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SYSTEM OF VARIATIONAL INEQUALITIES WITH
CONSTRAINTS OF MIXED EQUILIBRIA, VARIATIONAL
INEQUALITIES, AND CONVEX MINIMIZATION AND FIXED
POINT PROBLEMS

L. C. CENG*, S. PLUBTIENG, M. M. WONG', AND J. C. YAO*

ABSTRACT. We introduce and analyze an iterative algorithm by hybrid steepest-
descent viscosity method for finding a solution of the general system of variational
inequalities with constraints of several problems: finitely many generalized mixed
equilibria, finitely many variational inequalities, the minimization problem for a
convex and continuously Fréchet differentiable functional and the fixed point
problem of infinitely many nonexpansive mappings in a real Hilbert space. We
prove strong convergence theorem for the iterative algorithm under suitable con-
ditions. The iterative algorithm is based on Korpelevich’s extragradient method,
hybrid steepest-descent method, viscosity approximation method, averaged map-
ping approach to the GPA and strongly positive bounded linear operator tech-
nique. On the other hand, we also derive the weak convergence of the proposed
algorithm under the new mild assumptions.

1. INTRODUCTION

Let C be a nonempty closed convex subset of a real Hilbert space H and Pg be
the metric projection of H onto C. Let S : C — H be a nonlinear mapping on
C. We denote by Fix(S) the set of fixed points of S and by R the set of all real
numbers. A mapping S : C' — H is called L-Lipschitz continuous if there exists a
constant L > 0 such that

ISz = Syl| < Lllz —yll, Va,yeC.

In particular, if L = 1 then S is called a nonexpansive mapping; if L € [0,1) then S
is called a contraction. A mapping V is called strongly positive on H if there exists
a constant 4 > 0 such that

(Vz,z) > 7llz|®, Vo e H.

Let A: C'— H be a nonlinear mapping on C. The classical variational inequality
problem (VIP) is to find a point « € C such that

(1.1) (Az,y —x) >0, VyeC.
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The solution set of VIP (1.1) is denoted by VI(C, A). We observe that the VIP (1.1)
was first discussed by Lions [11]. In 1976, Korpelevich [10] proposed an iterative
algorithm for solving the VIP (1.1) in Euclidean space R™:

yn = Po(xy, — TAxy),
Tn+l = PC(.ZUn - TAyn)> n > 07

with 7 > 0 a given number, which is known as the extragradient method.

Let ¢ : C — R be a real-valued function, A : H — H be a nonlinear mapping
and © : C x C — R be a bifunction. Peng and Yao [14] introduced the following
generalized mixed equilibrium problem (GMEP) of finding = € C such that

(1.2) O(z,y) +¢(y) —p(z) + (Az,y —x) >0, VyeC.

We denote the set of solutions of GMEP (1.2) by GMEP(O, ¢, A). The GMEP
(1.2) is very general in the sense that it includes, as special cases, optimization
problems, variational inequalities, minimax problems, Nash equilibrium problems
in noncooperative games and others. In particular, it covers the generalized equilib-
rium problem [17], the mixed equilibrium problem [7] and the equilibrium problem
[8, 5] as special cases.

It was assumed in [14] that © : C' x C' — R is a bifunction satisfying conditions
(A1)-(A4) and ¢ : C — R is a lower semicontinuous and convex function with
restriction (B1) or (B2), where

(A1) O(z,x) =0 for all x € C;

(A2) O is monotone, i.e., O(z,y) + O(y,z) <0 for any z,y € C,

(A3) O is upper-hemicontinuous, i.e., for each x,y,z € C,

limsup O(tz + (1 — t)x,y) < O(z,y);
t—0+
(A4) O(z,-) is convex and lower semicontinuous for each z € C;

(B1) for each x € H and r > 0, there exists a bounded subset D, C C and
Yz € C such that for any z € C'\ D,,

1

O(2,42) + ¢ (ya) = ¢(2) + —(ys — 2,2 = 2) <0

(B2) C is a bounded set.

Given a positive number r > 0. Let TT(@’“O) : H — C be the solution set of the
auxiliary mixed equilibrium problem, that is, for each = € H,

T\ 9) () == {y € C: O(y,2) + ¢(z) — p(y) + %(y—fm —y) >0,z e C}.

Let F1, F» : C — H be two mappings. Consider the following general system of
variational inequalities (GSVI) of finding (z*,y*) € C' x C such that
(1.3) Py +a* -y x—2*) >0, Vaxel,

‘ (voFox* +y* —a*,x—y*) >0, Vaxel,
where 1 > 0 and vy > 0 are two constants. It was considered and studied in
[6, 4, 21]. In 2008, Ceng, Wang and Yao [6] transformed the GSVI (1.3) into a fixed
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point problem; that is, for given z,y € C, (Z,¥) is a solution of the GSVI (1.3) if
and only if Z is a fixed point of the mapping G : C' — C' defined by

Gz = Pc(I — v F1)Po(I —vaFy)z, Vel

where §y = Po(I — 12F)z.

We remark that if the mapping F; : C — H is (j-inverse-strongly monotone for
j = 1,2, then the mapping G is nonexpansive provided v; € (0,2¢;] for j = 1,2.
We denote by GSVI(G) the fixed point set of the mapping G.

Let A1, An2,---sAnn € (0,1], n > 1. Given the nonexpansive self-mappings
S1,52,..., SNy on C, for each n > 1, the mappings U, 1,Uy 2, ..., Uy N are defined
by

Un71 = A717151 + (1 - )\n,l)I,
Un,? = An,QSnUn,l + (1 - An,Q)Ia
Un,n—l = )\n—lsn—lUn,n + (1 - )\n—l)Ia

(1.4)

UpN-1 = N-1SN-1UpN—2+ (1 = Ay n—1)],
Wy :=Up N = A NSNUp -1+ (1 = Ay NI

The W, is called the W-mapping generated by S1,..., Sy and Ay 1, A2, .., A N-
Let © : CxC — R be a bifunction satisfying assumptions (Al)-(A4) and ¢ : C — R
be a lower semicontinuous and convex function with restriction (B1) or (B2). Let the
mapping A : H — H be é-inverse strongly monotone, and {S;}¥, be a finite family
of nonexpansive mappings on H such that 2 := NN Fix(S;) NGMEP(6O, ¢, A) # 0.
Let F: H — H be a k-Lipschitzian and n-strongly monotone operator with positive
constants k,n > 0 and ) : H — H an [-Lipschitzian mapping with constant [ > 0.
Let 0 < p < 2n/k% and 0 < 4l < 7, where 7 = 1—+/1 — u(2n — pux?2). Suppose {ay,}
and {B,} are two sequences in (0,1), {v,} is a sequence in (0, 28] and {\,;}Y, is
a sequence in [a,b] with 0 < a < b < 1. In 2012, combining the hybrid steepest-
descent method in [20] and viscosity approximation method, Ceng, Guu and Yao [3]
introduced the following hybrid iterative algorithm for finding a common element of
the solution set of GMEP (1.2) and the fixed point set of finitely many nonexpansive

mappings {S;}¥;:

x1 € H chosen arbitrarily,
O (un,y) +(y) — @(un) + (Azn,y — un)

(1.5) —i—%(y — Up, Up — Tp) >0, YyeC,

Tnt1 = W YQxp + Prnxn + (1 — Bp)I — anuF)Wyouy,, Vn > 1.
Assume that the following conditions are satisfied: (i) lim, 00, = 0 and
Yool o = oo; (i) 0 < liminf, o By < limsup, o B, < 1; (ii) 0 <
liminf, oo, < limsup,_ .7 < 20 and lim,oo(rpe1 — ) = 0; and (iv)
limy, o0 (Ang1i — Ani) = 0 for ¢ = 1,2,...,N. It was proven in [3, Theorem 3.1]

that both {x,} and {u,} converge strongly to z* = Po(I — pF + vQ)z*, which is
the unique solution in {2 to the VIP

(1.6) (WF —~vQ)x™,x* —x) <0, Vze .
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Let f : C — R be a convex and continuously Fréchet differentiable functional.
Consider the convex minimization problem (CMP) of minimizing f over the con-
straint set C'

(1.7) minimize{ f(z) : x € C}.

We denote by I' the set of minimizers of CMP (1.7). The gradient-projection
algorithm (GPA) generates a sequence {x,} determined by the gradient Vf and
the metric projection Pg:

(1.8) Tny1 = Po(xn, — AV f(zy)), VYn >0,
or more generally,
(1.9) Tnt1 = Po(xn, — AV f(x,)), Yn >0,

where, in both (1.8) and (1.9), the initial guess xg is taken from C' arbitrarily, the
parameters A or A\, are positive real numbers.

On the other hand, let f : C — R be a convex functional with L-Lipschitz
continuous gradient Vf. Let M, N be two integers. Let 6 be a bifunction from
C x C to R satisfying (Al)-(A4) and ¢; : C — R U {400} be a proper lower
semicontinuous and convex function, where k € {1,2,...,M}. Let By : H - H
and A; : C — H be py-inverse strongly monotone and 7;-inverse-strongly monotone,
respectively, where k € {1,2,..., M}, i € {1,2,...,N}. Let F : H — H be a -
Lipschitzian and 7-strongly monotone operator with positive constants «,n > 0.
Let Q : H — H be an [-Lipschitzian mapping with constant [ > 0. Let 0 <
u < z—’; and 0 < 4l < 7, where 7 = 1 — /1 — u(2n — pk?). Assume that 2 :=
MM GMEP( Oy, ¢k, Br) NNY VI(C, A;)N I # () and that either (B1) or (B2) holds.
Very recently, Ceng and Al-Homidan [2] proposed the following iterative algorithm
by hybrid steepest-descent viscosity method

x1 € H chosen arbitrarily,

Onr—1.00—
U = TN — i Bar) T oM (T — vy Bag—t) - -
o
(1.10) TN — 1y By ),

vp = Po(I — ANpAN)Po(I — AN—1nAN—1) -
Po(I — X pnA2)Po(I — A Ar)up,
Tn+1 = Sn’Yan + /ann + ((1 - /Bn)I - SnNF)Tnvnv Vn > 1,

where Po(I — A\, Vf) = s,I + (1 — s,,)T;, (here T, is nonexpansive, s, = 2=3n&
(0,1) for each A, € (0,2)). Assume that the following conditions hold: (i) s

and limy, 00 [Xip+1 — Ain| = 0 for all i € {1,2,...,N}; and (iv) {rg.} C [er, fx] C
(0,2p) and limy, oo [Tk nt1 — Thpn| = 0 for all k € {1,2,..., M}. It was proven in
2, Theorem 21] that {z,,} converges strongly as A\, — % (& s, — 0) to a point
q € {2, which is a unique solution in {2 to the VIP

(WF =2V)g,p—q) >0, Vpe .

