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COINCIDENCE POINT THEOREMS FOR MULTI-VALUED
MAPPINGS OF REICH-TYPE ON METRIC SPACES ENDOWED
WITH A GRAPH

JUKRAPONG TIAMMEE AND SUTHEP SUANTAI

ABSTRACT. In this paper, we introduce the concepts of G-contraction multi-
valued mappings of Reich-type on a metric space endowed with a directed graph
(. Some coincidence point theorems for this type of multi-valued mapping and a
surjective mapping ¢g : X — X under some properties on X and some contractive
conditions of Reich-type are established. Some examples of mappings of this type
and some examples satisfying all conditions of our main theorems are also given.
Our main results extend and generalize many coincidence point and fixed point
theorems in partially ordered metric spaces in the literature.

1. INTRODUCTION

In 1972, Reich [15] proved fixed point theorem for single-valued Reich type
operators as follow,

Theorem 1.1. Let (X,d) be a complete metric space and let f : X — X be a
Reich-type single-valued (a, b, c)-contraction, that is , there exist a,b,c € RT, with
a+b+c <1 such that

d(f(z), f(y)) < ad(z,y) + bd(z, f(x)) + cd(y, f(y)), for each z,y € X.
Then f is a Picard operator, that is,

(1) Fy={z"},
(2) for each x € X the sequence { f™(z)}nen converges in (X,d) to z*.

For a metric space (X, d), we let CB(X), Comp(X), Py(X) and Py(X) to be the
set of all nonempty closed bounded subsets of X, all nonempty compact subsets of
X, all nonempty closed subsets of X and all bounded subsets of X, respectively.
A point z € X is a fixed point of a multi-valued mapping 7 : X — 2% if z € Tx.
The first well-known theorem for multi-valued contraction mappings was given by
Nadler [13] in 1967.

Theorem 1.2. Let (X,d) be a complete metric space and T a mapping from X
into CB(X). Assume that there exists k € [0,1) such that

H(Tz,Ty) < kd(z,y) for all z,y € X.

Then there exists z € X such that z € Tz.
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Nadler’s fixed point theorem for multi-valued contractive mappings has been
extended in many directions (see [2], [5], [10], [12]).

Definition 1.3. If (X, d) is a metric space, then a multi-valued operator T : X —
P, (X) is said to be a Reich-type multi-valued (a,b, c¢)-contraction if there exist
a,b,c € RT with a + b+ ¢ < 1 such that

H(Tz,Ty) < ad(z,y) + bd(z, Tx) + cd(y, Ty), for each z,y € X.

Reich [15] proved some fixed point theorem for multi-valued Reich-type (a, b, ¢)-
contraction mappings.

From the year of 2003 many results concerning existence of fixed points of both
single-valued and multi-valued mappings in metric spaces endowed with a partial
ordering were established. The first result in this direction was given by Ran and
Reurings [14] and they also presented its applications to linear and nonlinear matrix
equations. After that many authors extended those results and investigated fixed
point theorems in partially ordered metric spaces (see [14],[3],[4],[1],[9]).

In 2008, Jachymski [11] introduced the concept of G-contraction and proved
some fixed point results of G-contractions in a complete metric space endowed with
a graph.

Definition 1.4 ([11]). Let (X, d) be a metric space and let G = (V(G), E(G)) be a
directed graph such that V(G) = X and E(G) contains all loops, i.e., A = {(z, ) :
z e X} CE(G).

We say that a mapping f : X — X is a G-contraction if f preserves edges of G,
i.e.,

(1.1) z,y € X, (2,y) € B(G) = (f(z), f(y)) € E(G)
and there exists a € (0, 1) such that

z,y € X, (2,y) € B(G) = d(f(x), f(y)) < ad(z,y).

Let X be the set {x € X : (z, f(z)) € E(G)}. He showed in [11] that under
some certain properties on (X, d, G), a G-contraction f : X — X has a fixed point
if and only if Xy is nonempty. The mapping f : X — X satisfying the condition
(1.1) is also called a graph-perserving mapping.

In 2010, Beg, Butt and Radojevic [2] introduced the concept of G-contraction for
a multi-valued mapping 7' : X — CB(X) and proved some fixed point results of
this kind of mappings.

