7;. ©
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Proof. (1) First statement: if bi(y) = 0, then this statement holds. Now sup-
pose b;(y) > 0. By Lemma 5.2(2), ti(bi(y),y) = 0. By Ass. h, ti(y,y) < 0. So
ti(bi(y),y) > ti(y,y). By Ass. g, bi(y) <y. Thus y — bi(y) € T.

Second statement: as b;(y) > 0, t;(b;(y),y) = 0 holds. As y—b;(y) € T}, we obtain
Du(y by ))(bi(y)) = t;(bi(y),y) = 0. Ass. k implies b;(y) € argmaxu(y bily))
Ri(y — bi(y)).

(2) By contradiction suppose there does not exist such an g,. This implies the
existence of a sequence (3,,) in Ry with limit 400 and b;(ym) > ym/n for all m.
Now, by part 1 for m large enough, Ri(ym — bi(ym)) = bi(ym) > Ym/n. 1t follows

that 1im,, 5400 Ri(ym — bi(ym)) = +00. As, by Proposition 5.1(2), R; is bounded,
this is absurd. O

We define the function b : Y, — R by

> b
keN~

and refer to b as a aggregate virtual cumulative best reply function. We denote the
set of fixed points of b by ﬁx(b). We understand by the Nash-sum function the
function o : E — R defined by o(e) := e and we call an element of o(E) Nash-sum.

Proposition 5.5. (1) o is injective.
(2) If y € fix(b), then with e € X defined by e; = b;(y) (i € Ns) and e; =0 (i €
N\ N-), it holds that e =y and e € E.
(3) o(E) = fix(b). o

Proof. (1) By contradiction suppose a,b € F with a # b and a = b

= .
Fix ¢ € N with b; > a;. As a,b € E, we have D;u;(b) > 0 > Du;(a), so
ti(bi,y) > ti(ai,y). But, by Ass. g, t;(bi,y) < ti(a;,y). 3 3

(2) € =D ken\ne €k T Dkens €k = D okeNs € = Dgen. bk(y) = b(y) = y. Fix
i € N. We have to prove that e; = R;(e;). If €, = v, then, as e < v, ¢; = 0. Also,
by Ass. ¢, Ri(v) = 0. Now further suppose e; < v. We have Du(*)(ez) = ti(e;, ).

Case i € N\ Nx: by Ass. f, Dugg)(ei) = 1;(0,e) < t;(0,0) < 0. By Ass. k,
uz(ﬁ) [[()w — e I8 pseudo-concave. Therefore 0 € argmax ugﬂ) [[071) — & So, by
Ass. ¢, 0 € }?Z(%)

Case i € N> and e¢; = 0: as 0 = ¢; = b;(e), we have e ¢ Y(ess+) and so, by
Lemma 5.2(4), t;(e;,e) = t;(0,€) < 0. As above 0 € R;(e;) follows.

Case ¢ € N> and ¢; # 0: noting that bi(y) > 0 and therefore ¢;(b;(y),y) = 0, we
have t;(e;,e) = 0. As above e; € R;(e;) follows.

(3) ‘C’: suppose y = e with e € E. By Propositions 5.1(4) and 5.3, y =
e €k = Spew. ¢k = Spew. bi(€) = b(e) = b{y). ‘2 by part 2. 0
Lemma 5.6. Suppose i € N-.

(1) Y-(ess) Ry or Y(ESS) [0, s;] for some s; € Y, \ {0}.

7

(2) Ile. ess) — = [0, 53], then b;(y) = 0 for every y € Y, with y > s;.
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(3) b; : Yy, = R is continuous.
(4) }/'i(ess+) =Ry or }/'i(ess+) = [0, w; [ for some w; € ]0,v][. ]
(5) IF YD) = [0,w; [, then w; € V", t;(0,w;) = 0 and b;(w;) = 0. o

Proof. (1) By Lemma 5.2(5), Yi(CSS) ={y €Y, |t(0,y) > 0}. Ast;(0,-) is decreasing
and Y, is an interval, also Yi(ess) is an interval. As t;(0,0) > 0, 0 € Y,L»(ess) follows.
The continuity of ¢;(-,0) and ¢;(0,0) > 0 imply that the interval Yi(ess) is proper and
that Yi(ess) is closed in Y. This implies the desired result.