Equivalently, ¢ = Po(I — uF +~+V)q.
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Motivated and inspired by the above facts, we first introduce and analyze an
iterative algorithm by hybrid steepest-descent viscosity method for finding a solu-
tion of the GSVI (1.3) with constraints of several problems: finitely many GMEPs,
finitely many VIPs, the CMP (1.7) and the fixed point problem of infinitely many
nonexpansive mappings in a real Hilbert space. We prove strong convergence the-
orem for the iterative algorithm under suitable conditions. The iterative algorithm
is based on Korpelevich’s extragradient method, hybrid steepest-descent method in
[20], viscosity approximation method, averaged mapping approach to the GPA in
[18] and strongly positive bounded linear operator technique. On the other hand,
we derive also its weak convergence under the new assumptions different from the
strong convergence criteria. The results obtained in this paper improve and extend
the corresponding results announced by many others.

2. PRELIMINARIES

Throughout this paper, we assume that H is a real Hilbert space whose inner
product and norm are denoted by (-,-) and || - ||, respectively. Let C' be a nonempty
closed convex subset of H. We write x,, — z to indicate that the sequence {x,}
converges weakly to x and x,, — x to indicate that the sequence {x,} converges
strongly to z. Moreover, we use wy(z,) to denote the weak w-limit set of the
sequence {x,}, i.e.,

wy(2n) = {x € H : x,, — x for some subsequence {x,,} of {x,}}.
Recall that a mapping A : C — H is called
(i) monotone if
(Az — Ay, x —y) >0, Vz,y € C;
(ii) n-strongly monotone if there exists a constant 7 > 0 such that
(Az — Ay, —y) > nllz —y|?, Vo,yeC;
(iii) a-inverse-strongly monotone if there exists a constant o > 0 such that
(Az — Ay, x — ) > oAz — Ay, Vz,yeC.
X It is obvious that if A is a-inverse-strongly monotone, then A is monotone and

~-Lipschitz continuous. Moreover, we also observe that if A < 2q, then I — XA is a

nonexpansive mapping from C to H.

The metric (or nearest point) projection from H onto C' is the mapping Pc :
H — C which assigns to each point x € H the unique point Pox € C' satisfying the
property

o = Pozl = inf |l — y|| = d(z, ).
yel

Some important properties of projections are gathered in the following proposi-
tion.

Proposition 2.1. For given x € H and z € C:

(i) z2=Pox & (z—2z,y—2) <0, VyeC;

(i) z=Pox & [lz— 2] < [lz —y|* = lly — 2| Vy € C;
(ii) (Pox — Poy,@ — ) > ||Pow — Poy|?, Vy € H.
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Consequently, Po is nonexpansive and monotone.

Definition 2.2. A mapping T : H — H is said to be:
(a) nonexpansive if
[Tz —Ty| < ||z —yll, Ve,ye H;

(b) firmly nonexpansive if 27" — I is nonexpansive, or equivalently, if 7" is 1-inverse
strongly monotone (1-ism),

(x —y, Tz —Ty) > Tz — Ty||*>, Vaz,y € H;

alternatively, T' is firmly nonexpansive if and only if T' can be expressed as
1
where S : H — H is nonexpansive; projections are firmly nonexpansive.

It can be easily seen that if T is nonexpansive, then I — T is monotone. It is also
easy to see that a projection Pg is 1-ism. Inverse strongly monotone (also referred
to as co-coercive) operators have been applied widely in solving practical problems
in various fields.

Definition 2.3. A mapping T : H — H is said to be an averaged mapping if it can
be written as the average of the identity I and a nonexpansive mapping, that is,

T=01-a)l+aS

where a € (0,1) and S : H — H is nonexpansive. More precisely, when the last
equality holds, we say that T is a-averaged. Thus firmly nonexpansive mappings

(in particular, projections) are %—averaged mappings.

Proposition 2.4 (see [1]). Let T : H — H be a given mapping.
(i) T is nonexpansive if and only if the complement I — T is %—ism.
(ii) If T is v-ism, then for v >0, ~T is %—ism.
(iii) T is averaged if and only if the complement I — T is v-ism for some v > 1/2.
Indeed, for a € (0,1), T is a-averaged if and only if [ — T is i—ism.

Proposition 2.5 (see [1]). Let S,T,V : H — H be given operators.

1) IfT =(1—-a)S+aV for some a € (0,1) and if S is averaged and V is
nonexpansive, then T is averaged.

(i1) T s firmly nonexpansive if and only if the complement I — T is firmly nonex-
pansive.

(i) If T = (1 —a)S+ aV for some a € (0,1) and if S is firmly nonexpansive and
V' is nonexpansive, then T is averaged.

(iv) The composite of finitely many averaged mappings is averaged. That is, if each
of the mappings {Tz}fL s averaged, then so is the composite T1 - - - Txn. In
particular, if Ty is aq-averaged and Ty is ag-averaged, where o, € (0,1),
then the composite T1Ts is a-averaged, where o = a1 + g — ajas.

(v) If the mappings {T;}¥., are averaged and have a common fized point, then

N
(Fix(T;) = Fix(T} - - - T).
=1
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The notation Fix(T) denotes the set of all fixved points of the mapping T', that
is, Fix(T) ={z € H : Tz = z}.

Next we list some elementary conclusions for the mixed equilibrium problems.

Proposition 2.6 (see [7]). Assume that © : C x C — R satisfies (A1)-(A4) and
let o : C — R be a proper lower semicontinuous and convex function. Assume that

either (B1) or (B2) holds. Forr >0 and x € H, define a mapping 7% . g ¢
as follows:

T () = {z € C: Oz,y) + p(y) — ¢(2) + %(y —z2—x) 20,¥y € C}

for all x € H. Then the following hold:

(i) for each x € H, 76 () is nonempty and single-valued;
(ii) T,ﬂ(@’w) is firmly nonexpansive, that is, for any xr,y € H,

IT @9z — T )y||* < (T\Ow — T{ODy,z — y);
(iii) Fix(7{ %)) = MEP(6, ¢);
(iv) MEP(6, ) is closed and convez;

(v) HTS(QW).%' — Tt(@#’)avH2 < ST_t(TS(Q’“D)x - Tt(e’@x,Ts(@"p)x — ) for all s,t > 0
and x € H.

We need some facts and tools in a real Hilbert space H which are listed as lemmas
below.

Lemma 2.7. Let X be a real inner product space. Then there holds the following
inequality

lz+y)? < =] + 2y, z +y), Vz,yeX.

Lemma 2.8. Let A : C — H be a monotone mapping. In the context of the

variational inequality problem the characterization of the projection (see Proposition
2.1 (i)) implies

ue VI(C,A) < u=PFPo(u—NAu), X>0.

Lemma 2.9 (see [9, Demiclosedness principle]). Let C' be a nonempty closed convex
subset of a real Hilbert space H. Let T be a nonexpansive self-mapping on C. Then
I — T is demiclosed. That is, whenever {x,} is a sequence in C' weakly converging
to some x € C and the sequence {(I —T)x,} strongly converges to some y, it follows
that (I —T)x = y. Here I is the identity operator of H.

Let {S,}5°; be an infinite family of nonexpansive mappings on H and {\,}5°
be a sequence of nonnegative numbers in [0,1]. For any n > 1, define a mapping
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W,, on H as follows:

Un,n—i—l - I7
Un,n = )\nSnUn,n—i—l + (1 - )\n)Iv
Un,n—l - )\n—ISn—lUn,n + (1 - )\n—l)Ia

(2.2) Un,k = )\k-SkUn’]ngl + (1 — )\k)I,

Un k-1 = Me—1Sk—1Un i + (1 = A1) 1,
Un2 = XS2Upn 3+ (1 — M1,
W, = Un71 = AlSlUn,g + (1 — )\1)1.

Such a mapping W, is called the W-mapping generated by Sy, Sp—1,...,51 and
Any An—1- -, AL

\

Lemma 2.10 (see [12, Lemma 3.2]). Let C' be a nonempty closed convex subset of
a real Hilbert space H. Let {S,}o°, be a sequence of nonexpansive self-mappings on
C' such that N2, Fix(Sy,) # 0 and let {\,} be a sequence in (0,b] for some b € (0,1).
Then, for every x € C' and k > 1 the limit lim,, oo Uy, o exists where Uy, i, is defined
as in (2.2).

Lemma 2.11 (see [12, Lemma 3.3]). Let C' be a nonempty closed convex subset of
a real Hilbert space H. Let {S,}22, be a sequence of nonexpansive self-mappings
on C such that N, Fix(S,) # 0, and let {\,} be a sequence in (0,b] for some
be (0,1). Then, Fix(W) = N>, Fix(S,,).

The following lemma can be easily proven, and therefore, we omit the proof.

Lemma 2.12. Let V : H — H be a ¥-strongly positive bounded linear operator with
constant ¥ > 0 and Q : H — H be an l-Lipschitzian mapping with vl < 7. Then
fory —~1 >0,

(V=2Q)z—(V=1Qy,x—y) > (T —)llz —yl*, Vz,yeH

That is, V — ~Q 1is strongly monotone with constant ¥ — vyl > 0.

Let C be a nonempty closed convex subset of a real Hilbert space H. We introduce
some notations. Let A be a number in (0,1] and let x > 0. Associating with a
nonexpansive mapping 7 : C — H, we define the mapping 7* : C — H by

T ¢ :=Tx — \uF(Tx), VzeC,

where F' : H — H is an operator such that, for some positive constants x,n > 0, F
is k-Lipschitzian and n-strongly monotone on H; that is, F' satisfies the conditions:

|Fz - Fy| < kllz —yll and (Fz—Fy,z—y) >nlz -y
for all z,y € H.

Lemma 2.13 (see [19, Lemma 3.1]). T is a contraction provided 0 < u < 2—727; that
18,
1T =Tyl < (1= Ar)llz —yll, Vo,yeC,

where T =1 — /1 — pu(2n — ux?) € (0,1].




SYSTEM OF VARIATIONAL INEQUALITIES WITH CONSTRAINTS 393

Recall that a set-valued mapping T : D(T) ¢ H — 2 is called monotone if for
all z,y € D(T), f € Tx and g € Ty imply
(f—g,2—y) >0.

A set-valued mapping T is called maximal monotone if 7" is monotone and (I +
AT)D(T) = H for each A > 0, where I is the identity mapping of H. We denote
by G(T') the graph of T. It is known that a monotone mapping 7' is maximal if
and only if, for (z, f) € H x H, (f — g, —y) > 0 for every (y,g) € G(T') implies
f€Tx. Let A: C — H be a monotone, k-Lipschitz-continuous mapping and let
Ncv be the normal cone to C at v € C, i.e.,

Nev={we H: (v—u,w) >0, Yuec C}.
Define

0, ifvoegC.
Then, T is maximal monotone and 0 € T if and only if v € VI(C, A); see [15].