Definition 1.5 ([2]). Let T' : X — CB(X) be a multi-valued mapping. The
mapping 7' is said to be a G-contraction if there exists a k € (0,1) such that

H(Tz,Ty) < kd(x,y) for all (z,y) € E(G)
and if u € Tx and v € Ty are such that
d(u,v) < kd(z,y) + o, for each a >0
then (u,v) € E(G).
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We denote Xp to be the set {x € X : (z,y) € E(G), for some y € Tx}. They
also showed that if X is a complete metric space with a graph G and X has the
property (A), then a G-contraction mapping 7' : X — C'B(X) has a fixed point if
and only if Xp is nonempty.

In 2012, Bojor [6] extended the concept of G-contraction defined by Jachymski
[11] by using some general contractive condition as follows.

Definition 1.6. Let (X, d) be a metric space. The operator 7' : X — X is said to
be a G-Ciric-Reich-Rus operator if:
(1) (z,y) € E(G) = (Tz,Ty) € E(G), Vz,y € X;
(2) there exists nonnegative numbers a, b, ¢ with a + b + ¢ < 1, such that, for
each (z,y) € E(G), we have:
d(Tz, Ty) < ad(z,y) + bd(x,Tx) + cd(y, Ty).

We say that G is T-connected if for all vertices x,y of G with (z,y) ¢ E(G),
there exists a path in G, (xi)f\io from z to y such that g = x, xy = y and
(x;,Tx;) € E(G) for alli=1,2,...,N — 1.

An operator T : X — X is said to be a Picard operator if T' has a unique fixed
point z* and for each x € X, T"x — z*. Bojor [6] proved some fixed point results
for G-Ciric-Reich-Rus operator as follows.

Theorem 1.7. Let (X, d) be a metric space endowed with a graph G and T : X — X
a G-Ciric-Reich-Rus operator. Suppose that:

(1) G is T-connected.
(2) for any (zp)nen i X, if x, — x and (vp,x) € E(G) for n € N then there is a
subsequence (zk, )nen with (xy,, ) € E(G) for all n € N.

Then T is a Picard operator.

In 2013, Chifu, Petrusel and Bota [10] proved some fixed point theorems for a Re-
ich type contraction with respect to the functional §, where 6(A, B) = sup{d(z,y) :
x € Aye B}

Theorem 1.8. Let (X,d) be a complete metric space and let G be a directed graph
such that the triple (X, d, G) satisfies the following property:

(P) for any sequence (xp)neny C X with x, — x as n — oo, there exists a
subsequence (zk, )nen Of (Tn)nen such that (zy,,x) € E(Q).

LetT : X — Py(X) be a multi-valued operator. Suppose that the following assertions
hold:

(i) There exist a,b,c € RT withb# 0 and a +b+ ¢ < 1 such that
0(Tx,Ty) < ad(x,y) + bo(x,Tx) + cd(y, Ty)
for all (z,y) € E(G).
(ii) For each x € X, the set

- 1—a—
X = {y €Tz : (z,y) € E(G) and 6(x,Tz) < qd(z,y) for some q € (1, #)}
18 nonempty.

Then
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(a) Fix(T) = SFix(T) # 0.
(b) If we additionally suppose that
x*,y* € Fiz(T) = (2%, y") € E(Q),
then Fiz(T) = SFix(T) = {«*}.

Recently, Dinvari and Frigon [8] introduced a new concept of G-contraction which
is weaker than that of Beg, Butt and Radojavic [2].

Definition 1.9 ([8]). Let 7 : X — 2% be a map with nonempty values. We say that
T is a G-contraction (in the sense of Dinvari and Frigon) if there exists o € (0,1)
such that

(Cg) for all (z,y) € E(G) and all u € Tz, there exists v € Ty such that
(u,v) € E(G) and d(u,v) < ad(z,y).

They showed that under some properties on a metric space which is weaker than
Property(A), a multi-valued G-contraction with closed values has a fixed point (see
[8], Theorem 2.10 and Corollary 2.11). We note that the concept of G-contraction
for multi-valued mappings does not concern the concept of graph-preserving as
seen for single-valued mappings. Motivated by this observation and these previous
works, we are interested to introduce a concept of graph-preserving for multi-valued
mappings and study their fixed point theorems in a complete metric space endowed
with a directed graph.