(2) By Lemma 5.2(5), ¢;(0,s;) > 0 and ¢;(0,y) < 0 (y € Y, withy > s;). If
y = s; = v, then apply Lemma 5.2(3). If y = s; < v, then the continuity of ;
implies ¢;(0,s;) = 0 and thus b;(s;) = 0. Finally, for y € Y, with y > s;, we have,
using Ass. g, ti(zi,y) < 0 (z; € X;) and therefore b;(y) = 0.

(3) Consider the function t; : X; X Yi(ess) — R. By Lemma 5.2(1), for y €
Yi(ess) it holds that b;(y) is the unique element of X; with #;(b;(y),y) = 0. With
Lemma 5.2(3): v € Yz-(ess) = t;(0,v) = 0. Part 1 and Ass. e,g and i imply that
Theorem 7.1 in the appendix applies. This theorem guarantees that b; is continuous

on Y;.(ess). Now with parts 1 and 4 it follows that b; is continuous.

(4) Analogous to part 1, noting that v ¢ Yi(essﬂ by Lemma 5.2(3).
(5) As w; & Y;(QSSJF), t;(0,w;) < 0 holds. As Yi(eSSJr) - Yi(ess), part 1 implies
w; € Yi(ess) and so t;(0,w;) > 0. Thus ¢;(0,w;) = 0 and so El(wl) =0. O

Proposition 5.7. The function b:Y, — R has a fized point. o

Proof. If Ny = 0, then b = 0 and 0 € fix(b). Now suppose N~ # 0. Lemma 5.6(3)
guarantees that b is continuous. By Lemma 5.6(4), b(0) > 0.

Case where v # +00: according to Lemma 5.2(1) we have for every ¢ € N~ that
Yi(ess) = [0, s;] where s; € ]0,v]. According to Lemma 5.2(3) we have b(v) = 0. It
follows that b has a fixed point.

Case where v = +oo: Lemma 5.4(2) implies the existence of § > 0 such that

b(y) <y for every y > 7. Again, it follows that b has a fixed point. O

For the next lemma remember that, for ¢ € N, Y;(ESSJF) =R,y =Y, or Yi(essﬂ =
[0,w; [ C Y, for some w; € ]0,v].

Lemma 5.8. Suppose Assumptions | and m (in Theorem 4.1) hold. Let i € N-.
(1) b; is differentiable at every yo € YZ-(eSSH with yo # 0 and Db;(yg) =
- Bii (bi(y0)> yo)-
(2) If Yi(essﬂ = [0,w; [, then bi(yo) = 0, at every yo € [w;,v| and b; is semi-

differentiable at w; with D~ b;(w;) = —gﬁz (bi(w;),w;) < 0 = DTb(w;).
o

Proof. By the definition of Yi(essﬂ, bi = 0 on [w;,v[. Thus Dt b(w;) = 0. The
other statements can be proved with the implicit function theorem. As the proof
of part 1 is a routine one, we only provide here the proof of the other statements
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in part 2. This proof is a little bit technical due to the fact that (0,w;) is not an
interior point of the domain of ¢;.