Tv:{ Av+ Neov, ifveC,

Lemma 2.14 (see [19]). Let {sn} be a sequence of nonnegative numbers satisfying
the conditions

Sn+1 < (1 - an)sn + O‘nﬂrw Vn > 17
where {a,} and {Bn} are sequences of real numbers such that

(i) {an} C[0,1] and Y77 | o = 00, or equivalently,

o0 n
rll(lan —nll_g)lOH 1—ax)=0;
n= k=1

(i) Hmsup, o Bn <0, or Y 07 anfn| < 00

Then lim,,_,os S, = 0.

Lemma 2.15 (see [16]). Let {x,,} and {z,} be bounded sequences in a Banach space
X and {Bn} be a sequence in [0, 1] with

0< hm 1nf Bn < limsup 8, < 1.

n—o0

Suppose that x,+1 = (1 — Bp)zn + Bnay for each n > 1 and

limsup(|[zn+1 — 2n| — [Tns1 — 2al|) < 0.
n—oo

Then limy, o0 ||2n, — zn|| = 0.

Lemma 2.16 ([13, p. 80]). | Let {an}52,, {bn}o2, and {6,152, be sequences of
nonnegative real numbers satisfying the inequality

apt1 < (1 + 5n)an +bn, Vn>1

If Y00 1 0p < 00 and Y o7 | by < 00, then limy, o0 ay, exists. If, in addition, {an}72
has a subsequence which converges to zero, then limy, . a, = 0.
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Recall that a Banach space X is said to satisfy the Opial condition [9] if for any
given sequence {x,} C X which converges weakly to an element x € X, there holds
the inequality

limsup ||z, — x| < limsup ||z, —y|, Yy € X, y#=x.
n—oo

n—oo
It is well known in [9] that every Hilbert space H satisfies the Opial condition.

Lemma 2.17. Let H be a real Hilbert space. Then the following hold:

(@) llo—yl* = ll2|® - [ylI* — 2(x —y,y) for all z,y € H;

(b) [P\ pigll? = Ml + lyll? = Ml — g for all 2y € H and A, u € [0,1] with
At pu=1;

(¢) If{zn} is a sequence in H such that z, — x, it follows that

lim sup [ — y||2 = limsup |z, — 2|2 + o — y|2, vy € H.
n—oo n—oo

3. STRONG CONVERGENCE CRITERIA FOR THE GSVI WITH CONSTRAINTS

In this section, we will introduce and analyze an iterative algorithm by hybrid
steepest-descent viscosity method for finding a solution of the GSVI (1.3) with con-
straints of several problems: finitely many GMEPs, finitely many VIPs, the CMP
(1.7) and the fixed point problem of infinitely many nonexpansive mappings in a
real Hilbert space. We prove strong convergence theorem for the iterative algo-
rithm under suitable conditions. This iterative algorithm is based on Korpelevich’s
extragradient method, hybrid steepest-descent method in [20], viscosity approxima-
tion method, averaged mapping approach to the GPA in [18] and strongly positive
bounded linear operator technique.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let M, N be two integers. Let f : C — R be a convex functional with L-Lipschitz
continuous gradient V f. Let O be a bifunction from C x C to R satisfying (A1)-
(A4) and ¢ : C — R U {400} be a proper lower semicontinuous and convex
function, where k € {1,2,...,M}. Let By,A; : H - H and F; : C — H be
pk-1nverse-strongly monotone, n;-inverse-strongly monotone and (;-inverse-strongly
monotone, respectively, where k € {1,2,...,M},i € {1,2,...,N} and j € {1,2}.
Let {Sp}22 1 be a sequence of nonexpansive mappings on H and {\,} be a sequence
in (0,b] for some b € (0,1). Let F : H — H be a k-Lipschitzian and n-strongly
monotone operator with positive constants k,m > 0. Let Q : H — H be an I-
Lipschitzian mapping with constant | > 0. Let 0 < p < 20 and 0 < vyl < T,

K

where 7 = 1 — \/1 — u(2n — px?). Let V' be a y-strongly positive bounded linear
operator with ¥l < 4. Assume that 2 = N Fix(S,) N NiL, GMEP(6y, ¢k, Br) N
NN VI(C, A;)NGSVI(G)NT # O and that either (B1) or (B2) holds. Let {a,} and
{Bn} be sequences in (0,1]. For arbitrarily given xy € H, let {z,} be a sequence
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generated by

Un, = Tr(zg,lf’wM)(I - TM,nBM)Tfﬁﬁ”;i’“”M‘l)(I —rM-1nBy-1)
Tr(fnlﬁpl)(f — T’LnBl)xn,
(3.1) Un = Po(I = ANpAN)Po(I = AN-10AN-1) -+

Po(I — Mo nA2)Po(l — A nAv)uy,
Yn = OCn’YQUn + (I - anMF)WnGvn7
Tnt1 = $nYQTn + Pnn + (1 — Bu)I — $,V)Tpyn, Yn > 1,

where Po(I—0,V f) = sy I+(1—5,)Ty, (here T, is nonexpansive, s, = 2L ¢ (0, 1)
for each 6, € (0,2)), v; € (0,2¢;) for j = 1,2 and W, is the W-mapping defined
by (2.2). Suppose that the following conditions are satisfied:

(i) s, € (0, %) for each 6,, € (0, %), and limy, o0 8, = 0 (& limy, 00 0, = %),

(ii) limy oo €2 =0, D07 sp = 00 and 0 < liminf,, o B, < limsup,, ., B, < 1;

n

(iii) {Nin} C [ai,b;] C (0,21;) and limy, oo [Nipt1 — Xin] = 0 for all i €

{1’27""]\7}/:
(iv) {rent C ler, fi] C (0,2uk) and limy, oo |[Thpr1 — Thn| = 0 for all k €
{1,2,...,M}.

Then {x,} converges strongly to a point x* € §2 provided ||z, — yn|| — 0 (n — o0),
which is a unique solution in {2 to the VIP

(vQ —V)a*,p—2a*) <0, Vpe

Proof. Since V f is L-Lipschitzian, it follows that Vf is 1/L-ism. By Proposition
2.4 (ii) we know that for 6 > 0, 9V f is z--ism. So by Proposition 2.4 (i) we deduce
1

that -6V f is %-averaged. Now since the projection P is 5-averaged, it is easy to

see from Proposition 2.5 (iv) that the composite Po(I — 0V f) is %—averaged for
0 € (0,%). Hence we obtain that for each n > 1, Po(I — 6,V f) is %—averaged
for each 6,, € (0,%). Therefore, we can write
2—6,L 24+ 0,L
Po(I - 0,Vf) = 4" I+ 4” Ty = spl + (1 — s,)T,
where T, is nonexpansive and s, := s,(6,) = % € (0,3) for each 6, € (0, #).
It is clear that

2
Gn—>z < s, — 0.

As limy, 00 S, = 0 and 0 < liminf, , B, < limsup,,_,., Bn < 1, we may assume,
without loss of generality, that {3,} C [a,a] C (0,1) and B, + sp||V| < 1 for all
n > 1. Since V is a #-strongly positive bounded linear operator on H, we know
that

V|| =sup{(Vu,u) :u € H,||ul| =1} > 75 > 1.
Taking into account that S, + s,||V| <1 for all n > 1, we have

<((1 - Bn)l - an)u, u> =1-0,— 5n<vu7u>
>1—Bp— sV
>0,
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that is, (1 — 3,)I — s,V is positive. It follows that
(1 = Bn)I = sVl = sup{{((1 = Bu)] — suV)u,u) : u € H, |[u]| =1}
(3.2) =sup{l — B — sn(Vu,u) : v € H, |lu|| =1}
<1-—P0n—sn7.

Put
Ak — (@k#’k)( _ rk7an)qugklj;"pk‘l)(I — Th—1nBr—1) - Tr(fi’“"l)(l —rinBi)Tn
forall k € {1,2,...,M} and n > 1,

Al = Po(I = X\inBi)Po(I = Ni—1nBi—1) -+ Po(I — M,nB1)
for all i € {1,2,...,N}, A? = I and A = I, where I is the identity mapping on

H. Then we have that u,, = A%l’n and v,, = Agun.

We divide the rest of the proof into several steps.

Step 1. Let us show that ||z, — p|| < max{||z1 —p||, ”(IWY)pH, o= ﬁL/F p”} for all
n > 1 and p € £2. Indeed, take p € {2 arbitrarily. Then from (2.1) and Proposition

2.6 (ii) we have
lun = pll = (TP = rpgn Bag) ANV, = TP = ragn Bar) AN |
<1 = rarnBan) Ayt — (1 - TM,nBM)Ar]y_lpH
< (|43 — AR |
(3.3)
< || A%z, — AVp||
= ||z, — pl|.
Similarly, we have
om = pll = IPe(T = A An) AN by, = Po(T = A An) AY 1)
<|(I- )‘N,nAN>A7]yilun - - )\N7nAN)/1£1VilPH
< AN un — AT

(3.4)
< || A un — Anp]
= l[un —p|-
Combining (3.3) and (3.4), we have
(3.5) lon = pll < llzn — pl|.

Since p = Gp = Po(I — v1F1)Po(I — vaFy)p, Fj is (j-inverse-strongly monotone for
Jj=1,2,and 0 < v; < 2¢; for j = 1,2, we deduce that, for any n > 1,

|Gon = pI* = |Po(I = i F1) Po(I = vaFo)un = Po(I = i) Pe(I = mBa)plf
< (I = v F1)Po(I — vaFy)v, — (I — v Fy)Po(I — 1o Fy)p)|?
= [[[Pc(I — vaF)vn — Po(I — voF3)p]



<|Pc

= ||(vn — p) — vo(Fov, — Fap)
< lvn = p|* + va(vo — 26)|| Fovy, — Fopl|?
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— [P Po(I — vy Fy)v, — F1 Po(I — va Fy)pl ||
(I — vaFy)u, — Po(I — 1o Fy)p)||?
—+ 1/1(1/1 — 2C1)||F1P0(I — Z/QFQ)’Un — Flpc(I — V2F2)pH2

<||Pc(I — vaFy)vp, — Po(I — vaFy)pl?
<|I(I = vaFa)on — (I — o Fy)p|?

I

< Jlvn = pl%.