2. PRELIMINARIES

Let (X, d) be a metric space and C'B(X) the set of all nonempty closed bounded
subsets of X. For x € X and A, B € CB(X), define

d(w, A) = inf{d(z,y) : y € A},
0(A,B) =sup{d(z,y) :x € A,y € B}.
Denote H the Hausdorff metric induced by d, that is
H(A, B) = max{sup d(u, B),supd(v, A)}.
ucA veEB

The following lemma which can be found in [13], is very useful for our main result.

Lemma 2.1 ([13]). Let (X,d) be a metric space. If A,B € CB(X) and a € A,
then, for each € > 0 there exists b € B such that

d(a,b) < H(A, B) +e.

Let G = (V(G), E(G)) be a directed graph where V(G) is a set of vertices of
graph and F(G) is a set of its edges. Assume that G has no parallel edges.

Definition 2.2. Let  and y be vertices in a graph G, then a path in G from x to
y of length n € NU {0} is a sequence {z;}I", of n + 1 vertices such that zo = z,
Tn =y, (¥i—1,2;) € E(G) for t = 1,2,...,n. A graph G is connected if there is a
path between any two vertices of G.
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A partial order is a binary relation < over the set X which satisfies the following
conditions:

(1) x <z (reflexivity);

(2) if z <y and y < x, then x = y (antisymmetry);

(3) if x <y and y < 2z, then z < z (transitivity);
for all z,y € X. A set with a partial order < is called a partially ordered set. We
write z < y if x <y and = # y.
Definition 2.3. Let (X, <) be a partially ordered set. For each A, B C X, we
write

A< Bifa<bforanya€ A, be B.

Definition 2.4. Let (X, d) be a metric space endowed with a partial order <. Let
g: X — X be surjective and T : X — CB(X), T is said to be g - increasing if for
any x,y € X,
g(z) < gly) = Tx < Ty.
Definition 2.5. Let X be a nonempty set, G = (V(G), E(G)) a graph such that
V(G)=Xand T: X — CB(X). Then T is said to be graph-perserving if
(x,y) € E(G) = (u,v) € E(G) for all u € Tx and v € Ty.
Definition 2.6. Let X be a nonempty set, G = (V(G), E(G)) a graph such that

V(G) =X and T : X — CB(X). Then T is said to be g-graph-perserving if for
any x,y € X,

(9(z),9(y)) € E(G) = (u,v) € E(G) for all u € Tz and v € Ty.

3. MAIN RESULTS

We first introduce a new type of G-contraction.

Definition 3.1. Let (X,d) be a metric space and G = (V(G), E(G)) a directed
graph such that V(G) = X. Let g : X — X be surjective and T': X — CB(X) a
multi-valued mapping. T is said to be a generalized G-contraction with respect
to g if there exist a,b,c € RT with a +b+c¢ <1 and k € (0,1) such that

(1) H(Tz,Ty) < ad(g(x), 9(y)) + bd(g(x), Tx) + cd(g(y), Ty)
for all x,y € X such that (g(x),9(y)) € E(G).
(2) If z,y € X, (9(x),9(y)) € E(G) and u € Tx, v € Ty are such that

d(u,v) < kd(g(x),9(y)) + « for some 0 < a < 1,
then (u,v) € E(G).

Example 3.2. Let G = (X, E(G)) where X = {2,4,5,6,7,9,10,11,21}, E(G) =
{(2,4),(2,10), (4,6)} U{(5,5),(5,7),(5,9),(7,5),(7,7),(7,9),(9,9) , (9,11), (11,21)}
and the Euclidean metric d(z,y) = |x—y| for any z,y € X. Define T': X — CB(X)
by
{7,9}, ifz € {4,10}
T(x)=4¢{9,11}, ifz=6
(5,7}, ifxe{2579,11,21).
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Let (z,y) € E(G). If (z,y) = (2,4), then T2 = {5,7}, T4 = {7,9}, H(T?2,T4) =
2< 0.7d(2 4) 4+ 0.1d(2,72) + 0.1d(4,7T4) and (5,7),(5,9),(7,7),(7,9) € E(G).