Let W/ :=1d;,+00[ x ]0,v[ By Lemma 5.6(5), w; € Y;(ess), bi(w;) = 0 and
t;(0,w;) = 0. As w; € ]0,v], we have 0 = #;(0,w;). By Ass. 1, the function
t; » W/ — R is continuously differentiable and, by Ass. m, D1t;(0,w;) # 0. The
implicit function theorem guarantees that there exists an open neighbourhood U;
of 0 in R, an open neighbourhood V; of w; in R with U; x V; C Wz’ and a unique
function ¥; : V; — R with ¥;(V;) C U; such that

{(Wi(y),y) |y € Vit = {(wi,y) € Ui x V; | ti(wi,y) = 0}
In addition: this function ¥; is continuously differentiable. So we have #;(¥;(y),y) =
0 (y € V;). As b; is, by Lemma 5.6(3), continuous, there exists an open neighbour-
hood S; of w; in R such that b;(y) € U; (y € S;). Now £;(¥;(y),y) = 0 (y €
S; N Vi N]0,w]). Also 3(bi(y), y) = ti(bi(y),y) = 0 (y € S; N V; N]0,w;]). It follows
that b; = ¥, on S; N V; N 10, w;] and so b; is left differentiable at w;. Differentiating
the identity #;(¥;(y),y) =0 (y € S; N V; N]0,w;]) gives for y = w;

-} Dot Dot Dat;
D7 bi(w;) = DYi(w;) = ——— (Vi (w;), w;) = ———(0,w;) = — 0, w;).
(1) = DV = ~ P2 (Wiw). ) = ~P2(0,0) = ~ZE0.w)
By Ass. f we have Dyt;(0,w;) < 0. Thus, with Ass. m, D_l;i(wi) <0. O

Before stating the next result we note that Lemmas 5.2(3) and 5.6(4) imply:

Ns #0 = fix(b) C10,v].
Proposition 5.9. :S’uppose N- #( and b is at every w € ﬁx(?)) semi-differentiable
with D~b(w) < DT b(w).

(1) If at each w € fix(b) it holds that D“‘i)(u;) < 1, then #fix(b) < 1.

(2) If b has a unique fized point w, then D™b(w) < 1. ¢
Proof. Let N(g) be the set of zeros of the function g : Y, — R defined by g(y) := B(y)—
y. So fix(b) = N(g). )

(1) By contradiction suppose #fix(b) > 2; so #N(g) > 2 by part 1. As D7g <
D*g < 0 on N(g) and g is by Lemma 5.6(3) continuous, it follows that g has at
most one zero. This is a contradiction.

(2) By contradiction suppose D~b(w) > 1. So g(w) = 0 and D™g(w) > 0. As
g(0) > 0 and g is continuous, g has a zero in |0, w [. So #{ix(b) > 2, a contradiction.

U

6. PROOF OF THEOREM 4.1(2,3)

(2) By Proposition 5.7, fix(b) # (). Proposition 5.5(3) implies E # 0.

(3) First note that Lemma 5.8 implies that for every k € N- the function by, is
at every y € |0, v | semi-differentiable with D~ by(y) < DFby(y). This implies that
b is at every w € fix(b) with y # 0 semi-differentiable with D~b < D*b.

I. Having part 1, we may suppose that 0 ¢ E. By Proposition 5.1(4) this implies
N~ # (). We shall prove that the continuous function b has at most one fixed point;
then #E < 1 follows from Proposition 5.5(3). Proving that b has at most one fixed
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point now will be done by verifying the condition in Proposition 5.9(1). So suppose

w € fix(b). It follows that

DYb(w) = Y DTh(w) = > Dby (w)

kENS keNs with by, (w)>0

= > Dby (w)
keNs with b (w)>0
Doty ~
= > g, Bew)w).
keNs with b, (w)>0
Here the second equality holds by Lemma 5.8(2) and the third and fourth by
Lemma 5.8(1). By Proposition 5.5(3), w € o(E). Fix e € E such that w = e.
Now for k € N, by Proposition 5.3, e = bi(w). With this, as desired,
- Dot
DYb(w) = Z 2K (e, e) < 1.