Utilizing Lemma 2.13, from (3.1), (3.2), (3.5) and (3.6) we obtain that
lyn — pll = llany(Qun — Qp)

and hence

+ (I = anpuF )Wy Goy — (I — anpuF)p + an(vQ — pF)p||
< ap||Qun — Qpll + [(I — npuF YWy Gon, — (I — anpuF)p||
+ an[|(YQ — pF)p||
< apYlflvn = pll + (1 = an7)|Gon — p| + an[|(VQ — pF)p||
< apYlflvn —pll + (1 = an7)llon — pl| + an||(VQ — wF)p|
< apYlflzn = pll + (1 = an7)|lzn — pll + anl[(vQ — pF)p||
= (1 = an(r =) |20 — pll + anl|(vQ — nF)p||

= (1 —an(r =) |lzn — pll + an(r — ,}/Z)W
— uF
< max{”a:n -, W}

Hxn—&-l _pH = Hsnf)/(an - Qp) + /Bn(xn - p)

+ (1 = B = 32 V)(Tnyn — p) + sn(7Q — V)p||
< spYl|[xn = pll + Bullzn — pll
+ (1= Bu)I = snV) [ Toyn — pll + snl(vQ = V)pl|
< spYl|[@n = pll + Bullzn — pll
+ (1= Bn = snWlyn — 2l + sull(vQ — V)|
< (80l + Bn)llzn — pll + (1 = B — s29) lyn — D
+ sull(v@ = V)pl|
< (807l + Bo)llzn — pl|

—_”a
+(1—6n—sn7)max{”xn_pu,W}
+ sall(v@ — V)pl|

— uF
< (B + syl mae o, — ), LE=LT00Y

397
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+ (1 - Bn - Sn’_y)max{Hxn —pH7 M}

T =l
+ 50)|(vQ — V)p||

= (1 sy ) max { o — ), L2701
+ snl[(I = V)p]|

= (1 - $2(3 — 1)) max{”xn —pll, H(VQ:/ff)pH}
+aaf7 - 0200

< max {Hwn ), 0@ :/j)pll | ||(7$_—7‘;)pll }

By induction, we get
(7@ = pF)pl| [[(vQ = V)pll
T —7l oy =l

Hence {z,} is bounded and so are the sequences {uy}, {v,}, {yn}-

s~ pl| < mas { o1 — ]| bovnz

Step 2. Let us show that ||x,4+1 — 2,|| — 0 as n — oo. To this end, define

Tnt1 = Bnxn + (1= Bp)zn, Vn > 1.

Observe that from the definition of z,,

Tn42 — /Bn—l—lxn—i—l Tn41 — BnTn

il T 1- ﬁn—l—l a 1- ﬁn
_ Sn417Qni1 + (1= Bri) I = $n1V) Tog1Yn
1= Bns1
_ Sn’)’an + ((1 - Bn)I - Snv)Tnyn
1- ﬂn
S S
= 1%;:_’_17@%1—&-1 - ﬁ’)’@iﬁn + Tot1yn+1 — Tayn
Sn Sn+1
VT, - — VT,
+ 1— ﬁn nYn 1_ BnJrl n+1Yn+1
Sn+1 Sn
= 7(7Q$n+1 - VTn+1yn+1) + (VTnyn - ')/an)
1-— /Bn—l—l 1— 671

+ Tnt1Yn+t1 — TnYn-
So, it follows that

Sn+1
Jzner = 2l € 72— @Qearall + IV T agm])
- Mn+1
S
(3.7) + —(IVTuynll + I Qxx|)
1_571

+ ||Tn+1yn+1 - TnynH
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On the other hand, since V f is %—ism, Po(I—6,V f) is nonexpansive for ,, € (0, %)
So, it follows that for any given p € {2,

HPC([ - 9n+1vf)yn” < ||PC’(I - 9n+1vf)yn - pH + HpH
= |Pc(I = 001V )yn — Pc(I — 0,V f)p|l + 2]
< lyn — pll + lIp|
< Alynll + 2[p-

This together with the boundedness of {y,} implies that {Pc(I — A1V f)yn} is
bounded. Also, observe that

HTn—&-lyn - TnynH

AP = 001 V) = 2= O L)I  APo(I = 0,Vf) — (2= 0,L)1
N 240, 1L Yn 2+6,L Yn
APo(I = 0,11V ) 4Pc(I — 6,V f) 2—0,L 2 —0p 1L
< Yn — Yn|| + H Yn — Yn
24 6,41L 24 6,L 246,L 24041 L
4@ 4 0, L) Po(T = i1 V. )y — A2 + 01 L) Po(T = 0,V )Gy
(24011 L)(2+0,L)
AL|Opi1 — O]

M CFT RS A TCET AL
H 4L(9n - 9n+1)PC(I - 9n+1vf)yn

+4(2 + 0y 1 L) (Po(I = 051V f)yn — Po(I — 0,V f)yn) H

(2+60,11L)(2+6,L)
(3.8)
AL|Op i1 — O,
+ (2 n 9n+1L)(2 T HnL) ||ynH
- 4L\ — Opi1|[|[Po( — 01 V) ynll
= 2+ 01 L) (2 + 0,L)
AR+ O D[Pl = 0041V )y = Poll = 02V Flun
2+ 0n1L)(2 + 0,L)
AL|Op i1 — On]

Gt b2+ o,0) 1!
S |0n+1 - enHL”PC(I - 0n+1vf)ynH + 4va(yn)” + LHynH]
S M|9n+l - 9n|7

where sup,,»1 {L|| Po(I = 0n 1V £)ynll + 4]V £ (yn)[| + Lllyal|} < M for some M > 0.
So, by (3.8), we have that

HTn—Hyn—i—l - TnynH < HTn+1yn+1 - Tn—i—lynH + HTn—f—lyn - nynH
(3.9) < [yns1 = Ynll + M|Ans1 — An

4M
< ”ynJrl - ynH + T(SnJrl + Sn)-
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Note that

[vn41 = vnll = [ AR 11 — A7 un|
= [|[Po(I = ANt AN) A3 st — Po(I = AN An) AN un||
<N Po(I = A1 AN) AT tng1 = Po(I = AN AN) ANt |
(3.10) + |1Pe(I = AN AN) ALY Frupg1 — Po(I — Ay n AN)AY " uy|
<= AN n+1AN)An+1 Uny1 — (I = AN nAN)An+11un+1 |
+ [ = AN AN) AN Fungn — (I — AN nAn) AN ||
< ANt = ANl AN AN unga |+ 114N wngn — A5 ||
< ANl — )\N,n|||ANAn+1 Upt1]|
+ IAN-1m1 = ANl AN 1 AL P un |
AN P — AR ||
< ANpt1 = ANl AN AN St |
+ AN-1n41 = ANl AN 1 A0 g |
+ o A —

?z+1un+1H + HAngrlun-&-l - A?zun”

N
< MoY  imgr = Ninl + i1 — unll,
i=1

where supn>1{zl 1 1A An+1un+1H} < M for some My > 0. Also, utilizing Propo-
sition 2.6 (ii), (v) we deduce that

ltng1 — unl| = ||A7]¥-[1-1xn+1 - Aﬁ/[l‘nn
= ||T7§31‘ZﬁM (I = rarn1 Bar) AN 2

. T(@]M,QDM)(I . TM,nBM)Aﬁ/Iilan

TM,n

M-—1
<N = rag g1 Ba) AN g

— T (T = rag Bar) AN |

+ | TE (T = 73 Bar) AN g

— TT(A?]Z’QOM)(I — TM,nBM)Aﬁ/Iflan

<|TE (T — ragna Bar) AN n

_ TT(JSJZ"PNI)(I _ TM,n"rlBM)Ay]\L{'__llwn-FlH

+ "TT]SM’SOJVI)(I - TM,n—i—lBM)Aﬁ/{;__llwn—l—l

— TP (T — 710 Ba) Ay o |

+ H(I - rM,nBM)Aﬁ/{;,__llxn—i-l - (I - T’M,nBM)Arjyil(lZnH
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’TM 1= "Ml (e M—
- :L“Mn-i-l : HT’”MI:{JﬁM)(I_ TM7”+1BM)AH+11“T”+1
— (I = a1 Bu) AY S g ||
+ rarmrs — a1 By AN e || 4 1 A0 e — AN |

= [ru, n+1 — sl (| B AN |

(O, M—1
HTTM]Z-:?M (I - rM»"‘*‘lBM)An—i—l Tn+1

TMn 1
— (I = rap1 Ba) AN S [ 4 1AY T g1 — AN |
(3.11)
<rum, n+1 — sl (| B AN |

(e M—
TM ||T’I‘A{]Z;LfM (I - TM1n+1BM)An+11xn+1
n

- (I- 7"M,n+lBM)An+_11xn+1H] +
+ |rinar — rial[ll BLAY 1 @0 |
1
+ —— | TN (I =y g1 B1) ANy 1T
7141 :
- (I 1 n+1B1)An+1xn+1|H
+ HAanUnH — Ay
M

<M Z [Tkl = Thonl + [|Tns1 — 2nll
k=1

where ]\71 > 0 is a constant such that for each n > 1

M
Z[HBkA +1xn+1”
k=1
rk » ——— | T ORI = 1y 1 Br) A 1 — (I = momga Br) AN Yz [[] < My
n

Simple calculation shows that
Ynt+1 — Yn = Wn17QUn+1 + (I — A1 pF ) Wi 1 Gupg
— apYQuy — (I — anuF)W,Gu,
(3.12) = (an+1 — ) (YQUn+1 — pFWn11GUpt1) + ¥ (Qunt1 — Qun)
+ (I — anuF)YWyi1Gopyr — (I — anpuF )W, Guy,.
Also, from (2.2), since W,,, S,, and U, ; are all nonexpansive, we have
IWht1Guni1 — WnGup|| < [[Whi1Gope1 — Wii1 Gopll + [|[Whi1 Gop, — Wi Guy ||
< vnt1 = vl + [Wat1Gop — Wi G|
= ||[vn41 — vnll + IMT1Un+41,2G0n — MT1Up 2Goy ||
< vng1 — val| + /\1HUn+1,2Gvn — Un 2Guy|
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= ||vng1 — vnll + M| A2 T2Un+1,3Gvn — AToUp 3Gy ||
< vngr — vall + )\IAZHUn+1,3Gvn - n,BGvnH
(3.13)
< lvng1r — vnll + A1Ag - - )‘n||Un+1,n+lGUn - Un,n+1GUn||

n
< |lvn41 — vp|| + M2 H&a
=1

where M, is a constant such that Un+1,n+1GUn || + |Unns1Gopl|| < M, for each
n > 1. So, utilizing Lemma 2.13, from (3.10)-(3.13) and {\,} C (0,b] C (0,1) it
follows that

s — vl < s — anl (Y@t 1l Wi sG]+ | Quinss — Qo
+ [|(I = anpuF YWy 1Gopr1 — (I — anpuF )Wy Guy||
< o1 — anl(1Quussl] + K F Wi Goneal) + anrlllonss — vl
+ (1 — an7) || Wht1Gung1 — Wi Guy ||
< Jomss — anl(1Quussl] + K F Wi Gonsal) + anrlllonss — vl

n
+ (1= an7) (o = onll + 3T )
i=1
< lomt1 — an|(V[|Quata || + pll FWni1Gupa])

n
(1= a7 = D) oner — onll + TH [
1=1
< lans+1 = on|(V|Qunta || + pl[ FWing1 Guna )