Tf (2, ) = (2,10), then T2 = {5, 7}, T'10 = {7,9}, H(T2,T10) = 2 < 0.7d(2, 10)+
0.1d(2,72) + 0.1d(10,710) and (5,7),(5,9),(7,7),(7,9) € E(G).

If (z,y) = (4,6), then T4 = {7,9}, T6 = {9,11}, H(T4,76) = 2 < 0.7d(4,6) +
0.1d(4, T4) + 0.1d(6, T6) and (7,9), (7, 11), (9,9), (9, 11) € E(G).

If (z,y) € {(5,5),(5,7),(5,9),(7,5),(7,7),(7,9),(9,9),(9,11), (11,21) }, then Tx =
Ty = {5,7} and we see that (5,5),(5,7),(7,5),(7,7) € E(G), hence T satisfies (1)
and (2) of Definition 3.1. Therefore T is a generalized G-contraction with respect
to g with a = 0.7, b = 0.1, ¢ = 0.1, where g is an identity function.

Example 3.3. Let G = (X,E(G)) where X = {3,4,5,6,7,10,20}, E(G) =
{(3,3),(3,4),(4,3),(4,4),(4,5),(5,6),(6,7),(10,20)} and the Euclidean metric
d(z,y) = |z —y| for any xz,y € X. Define T : X — CB(X) by

Ta) = {3,4}, ifz e {3,4,5,6,7,10}
1 {4,5}, ifz=20

Define g : X — X by ¢(3) = 10,9(4) = 4,9(5) = 6,9(6) = 5,9(7) = 20,9(10) = 3
and ¢g(20) = 7. We will show T is a generalized G-contraction with respect to g.

Let (9(2),9(y)) € E(G).

If (z,y) € {(3,3),(3,4),(4,3),(4,4), (4,5),(5,6), (10,20) }, then Tz = Ty = {3,4}
and we see that (3,3),(3,4),(4,3),(4,4) € E(G), hence T satisfies (1) and (2) of
Definition 3.1. If (g(z),g(y)) = (6,7), then (z,y) = (5,20), Tb = {3,4}, 720 =
{4,5}, H(T6,T7) = 1 < 0.1d(g(5), g(20)) + 0.5d(g(5), T5) + 0.2d(g(20), T20) and

(3,4),(4,4),(4,5) € E(G), hence T satisfies (1) and (2) of Definition 3.1.
If (g(x),9(y)) = (10,20), then (z,y) = (3,7), T3 =17 = {3,4}, H(T3,T7) =0
and (3,3),(3,4),(4,3),(4,4) € E(G), hence T satisfies (1) and (2) of Definition 3.1.
Therefore T' is a generalized G-contraction with respect to g with a = 0.1, b = 0.5
and ¢ = 0.2.

Property A ([11]). For any sequence (x,)nen in X. If 2, — = and (2, 2p41) €
E(G) for n € N, then there is a subsequence (z, Jnen with (z,,z) € E(G) for
n € N.

The following main theorem is proposed to guarantee the existence of coincidence
point for multi-valued mappings generalized G-contraction with respect to g.

Theorem 3.4. Let (X,d) be a complete metric space and G = (V(G), E(G)) a
directed graph such that V(G) = X. Let T : X — CB(X) be a multi-valued
mapping. Suppose that

(1) T is a generalized G-contraction with respect to g;

(2) there exists xg € X such that (g(z¢),y) € E(G), where y € Txy;
(3) X has the property A;

Then there exists uw € X such that g(u) € Tu.

Proof. Since g is a surjective, there exists 1 € X such that g(z1) € Txo. By (2)
we obtain (g(z9),g(z1)) € E(G). By (1), we get

H(Txo,Tx1) < ad(g(xo), g(x1) + bd(g(xo), Txo) + cd(g(x1), Tx1)
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< ad(g(xo), x1) + bd(g(xo), g(x1) + cH (Txo, Ty ).

Therefore

s g(a0). o))

Let k = %HC’ and a € (0,1). By Lemma 2.1, there exists g(z2) € Tx1 such that
(3.2) d(g(z1),g9(x2)) < H(Txo,Tx1) + .
Moreover, by (3.1) and (3.2), we get

d(g(x1),9(x2)) < H(Txg,Tx1) + ¢

< kd(g(x0), g(21)) + a.
By (1), we obtain (g(z1), g(x2)) € E(G). Next, by assumption (1), we have
H(Tx1,Txo) < ad(g(x1), g(z2) + bd(g(x1), Tx1) + cd(g(x2), Tx2)
< ad(g(z1),2) + bd(g(z1), 9(x2) + cH(Tx1, Tx2).

