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EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTION FOR
A CLASS OF BOUNDARY VALUE PROBLEMS WITH
FRACTIONAL ¢-DIFFERENCES

NEDA KHODABAKHSHI AND S. MANSOUR VAEZPOUR

ABSTRACT. In this paper, we use the fixed point theorem in partially ordered
sets, to establish the existence and uniqueness of positive solution to the nonlinear
g-fractional boundary value problem

(Dgu)(a) = —f(w,u(@)), 0<z<1,

(Diu)(0) =0, i=0,....,n—2, Diu(l)=p i DZu(n:),
i=1

where ¢ € (0,1),m > 1 and n > 3 are integers, n — 1 < o < n and 8,n; € (0,1)
fori=1,...,m, f:[0,1] x R" — R is a continuous function. Also, we give an
illustrative example in order to indicate the validity of the assumptions.

1. INTRODUCTION

Recently, fractional differential calculus have attracted a lot of attention by many
researchers of different fields, such as; physics, chemistry, biology, economics, control
theory, and biophysics, etc. [17, 18, 21, 23]. In particular, the existence of solutions
to fractional boundary value problems is recently under strong research, see [5, 6, 7|
and references therein. The g-difference calculus or quantum calculus is an old
subject that was initially developed by Jackson [14, 15]. It is rich in history and
in applications as the reader can confirm in the work by Ernst [9]. Fractional g-
difference equations have gained attention of several researchers. For some earlier
work on the topic, we refer to [2] and Agarwal [1], whereas some new work on
existence solutions of fractional g-difference equations can be found in [10, 11, 12,
20]. Ferreira [10], studied the existence of positive solutions to nonlinear g-difference
boundary value problem:

(Dgu)(z) = —f(z,u(z)), 0<z<ll<a<?2
u(0) = u(1) = 0.

In other paper, Ferreira [11], considered the existence of positive solutions to non-
linear g-difference boundary value problem:

(Dgu)(z) = —f(z,u(z)), 0<z<1l,2<a<3,
u(0) = (Dgu)(0) =0,
(Dgu)(1) = B > 0.

Wmatics Subject Classification. 34A08, 34B18, 39A13.
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problem.
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In both papers, he applied a fixed point theorem in cones. M.El-Shahed and Farah
M.Al-Askar [8] studied the existence of positive solutions to nonlinear g-difference
equation:

(cDgu)(@) +a(z)f(u(z)) =0, 0<z<l, 2<a<3,
u(0) = (Dgu)(0) =0,
7Dqu(1) + BDgu(1) = 0,

where 7,8 > 0 and Dy is the fractional g-derivative of Caputo type. Inspire
of [19], we consider the existence and uniqueness of positive solution for nonlinear
g-difference boundary value problem of the form

(Dgu)(z) = —f(z,u(z)), 0<z<1l,n-1<a<n, n>3,
(1.1) (Diu)(0) =0, i=0,...,n—2,

=B Diu(m), B,mi€(0,1) fori=1,...,m
=1

by using the fixed point theorem in partially ordered sets that was introduced by
Amini-Harandi [3].
2. PRELIMINARIES

In this section, we present some definitions and results which will be needed later,
for more information see [1, 10, 11, 16, 24]. Let g € (0, 1), define

1_ a
[aly = —L, aeR.

l—gq
The g-analogue of the power function (a — b)™ with n € Ny :={0,1,2,...} is
n—1
(a—b)=1, (a—0b)"= H(a—bqk), n €N, a,beR.
k=0
Moreover, if o € R, then

(a—b)® =q¢* H a—bq”

a — bgotn’

The g-gamma function is defined by

1 —¢g)@=—D
Fq(m) = %, $€R\{O,—1,—2,},
and satisfies I';(z + 1) = [z],[¢(«). The g-derivative of a function f is defined by
(Do) () = TELZTD) 0 ) (D,)(0) = 1 (D) 0),

(l-gqz
and g-derivatives of higher order by

(DYf)(@) = f(2), (Dyf)(@)=Dy(Dy'f)(z), neN
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The g-integral of a function f defined on [0,b] is given by
= / f(t)dgt = x(1 —q) Zf(acq”)q",O <|q| < 1,z € [0, b].
0 n=0

If a € [0,b] and f is defined on the interval [0,b], its integral from a to b is defined

by
/f dt_/f dt—/f

Similar for derivatives, it can be defined an operator I , namely,

(I3 1) (@) = f(x), (g f)(x) = I,(I;~ lf)(x), neN.
The fundamental theorem of calculus applies to these operators I, and Dy, i.e.,
(Dolqf)(x) = f(=),
and if f is continuous at x = 0, then
(IgDqf)(x) = f(x) — f(0).