N n
+ (L= an(r =90) [ Mo > Pt = Nl + nss = wall| + 2 T A
=1 =1
< omt1 — an|(V|Quata || + pll FWni1Gupa])

N
(3.14) (1= an(r = 90) [ Mo 3 Pims1 = Ai]

=1

M n
MY ks = il + e — ] + 3 T A
k=1 1=1

N
< Jans1 = an|(Y1Quas1 ||+l FWni 1 Gonial]) + Mo Y [Nins1 = Ail
=1
—~— M —
+ MUY |rkngs = Tenl + @01 — 20| + Mad"
k=1
< lznt1 = anll + lantr — anl (VI Quata | + 1l FWa1 Gona )
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N M
+ (Mo + My + My) ( D it = il + D [Pkt = Thn| + bn)
i=1 k=1
< lznt1 —

N M
+ M3(Z Mot = Xinl + D [Tkt = Tonl + lang — an| + b"),
=1 k=1

where Ms is a constant such that My + My + M + 7||Qual| + pl| FWnGuy| < Ms
for each n > 1. Thus, from (3.7), (3.9) and (3.14) it follows that

Sn+1 S,
1— Bps1 ——(|[VTayn| + |hQx
= B =5 VTl + I @Qeal)

+ ||Tn+1yn+1 - TnynH

Sn+1
< = (VQzn1 | + |V Tns1ynt1l) +
1 — Bnt1

Izn41 = znll < (Qzniall + VTt 1yn+1ll) +

Sn
1— Bn(”VTnynH + ||7an‘|)

AM
F Yns1 — ynll + T(5n+1 + sp)

Sn+1
< ([Qzntall + IV Tns1ynall) +

1 /Bn—f—l
+ [Zn41 — 2nl|

Sn
q(HVTnyn” + H')’anH)

N M
+ M; ( > inrt = Al + D kst = Tenl + longn — o] + bn)
i=1 k=1
AM

+ T(Sn—i-l + Sn)a

which immediately implies that

Sn+1
[2n41 = 2znll = lzn41 — 2|l < 1”7(||7Q:vn+1|| + IV Tnt1yn+1ll)
- 6n+1
S
+ #(H‘/Tnyn” + [[vQznl)
- Mn
N N M
+ M; ( D it = il + D Ikt = Tnl + lons1 — an| + b")
=1 k=1
AM
+ T(sn—H + Sn).

Since limy, 00 85, =0, limy, 00 v, =0, {5} C [a,a] C (0,1), limy oo [Nint1—ANin| =
0 and limy, o0 [Tk pnt1 — Tk =0 foralli e {1,2,..., N} and k € {1,2,..., M}, we
conclude that

lim sup(|[zn+1 — 2nl| = [|Znt1 — zal]) <0,
n—oo

which together with Lemma 2.15 and 0 < liminf,, . £, < limsup,,_,. Bn < 1,
implies that

lim ||z, — z,| = 0.
n—oo
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So, it follows that
(3.15) nlgrolo [Znt1 — 20| = nh_{go(l — Bn)llzn — zall = 0.

Step 3. We prove that ||y, — Po(I— 2V f)yn|l = 0, |20 —unll = 0, |2 —va| —
0, ||lvn — Gupl| = 0 and |jv, — Wo,| — 0 as n — oo.
Indeed, utilizing Lemmas 2.7 and 2.13 we obtain from (3.1) (3.5) and (3.6) that

yn = plI* = [lany(Qua — @p) + (I — cnutF )Wy, Gy,
— (I — onptF)p + an(7Q — pF)p|?
< lany(Quy, — Qp) + (I — apuFYW,,Guy,
— (I = anpF)p|? + 200 ((YQ — pF)p, yn — p)
< lany||Qua — Qpl| + [[(I — anp )Wy Gy,
(3.16) — (I = anpF)p|* + 200 ((vQ — pF)p, yn — p)
< Janl[on = pll + (1 = an7) | Gun — pl]* + 200 ((vQ — 1F)p, yn — p)
[T l|vn = pll + (1 = anT)[|Gvn — plI]* + 200 (YQ — 11F)p, yn — P)
< anTlon = plI> + (1 = an7)[|Gon — pl* 4 200 {(YQ — pF)p, yn — p)
1 — anT)|[on = plI? + 20n{(YQ — 1F)p, yn — p)
(YQ — uF)p, yn — p)
YQ — pF)p,yn — p)-

IN

+ (
< anTllvn = plf* + (
= [lvp — p||2 + 20
< lzn — p||2 + an

Note that

{
(

Tn+1 = Sn’Yan + 5713771 + ((1 - ﬁn)j - Snv)Tnyn‘

Hence we have

Tn+1l — Yn = Sn(’Yan - VTnyn) + ﬁn(xn - yn) + (1 - ,Bn)(Tnyn - yn)»
which yields

(1 = a)|Tayn — ynll < (1 = Bu) | Ty —
= |Tnt1 — Yn — 5n(YQTn — VTnyn) — Bu(zn — yn)l|
= Hxn—H — xp — Sp(VQxn — VTyn) + (1 = Bn)(zn — yn)H
< Nzns1 — zall + s0VQTn — VTnynll + |20 — yul|-

Since lim, 008, = 0 and lim, e ||®n — Zpy1|| = 0, from the assumption
lim,, o0 || Zn, — yn|| = 0 and the boundedness of {x,},{yn}, we obtain

(3'17) ||yn - TnynH =0.

lim
n—o0
It is clear that
[Pc(I = 0N flyn — ynll = lIsnyn + (1 = $n) Ty — ynl
= (L = )1 Tnyn — ynll
< || Twyn — Yull,
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where s, = % € (0,1) for each 6,, € (0, %). Hence we have
2 2
|Po(1= 291 )um = wal| < | Pe (1= F97 ) v = PolT = 0u¥ )

+ HPC(I - envf)yn - yn”
2
< H <I — ZVf>yn - (I - envf)yn
+ HPC(I - Onvf)yn - yn”
2
< (5 = 0) IV £ ) | + | Tt = vl

From the boundedness of {y,}, s, — 0 (& 60, — 2) and | T,yn — yn|| — 0 (due to
(3.17)), it follows that

(3.18) Tim g — Pe (T~ 295 )yl =0
Also, from (2.1) it follows that for all : € {1,2,...,N} and k € {1,2,..., M}
lon = pl1> = 147 wr — p?
< | A3 un — pll?
= ||Po(I — NinAi) Ay, — Po(I — N Ai)p|?
(3.19) < (T = N A) ATy — (1= N Ad)p)|?
<A = Pl 4 Xin (N — 200)[| Ai Al M — Aipl|?
< un = Pl + Nin(in = 2m) | Ai 4}, g — Aipl?
< lan = plI” 4+ Xin N — 200)[| Ai Al un — Aipl|®,

and
lun = pl* = | A} 20 — pI|?
< || A%z, —p|?
(3.20) = | TN — 1y Bi) Ay~ — TP (I = 1 B |

<N = rinBr) Ay wn — (I = i n Bi)pll?
< || AF 2 = plI® 4 Thon (P — 20k) | Be AL — Bypl|®
< an =l + rin (P — 20) | BeAl 2 — Bypl|.
So, from (3.16), (3.19) and (3.20) it follows that
yn = plI* < llon = plI* + 200 ((YQ — pF)p, yn — p)
<l = pl” + XN = 2m) || i A — Aip|®
+ 200 ((VQ — pF)p, Yn — p)
< Nlwn = plI* + rrn (e — 20) | BeAS 2 — Brp|?
+ Ain(Nin = 200) | 4i 45, — Aspl?
+ 200 [(vQ — 1 F)p|llyn — 2l
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which hence leads to
Thon (206 —710) | B A 2, — Bipl|® + Xin (205 — Mo || As AL s, — A
< lzn = plI*> = lyn — pII* + 200 [|(YQ — F)p]|lyn — Dl
< zn = ynull(Jzn = 2l + lyn — pll) + 20][(vQ — F)pl| |y — pl|-

Since limy, o0 a, = 0, {Xin} C [as, b;] C (0,21;) and {ry,} C [ek, fx] C (0,2uy) for
alli € {1,2,...,N}and k € {1,2,..., M}, by the assumption lim, o ||2n—yn| =0
and the the boundedness of {x,}, {yn}, we conclude immediately that

(3.21) lim ||A;A5 Y, — Ajp|| =0 and  lim ||BpAF 1z, — Bypl| =0,
n—00 Nn—00
foralli e {1,2,...,N} and k € {1,2,..., M }.
Furthermore, by Proposition 2.6 (ii) we obtain that for each k& € {1,2,..., M}
145z — pl* = | TSI = g Br) Ay = T (1 — 1y By
<AI = repBr) Ay oy — (I = 14y Br)p, Az, — p)
1 _
=5~ P Br) Ay — (I =1 Be)p|? + [ Afan — p|?
— I(I = rin Br) Ay~ wn — (I = rin Br)p — (Apzn — p)|1%)
1 _
< (14 e — plP + | bz — I
- ”Afz_lxn - Aﬁxn - rk,n(BkAfL_lxn - Bk:p)Hz),
which implies that
ALz, — pl* < | AR wn — pl* = [|AY 2y — Afwn — i n(BrA) 2, — Bip)|)?
= HAfzilxn _pH2 - “Aﬁilmn - Alrfzxn”Q - Tl%,n”BkAfflxn - kaH2
+ 20 { Ay — Apan, BeAY 2y — Bip)
(3.22) < AN Y, = pl* = AN, — AL
+ 2| A3 2 — Afwnl|[| BrAy 2, — Bep|
< ln = pl* = 1A% e — Al
+ 2rk,n‘|A2_1$n - Afzan”BkAZ_lfvn — Bypl|-
Also, by Proposition 2.1 (iii), we obtain that for each i € {1,2,..., N}
|4 un = plI* = [[Pe(I = AinAd) Ay Huy — Po(I = XinAa)p|®
< = XA A — (1 = X Ai)p, Ay un — p)
1 . )
=5 (I - N Ad) A g — (I = Nin Ai)p||? + || A un — p]?
= A A AL Yy — (= A Ai)p — (A — )]
1. . .
< 545 Yun = plf® + ([ A — p?
A = At — A (A — Ap)|)
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< 5 (lun = plI* + |43 un — pl*

- ||A;L‘z_1un - Aizun - )\i,n(AiAiL_lun - Aip)H2)7

N

which implies
145 un = pI* < flup = pl1? = 145 un — A = Xign (A A7 un — Aip) |1°
= llun = plI® = 145 un = Aun | = A2, 1| A Al un — Aip?
(3'23) + 2)\i7n<A1i;1un - A;Lum AiAZr'Lilun - Azp>
< fun = pl* = 1145 1n — A un?