Dyt
keN- with e, >0 Lk
II. Suppose £ = {e}. If e = 0, then the desired result (trivially) holds. Now

suppose e # 0. By Proposition 5.5(3), fix(b) = {e}. Also N> # 0. By Proposi-
tion 5.9(2), D~ b(e) < 1. Now (using Ass. f for the below inequality)

S D) = 3 2o )

rev,  Ditk ren,  Ditk
Doty -
- Y. o kle)e)
— _ 1l
keN~ with by(e)>0
Doty ~
— b

keNs with b, (e)=0

< > D~ by(e) + > D~ by(e)
keNs with b (e)>0 keNs with b, (e)=0

= ) Db(e)=Dble) < 1.
kEN->

7. APPLICATIONS

As Theorem 4.1 deals with abstract aggregative games, one may wish to have
applications to concrete games. Although there is a whole list of assumptions in
this theorem, they are less demanding than they may look.

The reader is invited to check that Theorem 4.1 implies Theorem 2.1. (Take
ti(zi,y) = p'(y)z; + p(y) — ¢’ (x;), where p’(v) should be understood as a left de-
rivative, #;(zi,y) = p'(v)zi + p(y) — &(xi) where G(z;) = ci(xi) (v > 0) and
Gi(2;) := ¢;(0) + ci(0)z; + 2/ (0)2? (2; < 0).)

Besides Cournot oligopolies there are many others aggregative games, like Bertrand
oligopolies, public good games, contest games, smash-and-grab games, search games
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and joint production games ([1, 2, 8]). It is tempting to find out in how far
Theorem 4.1 applies to these games. We only look here to transboundary pol-
lution games with global transboundary pollution, being a special type of a pub-
lic good game. In such a game the players choose an emission level (in order
to produce) which causes transboundary pollution. X; is the set of country i’s
possible emission levels. An emission of a country not only causes damage in
this country but also abroad. Country i gains (monetary) benefits P;(x;) and
faces (monetary) damage costs D;(}_;cn 7). This leads to the net benefits func-
tion fi(z1,...,25) := Pi(x;) — Di(> ;en®1). Now consider the case X; = Ry,
Pi : Ry — R twice differentiable and strictly concave and D; : Ry — R twice
differentiable and convex, D} > 0, limg, 1o Pj(x;) = 0 and lim,_,  Di(y) = +o0.
Theorem 4.1 applies to this situation (with v = +00).

APPENDIX

Theorem 7.1. Suppose T is a proper interval of R with 0 € T  C Ry and f :
Ry XT — R is continuous. If for every t € T, there exists a unique a(t) € Ry with
flax(t),t) =0 and f(a,t) <0 for every a > a.(t), then the function a, : T — R is
continuous. ©

Proof. Fix t € T with ¢ > 0. If we can prove that a, | [0,¢] is continuous, then it
follows that a, : T — R is continuous. As the graph of a, [ [0, ] is closed, continuity
of a, [ ]0,] follows if we can show that a, | [0,7] is bounded.

Let t € [0,t]. As f(ax(t),t) = 0 and f(a,t) < 0 for a > a.(t), we can fix
a(t) > ax(t) such that f(a(t),t) < 0. As f is continuous at (a(t),t), there exists an
open ball B, (a(t),t) in Ry x [0,] with radius r(¢) > 0 around (a(t),t) on which
f is negative.

Let Z := Uycpoq Bry(a(t),t) and Z':= Uy (t —7(t),t +7(t)). Z' is an open
covering of the compact set [0,]. So there exists ¢1,..., ¢y € [0,7] such that [0,¢] C

M (i —r(ty), ti +r(t;)). We may suppose that a(t1) > a(ty) (1 <k <m).

Now fix t € [0,7]. Take k € {1,...,m} such that ¢t € (tx, — r(tx),tx + r(tx)).
Then (a(tg),t) € By, (a(ty),tx) and therefore f(a(ty),t) < 0. This implies a.(t) <
a(ty) < a(t1). So with z = a(t1), f(a,t) <0 for all a > z and ¢ € [0,¢] and therefore
ax | [0,t] < z, thus a, | [0,¢] is bounded. O

CLOSING WORDS

Thanks to Willem Pijnappel for providing Theorem 7.1.
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