Here three formulas are presented that will be used later, (;D, denotes the derivative
with respect to variable 7)

(2.1) [a(t — 5)] @) = a®(t — 5)().

(2.2) 1Dyt — ) = [a]y(t —5) @D

(2.3) Dyt = ) = —[al(t — gs) .

(2.4) xDq/O f(m,t)dqt:/o +Daf(z,t)dgt + f(qx, x).

Lemma 2.1 ([10]). If o >0 and a < b <'t, then (t —a)(® > (t — b)(®),
Definition 2.2. Let @ > 0 and f be a function defined on [0,1]. The fractional
q-integral of the Riemann-Liouville type is (19 f)(x) = f(z) and

(12 ) () = L) /x(x — )@ VO dyt, a> 0.2 € [0,1].
@) Jo

Lg(
The formula for g-integration by parts is
b b
[ ula) D) @)defa) = lu()ela)ls ~ [ vlan) (D) )y
The following lemma is stated in [24].
Lemma 2.3. For a € RT,\ € (=1,00), the following is valid

(@ - a) = OED (o gy,

Lyl +A+1)
Particularly, for A = 0, using a g-integration by parts and the relation (2.3) we have
1 v Dy((x — t )
I,1)(z) = / :c—qt)(o‘ldt— / dgt
( q )( Fq(O[) 0 (
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xX
= g [ Dol =0 = e = o)
Definition 2.4 ([24]). The fractional g-derivative of the Riemann-Liouville type of
order a > 0 is defined by (Dgf)(:c) = f(z) and
(Dg (@) = (D1 f)(x), >0,
where m is the smallest integer greater than or equal to .

Now, we list some properties that can be found in [1, 24].

Lemma 2.5. Let o, > 0 and f be a function defined on [0,1]. Then, the next
formulas hold:
L (19 f)(x) = (137 f) ().
2. (DRI f)(x) = f(x).
For the forthcoming analysis, we state the following theorem that was proved
in [10].

Theorem 2.6. Let a > 0 and n € N. Then, the following equality holds:

p—1 xa—p—i—k
@ MHp — pro _

(Dg/)(0).

In the following we state a fixed point theorem in partially ordered set, which
was introduced in [3].

Let S denote the class of those functions v : [0,00) — [0,1) which satisfies the
condition (t,) — 1 implies ¢,, — 0.

Theorem 2.7. Let (M, <) be a partially ordered set and suppose that there exists
a metric d in M such that (M,d) is a complete metric space. Let T : M — M be
an increasing mapping such that there exists an element xo € M with xo < Txg.
Suppose that there exists v € S such that for each x,y € M with y < x

d(Tz, Ty) < ~(d(z,y))d(z,y).
Then T has a fized point if either T is continuous or M satisfies the following
conditions
(A) if an increasing sequence {x,} — x in M; then x, <z, Vn.
(B) Moreover, the fized point is unique, if for each x,y € M, there exists z € M
which is comparable to x and y.

Remark 2.8. The basic space used in this paper is C[0, 1], which is a Banach space
with the norm ||u|| = maxo<z<1 |u(x)|, and can be equipped with a partial order
given by

u,v € C[0,1], uw<veulx)<uv(x).