+ 20 [ AG gy — AL ||| A AL Py, — Aipl).
Thus, from (3.16), (3.22) and (3.23), we have

lyn = plI? < [lvn = pII* + 200 ((vQ — 1F)p, yn — p)

< | A un = pl* + 200 ((vQ — pF)p, yn — p)

< lun = plI? = 1145 un — Afyun|?
+ 2)\@,7””/1:'1—11% - A%“ﬂ” HAi/li:lun — Ap|
+ 20, ((YQ — uF)p, yn — p)

< HAgxn - p||2 - ||/1;_1un - A;un|’2
+ 200 | AL g — Aun|[|Ai A un — Agpl|
+ 200 ((YQ — pF)p,yn — p)

< ||z, _pH2 - HAﬁill’n - AﬁanQ
+ 2rp || AR e, — AR ||| Be AR 2, — By
— {145 by, — A ||+ 2>‘i,nHA£z_1un — A || Ai A}, g — Apl|
+ 200 [|(vQ — pF)pl[lyn — pll,

which yields

||Alr€n_1xn - Aﬁxn”Q + ”Afz_lun - A%UHHQ
< lzn = pI* = lyn = pI* + 2 nl| A7 2 — ARl B AN 2 — Bypl|
+ 2)‘i7nHAf;1“n — Mun || Ai 4}, un — Aipll + 20| (vQ — wF)pll[lyn — pl|
< lwn = yall(lzn = pll + lyn = pll) + 2rpnll A5~ 20 — Afaa || Be Ay~ 20 — B
+ 200 | A5 — A || A Ay = Aipl| + 200 (7Q = nF)pll [y — -
Since limy, o0 p, = 0, {2}, {yn} and {u,} are bounded, {\;,} C [a;, b;] C (0,2n;)

and {rin} C [ex, fi] C (0,2u) for all i € {1,2,...,N} and k € {1,2,..., M}, by
(3.21) and the assumption lim,_, ||Zn — yn|| = 0, we conclude immediately that

(3.24) Jim_ | A, — Abu, || and Jim_ | AR Yy, — ARz =0,
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foralli € {1,2,...,N} and k € {1,2,...,M}. Note that
[ — || = [|AYzy — AR n||
< Apan — Azl + ([ Agzn — Ajaa| + - + | ARy — A ],
and
[, —onll - = | AR un — A un|
< AR — Ajun || + ([ Aqun — Apun|l + -+ | AT un — A |-
Thus, from (3.24) we have
(3.25)

|xn — upl| =0 and |un, — vn || = 0.

lim lim
n—oo n—oo
It is easy to see that as n — oo

[2n = vall < [l2n = un|| + |lun — vall = 0.

On the other hand, for simplicity, we write p = Po(I — voFb)p, 0, = Po(l —
voFy)vy, and wy, = Gu, = Po(I — v1 Fy)0, for all n > 1. Then

p = Gp = Pc(f — VlFl)ﬁ = Pc(I — I/1F1)Pc(f — I/QFQ)p.

We now show that lim, e ||Gv, — vp|] = 0, ie., limy oo ||wp — vp|| = 0. As a
matter of fact, for p € £2, it follows from (3.5), (3.6) and (3.16) that

lyn = plI* < antllon = pl? + (1 = an7)|Gon — plI? + 200 ((vQ — 1F)p, yn — p)
< anTlvn — plI* + (1 = an7)|wn — plI? + 20| (vQ — wF)pll[|lyn — pl|
< anTlvn — plI* + (1 = an7) (|50 — B> + 1 (1 — 2¢0) |1 F1 s — F15||°]

+ 20 [|(vQ — 1 F)pl|llyn — pl|
(3.26) < anllon = pl* + (1 — an)[[lvn — pl* + va(v2 — 2G2)|| Favn — Fapl|?
+ v = 20)[[F10n — F1p|1) + 2anll(vQ — uF)pll[lyn — pll
= [lvn — plI* + (1 — cn7)[p2(v2 — 262) || Fovy — Fop|?
+ (= 20)||Fio, — Fip|)?]
+ 200 [|(vQ — pF)plllyn — pll
< lzn = pl? + (1 = an7)va(va — 20) || Favn — Fopl|?
+ v1(v1 = 200) [Py, — F1p||)
+ 200 [|(vQ — pF)pllllyn — pl,
which immediately yields
(1 — an7)[12(2C2 — v2) | Favn — Fapl|* + v1(2¢10 — 1) | i, — i)
< lwn = plI* = llyn = pI? + 200 (Q — uF)plllyn — 2
< lzn = yull(llzn = pll + llyn — pl) + 2001 (vQ — 1F)p||[|yn — pI|-

Since limy, o0 oy, = 0, vj € (0,2¢;) for j = 1,2 and {z,}, {yn} are bounded, by the

assumption lim, .« ||z — ynl| = 0, we get
(3.27) | Fov,, — Fop|| =0 and | F10, — F1p|| = 0.

lim lim
n—0o0 n—oo
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Also, in terms of the firm nonexpansivity of Pc and the (j-inverse strong mono-
tonicity of F; for j = 1,2, we obtain from v; € (0,2¢;),j = 1,2 and (3.6) that
150 = BII* = | Po(I = vaFa)vn — Po(I — vaFa)pl|?
< (I = vaFs)vn — (I — v2F32)p, Un — D)
1 - -
=5l = veFz)vn = (I = vaF2)pl|* + [ — Bl
— (I = vaF2)vn — (I = v2F2)p — (0n — P)||*]
1 - . . .
< Sllon = pI* + 1150 = 51> = || (vn = Tn) — va(Fyvn — Fap) = (p = H)II]

= S lon = Bl + 150 = 71 = l(wn — ) — (0~ DI
+ 20{(0 = 5) = (p = ), Favn — Fap) — 3| Fov, — Fapl?],
and
lwn = plI* = [|Pe(I = 1 F1)o, — Po(I — nFy)p|

< (I = vi Py, — (I — v1FL)p,w, — p)

N | =

= S =1 F1)on — (I = 1Pl + [hwn — pl®
— (I =1 F1) T — (I = v1F1)p — (wn — p)|?]

1 _

< 5llon = Bl + lwn = pl* = 1|(Tn — wn) + (0~ B)II?
+ 201 (Fy0 — F1P, (00 — wn) + (p = ) — V|| F19n — F15])%]
1 _

< 5llvn = Pl + lwn = pl* = 1|(Tn — wn) + (0~ B)II?

b 20 (i — Fif, (30 — ) + (9 — ).
Thus, we have
150 = BI* <[lva = pII* = [[(vn = Bn) = (0 = D)
(3.28) +205{(vn — 5n) — (p — ), Favn — Fop) — 2| Fyvn — Fipl,
and
lwn = plI* <Jlvn = pl* = (1T —ws) + (p = B)II?
(3.29) + 2v1|[Fron — F1p|[[| (0 — wn) 4 (p = D).
Consequently, from (3.5), (3.26) and (3.28) it follows that
lyn = plI* < anllva = plI* + (1 = nm) |00 — 51 + v1 (1 — 2¢0)|F19n — F15%]
+ 20 [|(vQ — pF)pllllyn — pll
< antllvn = pl* + (1 = anT)[|T0 = BII* + 20| (VQ = F)plllyn — pl|
< anT|vn _pH2 + (1 = an7)[|lvn _PH2 — [(vn — ) — (p _13)“2
+ 205 (Vg — ) — (p — D), Fovy, — Fop) — V3| Fovy, — Fapl|?]
+ 20 [|(vQ — pF)pllllyn — pll
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< antllon = pl* + (1 = ant)[llva = pI* = [(va = Tn) = (0~ B)II?

+ 2u3|| (v, — Tn) — (p — D) Fovn — Fapll] + 200 [|(vQ — wF)p||[|yn — 1|
< lwn = plI* = (1 = an7) || (vn — Bn) — (= D) |I?
+ 2vs (v, — Tn) — (p — )| 1 Fovn — Fap||
+ 20 || (vQ — 1 F)pllllyn — pll
< lan = plI> = (1 = an)||(vn — ) — (p — P)
+ 2vs[(vn, — Tn) — (p — D) ||| F2vn — Fap|
+ 20, [|(vQ — 1 F)pll[lyn — pll,
which hence leads to
(1= an7)[[(vn = 0) = (0= P)II* < llzn — pII* = lyn — pII?
+ 2vs[(vn, — Tn) — (p — D)||[| F2vn — Fap|
+ 20, [|(vQ — uF)p||[lyn — pll
< |lzn = ynll(lzn — 2l + llyn — pll)
+ 2vs[(vn, — Tn) — (p — D)||[| F2vn — Fap|
+ 20, [|(vQ — 1 F)p||[lyn — plI-

Since lim, 00 ay = 0, {xn}, {ynt, {vn} and {v,} are bounded sequences, by the
assumption limy, || — yn|| = 0, we conclude from (3.27) that

(3-30) nh_{go [(vn = 0n) — (p—D)[| = 0.

I?

Furthermore, from (3.5), (3.26) and (3.29) it follows that
lyn — plI* < antllon = plI* + (1 — an7)|lwn — plI? + 200 (VQ — 1F)pll[lyn — p
< an7llvn — plI* + (1 = ) [[lvn — plI* = |50 — wn) + (p — H)|I?
+ 2v1 || F1 0y — F1P||[[ (0 — wn) + (p — D)]]]
+ 204, [|(vQ — pF)plllyn — pll
< lon = pl* = (1 = an7) || (B0 — wn) + (p — P)
+ 2u1 (| F10n, — F1||[|(0n — wn) + (p — D)l
+ 20| (vQ — pF)plllyn — pll
< lan = pl* = (1 = an?)[[(5n — wn) + (p — P)
+ 2v1[|F19n — F1P||[| (B0 — wn) + (p — D)l
+ 204 [|(vQ — uF)plllyn — pll,
which hence yields
(1= an) (0 — wn) + (p = P)I? < ll#n = plI* = llyn — I
+ 2v1 | F10 — F1p|| [|(T — wn) + (p — D)
+ 20, [|(vQ — 1F)p||[lyn — pll
< Nzn = yull(llzn — pll + [lyn — pIl)
+ 2v1 | F10 — F1p|| [|(T — wn) + (p — D)

I

I
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+ 200 [|(VQ — 1 F)pllllyn — pl-

Since lim,, o, , = 0 and {zy, }, {yn}, {w,} and {0, } are bounded sequences, by the
assumption limy, o || — yn|| = 0, we conclude from (3.27) that

(3.31) nhnolo [(on, — wn) + (p = P)I| = 0.