(3.1) H(Txzy, Tx1) <

Therefore

a+b

b
(3.3) H(Tay, Tao) < ot

dlgfen)g(e2) < (5
By Lemma 2.1, there exists g(z3) € T'z2 such that
(3.4) d(g(x2), g(x3)) < H(Txy, Txs) + .
Moreover, by (3.3) and (3.4), we get

d(g(w2), g(w3)) < H(Tw1, Tas) + o

2
< (42) dtatan)glon) + o2

< kd(g(wo), g(z1)) + o,

By (1), we obtain (g(x2),9(z3)) € E(G). By induction, we obtain a sequence
{g(zy)} in X with the property that for eachn € N, g(x,, 1) € Ty, (9(xn), g(xns1)) €
E(G) and

a+b

(35) atan).atanin) < ($7) dlotan)alan) +a”

Because « € (0,1) and using (3.5), we obtain

> dlg(en).g(enin) < dlaten)gle) 3 (152 ) 4 Doam < .
n=0 n=0

n=0

2
) d(g(z0), g(a1).

—C

then (g(zy))en is a Cauchy sequence. Since X is complete, there exists u € X such
that lim, . g(z,) = g(u). By assumption (3), there is a subsequence g(z,, ) such
that (g(xn,),g9(u)) € E(G) for any k € N. Consider

D(g(u), T’U,) < d(g(u),g(mnk+1)) + d(g(xnk-‘rl)v TU)
< d( ( )7 (xnk-f-l)) + H(Txanu)
<d

glu), g
(9(w), 9(xni41)) + ad(g(2n,, 9(w)))
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+bd(g(zn,, Txn,)) + cd(g(u), Tu)
< d(g(u), g(xn,+1)) + ad(g(zn, . 9(u)))
+ bd(g(xnk)v g(xnkJrl)) + Cd(g(u)v Tu)'

Then we obtain
a

Aglu), Tw) € ——d(g(), 9(ng 1)) + (gl 9(0))
b
*‘i‘:ﬁgd(9($nk)7g($nk+1))
Since g(xy, ) converges to g(u) as n — oo, it follows that d(g(u), Tu) = 0. Since T'u
is closed, we conclude that g(u) € Tu. O

Remark 3.5. We can directly check that Example 3.3 satisfies all conditions in
Theorem 3.4 and F(T') = {3,4}.

The following corollary is an existence of a coincidence point for multi-valued
mappings in partially ordered metric spaces.

Corollary 3.6. Let (X, d) be a complete metric space endowed with a partial ordered

<, 9:X — X a surjection and T : X — CB(X) a multi-valued mapping. Suppose

that

(1) T is g - increasing;

(2) there exist xo € X and u € Txg such that g(zo) < u;

(3) For each sequence {xy} such that g(z) < g(xg41) for all k € N and g(zx)
converges to g(x), for some x € X, then g(xg) < g(x) for all k € N;

(4) there exist a,b,c € RT with a +b+ ¢ < 1 such that

H(Tz,Ty) < ad(g(x), 9(y)) + bd(g(x), Tx) + cd(g(y), Ty)

for all x,y € X such that g(x) < g(y).
Then there exists uw € X such that g(u) € Tu.

Proof. Define G = (V(G), E(G)) by V(G) = X and E(G) = {(z,y) : * < y}. Let
z,y € X such that (¢(z),g(y)) € E(G). Then g(x) < g(y) so Tx < Ty. For any
u € Tz and v € Ty, we have u < v i.e., (u,v) € E(G), and (4), we conclude that T
is a generalized G-contraction with respect to g. By assumption (2), there exist xg
and u € T'zg such that g(xo) < u, so (g(zo),u) € E(G). Hence (2) of Theorem 3.4
is satisfied. It is easy to see that (3) of Theorem 3.4 is also satisfied. Therefore the
Corollary 3.6 is obtained directly by Theorem 3.4. O
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