In [22], it is proved that (C[0, 1], <), satisfied codition (A) of Theorem 2.7 and, for
u,v € C[0,1] the function max{u,v} € C0, 1], so (C0, 1], <) satisfies condition (B)
of Theorem 2.7.
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3. FRACTIONAL BOUNDARY VALUE PROBLEM

In this section, we investigate sufficient conditions for the existence and unique-
ness solution for the boundary value problem (1.1). First, we state the following
lemma;

Lemma 2.1. Let n; € (0,1) and 8 # == = . If f € C[0,1], then the boundary

117,

value problem

(Dgu)(z) =—f(z), O0<z<l,n-1<a<n, n>3,
(Diu)(0) =0, i=0,...,n—2, DZu(l)=8> Diu(n),

has a unique solution

1
Bx
= | Gl a)f(t)dy(t) + / H(ni, qt) f(£)dy(t).
/0 ! L)1 =B mi™
where
a—1 _ \(a=3) _ _ n(a=1) <t < <
Gla,t) = —— 427 A= —(@—t)eh, Ostsasl,
Ty(a) | 22741 — )@=, 0<z<t<l.
and
St =)@ =3 (g — )@Y, o<t < <1,
H(mist) = moa-3]  pa-9)
Iy(a) s mg C(1=1) ) 0<y <t< 1.

Proof. By Lemma 2.5 and Theorem 2.6 for p = n, we have
(Dgu)(z) = = f(x) & (I Dyly~"u)(z) = =17 f(z) <

u(z) = Az Ve 2 4y
- 1 /x (a-1)
4+ epr® " — —— T — qt)\ T f(t)d,(t
Fq(Oé) 0 ( ) ( ) q( )

for some constant ¢; € R, for 1 <i <n.

Applying the boundary condition (Déu)(O) =0,7=0,...,n— 2, we have ¢c3 =
c3=---=cp, =0. So,

e) = e = s [ = a0 ),
Dyu(e) = fo = era = s [a = 1)w = a2 01, 0
and
1

D2u(zx) = [a — 1][a — 2]eyz® ™3 —

xa— o —2)(x — qt) @) .
Fia ) e e 2w - a0

Now, using the boundary condition DZu(1) = 8", DZu(n;), we have

2u(1) = [a — 1] — 01—; 1a— o — —qt)@=3)
D3u(t) = fo = o~ 2er = s [ o= U =211 = )/ £(1), 1)
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= 5( 3l = 1o~ e

=1
O @) / o= 1o = 2] — at) I (1) (1))
i=1 4
So
1
RO s () G-
1=1"1

o L (a—3)
6223 | s = a9 10, 0).

Therefore the unique solution of the problem (1.1) is

—1

u(z) = ' z — qt)e
@)= e |, =000

xozl

: (a—3)
+Fq<a><1 BST )( /0<1qt> o0

1
= T — (a—1)
T () /0 @=at) =200
xafl 7o 1 a—3 1
+ (5 @ T Lol = 3))/0 (1— qt) @) f(t)dy(t)

a ( )( B Zz 1 771
_ 61;04—1 m ni N s
T, (a)(1— 83", 703 ;/0 (ni — qt) f(t)dqy(2)
= 1 r l‘a_l _ (a=3) _ v (a—1)
el A A Gt DR HUEAD

1 L o
+m/ x 1(1—6175)( S)f(t)dq(t)

DD L )
T < )(1—521 e >/ (1= )5 ), )
( 1_/821 1771 Z/ q(t)
- / Gl DI Oy0) + s / H

Lemma 2.2. G is a continuous function and G(x,t) > 0.
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Proof. The continuity of G is clear. on the other hand, put
gz, t) =227 11 — )@ — (z =)o),

gz, t) = 2°7 (1 — )@,
obviously, g2(x,t) > 0. Now
g1z, qt) = 2711 — qt)(afg) — (z — qt)(afl)
t
> po—l - (a=3) o U\(a-1)
> ((1 qt) (1-q¢7) )
> gl ((1 g (1 - qt)(o"l)) > 0.
Therefore, G(z,qt) > 0. O
Let <7 denote the class of those functions ¢ : [0,00) — [0, 00) which satisfies the
following conditions:
(a) ¢ is increasing,
(b) for each z > 0, p(z) < =,
(c) y(z) = @ €s.

For example, ¢(t) = ut where 0 < u < 1, ¢(t) = are in .o/ .