—

Note that
[on — wnl| < [[(vn = Tn) = (p = D)l + [[(Tn — wn) + (p = D).
Hence from (3.30) and (3.31) we get

(3.32) lim ||v, — Gu,|| = lim ||v, —wy| = 0.
n—o00 n—o0

Also, observe that
Yn = anYQuy + (I — anpF)W,Goy,.
Hence we get
Yn — WinGup, = an(YQuy, — pFW,Guy,).
So, from lim,_,~ o, = 0 and the boundedness of {v,} we deduce that

(3.33) lim |y, — W, Gu,|| = 0.

n—o0

In addition, it is readily found that
IWhon — vl < [Whvy — WaGuyll + || WhGoy, — vy |
< N|vn, — Gup|| + [|WnGun — vy |
< v = Gunl| + [WnGvn = ynll + [[yn — vnl|
< [lon = Gonl + IWaGvn = ynll + lyn — nll + [[2n — vall.

Thus, by the assumption lim,, o ||z, — yn|| = 0, from (3.25), (3.32) and (3.33) we
have

(3.34) | Wivy — va| = 0.

lim

n—oo
Taking into account that (v, — Wu,|| < ||vn, — Whop|| + [[Whvn — Wuy||, we obtain
from ||v, — Wyvn|| = 0 and [22, Remark 3.2] that

(3.35) lim |jv, — Wu,| = 0.
n—oo

Step 4. We prove that z, = 2* = Po(I — (V —~vQ))z* as n — oo.
Indeed, first of all, let us show that
limsup((v@Q — V)z*, z,, — ™) < 0.
n—oo

Since {x,,} is bounded, we may assume, without loss of generality, that there exists
a subsequence {xy,} of {x,} such that x,, — w and
(3.36)
lim sup((YQ — V)&, 2 — ) = lim (1Q — V)a*, 7, — %) = (1Q — V)a*, w — 2°).

n—00 1—+00

From (3.24), (3.25) and the assumption lim,,_, ||zn — yn|| = 0 we have that y,, —
W, Up, = W, Uy, = w, Az, — wand ATu,, — w, where k € {1,2,..., M}
and m € {1,2,..., N}. Utilizing Lemma 2.9, we deduce from z,, — w, v,, — w,
(3.18), (3.32) and (3.35) that w € Fix(Po(I — 2Vf)) = VI(C,Vf) = T, w €
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GSVI(G) and w € Fix(W) = N{2Fix(S,) (due to Lemma 2.11). Thus, we get
w € N2, Fix(S,) N GSVI(G) N I'. Next we prove that w € NY_,VI(C, A,,). Let

~ Apv+ Nov, veC,

fm = { 0, v,

where m € {1,2,...,N}. Let (v,u) € G(T},). Since u—An,v € Now and A™u,, € C,
we have
(v— A7 Up, u — Apv) > 0.
On the other hand, from A'u,, = Po(I — )\m,nAm)A?_lun and v € C, we have
(v — Ay, Ay, — (AT, — )\mmAmAZ"”_lun)) >0,

and hence
Ay, — ATy

)\m,n

(v — ATy, D A AT ) > 0.

Therefore we have

m=iy
. n,; —
ni i +Am/1m 1uni>

n
Amvni ‘
m m
— A up,, Apv — A A un,)

m m m—1
(v — A, A AR Un, — A AR U,

+/\

m m—1
m Anium - Ani Unp,
— (v = A un,,
Amvni

> (v — A s A A7 U, — Am/lnmi_luni>

(o Ay, B A
! )\m,ni
From (3.24) and since A,, is Lipschitz continuous, we obtain that
limy, oo [|Am AT Uy — Ay AT 1y, || = 0. From Al up, — w, {Nin} C la;bi] C
(0,2n;), Vi€ {1,2,...,N} and (3.24), we have
(v —w,u) > 0.

Since fm is maximal monotone, we have w € :anlo and hence w € VI(C, A,,),
m = 1,2,..., N, which implies w € NY_,VI(C, A,,). Next we prove that w €
ﬂé\ilGMEP(Qk,gok,Bk). Since AFz, = Tr(,ff’cp’“)(l — TenBp) A e, 0 > 1k €
{1,2,..., M}, we have

On(Abzn,y) + 0u(y) — er(Apan) + (BrAlan,y — Alay)
1
+—(y— Afixn, Aﬁxn — Af;_lzz:n) > 0.
Tkn

By (A2), we have

or(y) — ‘Pk(Afzxn) + <BkAI:;1=73nv Yy — Aff%)
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1 —
o = A, A = A7 wn) 2 Ouly, Ajan).
n

Let z; =ty + (1 — t)w for all t € (0,1] and y € C. This implies that z; € C. Then,
we have

(20 — Apwn, Brze) > op(Apen) — or(2) + (20 — Alwn, Brzi)
—(z¢ — Aﬁxn, BkAfl_lajn>
Akg, — A1,
Tk,n
= @k(Afon) — pr(zt) + (2t — Aﬁxn, Bz — Bkﬂﬁxn>
+ (2 — Ak, B AR g, — B AR g,)
Akg, — Ak=lg,

Tkn

- <Zt - Aﬁxnu > + @k‘(zta Az‘rn)

By (3.24), we have ||ByAFz, — BLA*'z,|| — 0 as n — co. Furthermore, by the
monotonicity of By, we obtain (z; — Akx,,, Byzy — Br,Akxz,) > 0. Then, by (A4) we
obtain

(3.38) (2t —w, Brze) 2 gr(w) — @r(zt) + Oz, w).

Utilizing (A1), (A4) and (3.38), we obtain

0= Ok(zt,2t) + pr(2t) — pr(2t)
< tOk(z1,y) + (1 — 1) Ox(ze, w) + teop(y) + (1 — )pr(w) — oi(2t)
< t[Ok (21, y) + @r(y) — prlze)] + (1 = £) {2 — w, Brzy)
= 1[Ok(2t,y) + ek (y) — r(ze)] + (1 — O)i(y — w, Brzy),
and hence
0 < Ok(zt,y) + r(y) — pr(2t) + (1 = t){y — w, Brzt).
Letting t — 0, we have, for each y € C,
0 < Op(w,y) + or(y) — er(w) + (y — w, Brw).
This implies that w € GMEP(6y, ¢k, By) and hence w € N GMEP( 6, px, By).
Consequently, w € N Fix(S,) N N, GMEP(6y, o, Br) N NY,VI(C, A;)
NGSVI(G) N I' =: 2. (This shows that wy,(z,) C £2.)
Furthermore, note that that
(V=1Q)z — (V=1Q,z —y) > (Y =)z —y|*, Va,yeH.

Hence we know that V' —~Q is (7 —vl)-strongly monotone with constant 4 —~I > 0.
In the meantime, it is easy to see that V — 4Q is (||V| + ~{)-Lipschitzian with
constant ||V|| 4+~ > 0. Thus, there exists a unique solution z* in 2 to the VIP

(3.39) (W@ —=V)a*,p—2") <0, Vpe .
Equivalently, z* = Pp(I — (V —~vQ))x*. So, in terms of (3.36) and (3.39) we have
(3.40) limsup((v@Q — V)z*, 2, — 2¥) = (7Q — V)z*,w — ™) < 0.

n—oo
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Finally, let us show that lim,,_, ||z, — 2*|| = 0. In fact, put p = 2™ in (3.16).
Then from (3.1) we get

|zt — 2|1 = [s27(Qn — Q™) + Bulwn — &™) + (1 = Bu)] — 5,V (Tnyn — )

+ 50 (vQ — V)™ ||?

< 50 7(Qn — Q) + Bl — 2) + (1 = Bu)I — $aV)(Tnyn — )|
+ 250 ((VQ — V)2", ang1 — 27)

< [snV[|Qzn — Q™| + Bullzn — 27|
+ 11 = Bp)I — sV [ Tyn — w*H]Q
+ 250 ((YQ — V)p, Tny1 — 27)

< [snylllen — 2| + Ballzn — *[ + (1 = B = 507) lyn — ™[]
+ 25, (7@ — V)p, Tnt1 — %)

= [(Bu + 507 >mu 2= 2" + (1= B — 509y — 2"1I]”
(3.41) T 260(4Q — V)" g1 — 2

(/Bn'i‘snfyl) _ 2 o o = k)2
< (Bn + sy )7(5n+ i)’ [2n — 217 + (1 = Bn — 5nY)|lyn — 27|

+ 25, (V@ — V)2*, zny1 — 27)

< (Bn + syl |20 — x*||2 + (1= Bn—527) lym — x*||2
+ 25n((VQ — V)2™, Tpp1 — 27)

< (B + saD)llan — "2 + (1 = B — 507 [0 — *|?
+ 20, ((vQ — pF)z", yn — )]
+ 25n((VQ — V)2*, Tpy1 — 27)

= (1= s5,(7 =) [lwn — 2*?
+2(1 = Bn = su¥)an((VQ — pF)x" yn — z7)
+ 25, (V@ — V)2™, &py1 — z7)

< (1= s2(F =A)lzn — 2| + 205 |(vQ — pF)z* | [[yn — =¥
+ 25, ((vQ — V)2*, zny1 — z)

= (1= 507 = )| — 22

_ 20 |7Q — pF)x*||||lyn — 2*
+sn(v—71)[ I H 7) ||l|| I
Sn Y=
2((vQ = V)", &y 1 — 2¥)
+ — )
7=l

Since Y 0% | sn = 00, limp oo §* and limsup, o (YQ — V)2*, 2n+1 — 2%) < 0 (due
0 (3.40)), we deduce that Y 7, s, (5 — 1) = 00 and

lim sup[QO‘" 7@ — ulf)w*\l 3y — || n 2((vQ — V_)af'% Tpp1 — TF)
n—oo Sn Y — 7l Y- 7l

] <o.
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Therefore, applying Lemma 2.14 to (3.41) we infer that lim,_, ||z, —2*| = 0. This
completes the proof. O

Remark 3.2. In Theorem 3.1, whenever M = 1 and N = 2, the iterative scheme
(3.1) reduces to the following iterative one

O1(tn, y) + 1(y) — 1 (un)
+<len7y_un>+ﬁ<un_xmy_un> >0, Vy € C,
(3.42) Un = Po(I = Mg Ag) Po(I — Ay Ay )y,
Yn = an’YQvn + (I - anNF)WnGvna
Tp+1 = SnVan + /ann + ((1 - 5”)1 - Snv)T”yn’ vn = L.

If all conditions in Theorem 3.1 are satisfied, then {x,, } converges strongly to a point
z* € 2 := N2 Fix(S,) NGMEP (61, ¢1, B1)NVI(C, A3)NVI(C, A1 )NGSVI(G)N I’
provided ||z, — yn|| = 0 (n — o0), which is a unique solution in {2 to the VIP

(vQ—-V)z*,p—a*) <0, Vpe .

Remark 3.3. In Theorem 3.1, whenever M = N = 1, the iterative scheme (3.1)
reduces to the following iterative one

O1(tn, y) + 01(y) — @1(un)
+(B12Zn,y — un) + ﬁ(un —Tp,y —up) >0, Vyedl,
(3.43) Un = Po(I = M Ay )y,
Yn = anYQuy + (I — anuF )W, Guy,
Tpt1 = $SnYQxn + Bntn + (1 — Bu)I — 8,V )T yn, Yn > 1.