_t
T+
The main result of this paper is the following;

Theorem 2.3. The boundary value problem (1.1) has a unique positive solution
u(x), if the following conditions are satisfied:
(i) f:1]0,1] x [0,00) = [0,00) is continuous and nondecreasing with respect to
the second variable, there exists ¢ € of such that
f(t>u)_f(tvv)§<p(u_v)> Vu > v.
(ii) put
1 1
K= / G(1,qt)dst, L :/ H (n;, qt)dqt,
0 0
and let
p
(1=83" 77?73)

where G and H are defined as in Lemma 2.1.

K+ L<1.

Proof. Consider the cone
M = {u € C|0,1];u(z) > 0}.
M can be equipped with a partial order given by
u,v € C0,1,u <v < ulxr) <ov(z).

so (M, <) is a partially ordered set. Also, Since M is a closed subset of C[0,1], M
is a complete metric space with the distance

d(u,v) = sup [u(z) —v(z)].
z€[0,1]
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Now, we consider the operator T' as follows;

1
_ / G, gt) F(t, u(t))dy(t) +
0 (1-

o /Hm,qt (£, u(t))dy (2).
1 1 )

By Lemma 2.2 and condition (i), we have T(M ) € M. We now show that all the
condition of Theorem 2.7 are satisfied. Firstly, by condition (i), we show that T is

an increasing mapping, so for u,v € M,u > v,

M S / H(ni, qt) f (£, u(t))dy(t)

/qut (t,v(t))dqy(t)

*(1—&21177@ /Hm,qt (1, 0())dy (1)
= Twv(z).

On the other hand, for © > v and by condition (i) we have
d(Tu, Tv) = sup [(Tu)(z) = (Tv)(@)] = S (Tu)(x) = (Tw)(x))

< sup / G, ) (f(t u(t)) — F(t v(6)))dy (1

0<z<1

*(1—ﬁz“m / H iy at) (£t u(t)) — F(2,0(0)))dy 1)

< sup / G (. qt)p(ult) — v(t))dy(t)

0<x<1

= / H (s at) o u() — o(0)dy ).

Now, since ¢ is nondecreasing and condition (ii), we have

1
d(Tu, Tv) < p(d( 0supl/G x,qt)d (1 52 = /OH(m,qt)dq(t))
<a< - i=1"l§

= so(d(u,v»( : —ﬁZz = )L)

< p(d(u,v)) = EK( 2) ).d(u, v).
So

d(Tu Tv) < A(d(u,v)).d(u,v).

As G(z,qt) > 0 and f > 0, fo (x,qt)f(t,0)d,(t) > 0, so by Theorem

2.7, problem (1.1), has at least one nonnegatlve solution. Moreover, by Remark
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(2.8) (M, <) satisfies condition (B) of Theorem 2.7 and this implies the uniqueness
of the solution and the proof is done. O

Example 2.4. Let o = 3.5,¢ = 0.5 and 8 = i,n = 0.6, consider the following
problem:

u(@)

(2.1) (Dg2u)(z) + Thu(@ 0,

subject to the boundary conditions
1
(2.2) u(0) = 0, Dosu(0) = 0, D cu(0) =0, D3 su(l) = Z1)35u(0.6).

Now, we consider the conditions of Theorem 2.3. f : [0,1] x [0,00) — [0,00) is
continuous and since % = m > 0. So f is increasing with respect to the

second variable. Also, for u > v and x € [0, 1] we have
f($7u> - f(.’IJ,U) =

u—v o U=
(1+uw)(l+v) = 14+u—v

where ¢(t) = %th" so condition (i) is satisfied. Moreover, by definition of function
G, Lemma 2.3, and the fact that a — 3 > 0, we have
! Iy(a—2) 1
K= [ 10 g - (1 - afe Vgt = .t - ~0.11,
o T I = o 1) T Tl 1 1)
and
Lyl —2)
H(n,qt) < /(0.6) =—~ ~ 0.30.
Ly(@)lg(a —1)

So

K+ %L ~ 0.20,

(1—pn*=3)

therefore, condition (ii) of Theorem 2.3 is also satisfied and problem (2.1)-(2.2) has
a unique positive solution.
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