If all conditions in Theorem 3.1 are satisfied, then {x,,} converges strongly to a point
x* € 2:=nN Fix(S,) N GMEP(6y, v1, B1) N VI(Cy, A) N GSVI(G) N I' provided
|z, — ynl| = 0 (n — 00), which is a unique solution in 2 to the VIP

(vQ —V)a*,p—12*) <0, Vpe .

4. WEAK CONVERGENCE CRITERIA FOR THE GSVI WITH CONSTRAINTS

Under mild conditions imposed on the parameter sequences, we will prove weak
convergence of iterative scheme (3.1) for finding a solution of the GSVI (1.3) with
constraints of several problems: finitely many GMEPs, finitely many VIPs, the
CMP (1.7) and the fixed point problem of infinitely many nonexpansive mappings
in a real Hilbert space. We are now in a position to present the weak convergence
criteria for iterative scheme (3.1).

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H .
Let M, N be two integers. Let f : C — R be a convex functional with L-Lipschitz
continuous gradient V f. Let O be a bifunction from C x C to R satisfying (A1)-
(A4) and ¢ : C — R U {400} be a proper lower semicontinuous and convexr
function, where k € {1,2,...,M}. Let By,A; : H - H and F; : C — H be
px-1nverse-strongly monotone, n;-inverse-strongly monotone and (;-inverse-strongly
monotone, respectively, where k € {1,2,...,M},i € {1,2,...,N} and j € {1,2}.
Let {Sp}22 1 be a sequence of nonexpansive mappings on H and {\,} be a sequence
in (0,b] for some b € (0,1). Let F : H — H be a k-Lipschitzian and n-strongly
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monotone operator with positive constants k,m > 0. Let Q@ : H — H be an I-
Lipschitzian mapping with constant | > 0. Let 0 < p < i—;? and 0 < ~l < T,

where 7 = 1 — \/1 — u(2n — pK?). Let V be a -strongly positive bounded linear
operator with vl < 7. Assume that 2 := N> Fix(S,) NN, GMEP( 6y, ¢k, Br) N
NN, VI(C, A;)NGSVI(G)NT # O and that either (B1) or (B2) holds. Let {ay,} and
{Bn} be sequences in (0,1]. For arbitrarily given x1 € H, let {x,} be a sequence
generated by iterative scheme (3.1), where Po(I — 0,V f) = spd + (1 — s,)T5, (here
T, is nonerpansive, s, = 2=l ¢ (0,1) for each 6, € (0,%)), v; € (0,2() for
Jj = 1,2 and Wy, is the W-mapping defined by (2.2). Suppose that the following
conditions are satisfied:

(i) sn € (0,3) for each 0, € (0,%), and 302 | 5, <00 (& 300 (2 —0,) < o0);
(i) D02 an <00 and 0 < liminf, o By < limsup,,_,. Bn < 1;

(iii) {Nin} C lai,bi] C (0,2m;) for alli e {1,2,...,N};

(iv) {ren} C lew, fr] C (0,2u1) for all k € {1, 2, oo, M}

Then {x,} converges weakly to a point w € {2 provided ||z, — yn| — 0 (n —
Proof. Repeating the same arguments as in the proof of Theorem 3.1 we can write
Po(l — 0,V f) = 2 40”L1 + 2 +49”LTn — spl + (1 — 50) T,

where T}, is nonexpansive and s, := s,(6,) = 2292k € (0,1) for each 6,, € (0, 2).

It is clear that
o0 (o) 2
an<oo & Z(Z_H”><OO
n=1 n=1

Since lim,, 00 $n, = 0 and 0 < liminf,, o B < limsup,,_, Bn < 1, we may assume,
without loss of generality, that {3,} C [a,a] C (0,1) and B, + sp||V| < 1 for all
n > 1. By the same argument as in the proof of Theorem 3.1 we can deduce that
(1= pp)I — s,V is positive and

(4.1) 11 = Bu)I = snVI| <1 = B — sn7-

Put

Al = TSI — 1y, BT P (I = 11,0 Bit) -+ TEWP (I = 11,0 By )y
forall k € {1,2,...,M} and n > 1,

Al = Po(I = X\inBi)Po(I — Ni—1nBi—1) -+ Po(I — \.nB1)
for all i € {1,2,...,N}, A? = I and A? = I, where I is the identity mapping on
H. Then we have that u,, = A%wn and v,, = Agun.

We divide the rest of the proof into several steps.

Step 1. Let us show that lim,_, ||z, — p|| exists for each p € 2. Indeed, take
p € {2 arbitrarily. Repeating the same arguments as those of Step 1 in the proof of
Theorem 3.1, we can prove that

(4.2) lun = pll < llzn = pll;
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(4.3) v, = pll < [Jun —pll,
|Gon = pl|? < [|[Pe(I = vaFa)o, — Po(I — vaFo)p|?
(4.4) + v1(v1 — 2C) | FiPo(I — voFy)vy, — FLPo(I — v Fy)p||?
< lon = plI* + v2(va — 22) || Favn — Fap?,
and
(4.5) lyn =PIl < (1 = an(r =) [lzn — pll + anl|(VQ — nF)p|.

Utilizing (3.1) and (4.5) we have

Zn+1 — pll = [[sn7(Qrn — Qp) + Bu(wrn — p)
+ (1= B = 82V ) (T — p) + s0(7Q — V)p||
< snylllzn = pll + Bullzn — pll
+ (1 = Bu)I = sn V)| Tnyn — pll + sall(vQ — V)pl|
< spylllzn = pll + Bullzn — pll
(4.6) + (1= Bn = 827 lyn — Il + 80[|(v@ — V)|
< (spYl + Bo)l|lzn — |
+ (1= Bn = s |lyn — pl| + snl|(vQ = V)p||
< (snYl 4 Bn)||zn — D
+ (1= Bn = a1 — an(T =)z = pl| + an|[(vQ — pF)p|]
+ sn[|(vQ = V)pl|
< (snYl 4 Bn)||zn — D
+ (1= Bn = suY)lzn — pll + anl|(YQ — pF)p|l + sall(vQ — V)pl|
= (1 =sa(y =D))llzn = pll + anl|(vQ — pF)pl| + snl[(vQ = V)p
< lzn = pll + anll(vQ — pF)pl| + snl[(vQ = V)pl|.
Since Y 7 s, < oo and > o2y, < 00, it is known that Y o0 (an||(vQ — pF)pll+

spll(7@Q — V)p|]) < oo. Hence, applying Lemma 2.16 to (4.6) we know that
limy, o0 ||zn, — p|| exists for each p € 2. Thus, {z,} is bounded and so are the

sequences {un}, {vn}, {yn}

Step 2. Let us show that that ||y, — Po(I — 2V f)ya| — 0 as n — oo. Indeed,
from (4.5) we have

lyn =0l < [(1 = an(r = vD) |20 — pl| + 0 (VQ — pF)p]l]?

~ (1 = aur = D) — | + anr — i1 T2 e
_ 2
< (1= an(r = 10)lln — pl> + an(r — 20) ”(Vg _{;ggp'

< |lzn = pl* + an

9

1(vQ — pF)p|?
T =7l
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which together with (3.1) and Lemmas 2.7 and 2.17 (b), implies that
|zn41 =PI = [1Ba(@n = p) + (1= Ba) (Toyn — p) + 50 (7Qn — VTnyn) |

< |1Bn(@n = p) + (1 = Bn) (Tnyn — p)I?
+ 28, (VQxn — VT Yn, Tn+1 — p)

= Bullzn = plI* + (1 = B Toyn — pI* = Ba(1 = Bu)ll2n — Tuynl®
+ 250 ([|Qzn — VTnyn| l|lzn1 — pll

< Bullen = plI* + (1= Ba)llyn = pI> = Ba(1 = Ba) |2 — Toyal®
+ 250 ([|Qzn — VTnyn| l|lzn1 — pll

7Q — nF)p|)?
< Bulon = pI? + (1 = Bl — P + 0, 7L
_ Bn(l — Bn)”xn - nynH2 + 23n<HQ$n — VTnynHHxn_H _p”
Q — uF)p|?
< ||a:n _p||2+an||(7 T_:“’YZ) || _/Bn(l _Bn)Hxn _TnynH2

+ 2Sn<”Q$n - VTnQNHHmn-&-l _pH‘
So, it follows that
G’(l - d)Hxn - n?/nHZ < Bn(l - Bn)”xn - Tnyn”2
1(vQ — uF)pl|?
—~l

< lzn = pl* = llzns1 = pl* + an

+ 25, (|Qzr, — VTynl|||2ns1 — pl|-

Since lim, o0 8p, = 0, lim, o0 @y = 0 and limy, o ||z, — p|| exists, we conclude
from the boundedness of {x,}, {y,} that

lim ||z, — Thyn| = 0.
n—oo

Taking into account that ||yn — Tnynll < |Yn — xnll + ||2n — Thynl|, we obtain from
the assumption lim,_, ||z, — yn|| = 0 that

(4.7) lim ||y, — Thynll = 0.
n—oo
It is clear that

| Pe(I =0,V f)yn — yull = lIsnyn + (1 — s0) Ty — ynll
= (1= 52)[|Tnyn — ynll
< HTnyn - yn”v

where s,, = # € (0,1) for each 6,, € (0,%). Hence we have

|2e(r=294) o~ un

2 < | o(1=19F ) — Petr = 0.5 Py

+ |1Pc(L — 0,V f)yn — ynll
< H (I — %Vf>yn - (I - envf)yn
+ | Po(I = 0,V f)yn — ynl|
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2
< (5 = 0) IV F )l + 1Tt =

From the boundedness of {y,}, s, — 0 (& 60, — 2) and ||y, — Thyn|| — 0 (due to
(4.7)), it follows that

(4.8) lim ‘ ~ 0.

2
Jim = Po (1= 791 )un
Step 3. We prove that ||z, — up| — 0, ||xn — vn| — 0, ||[vn — Gu,|| — 0 and
|vn, = Wop|| = 0 as n — oo.
Indeed, repeating the same arguments as those of (3.24), (3.25), (3.32) and (3.35)

in the proof of Theorem 3.1 we get

(4.9)  lim A w, — ALwu,|| and  lim |AF Tz, — ARz || =0,
n—oo n—oo

Vie{1,2,....N},ke{1,2,..., M},

(4.10) lim [z, —up]| =0 and  lim [u, — va]| =0,
n—00 n—+00
(4.11) lim [0, — G, | =0,
n—oo
and
(4.12) lim |jv, — Wu,|| = 0.
n—oo

Step 4. We prove that {z,} converges weakly to a point w € {2.

Indeed, first of all, let us show that wy,(z,) C 2. Since {z,} is bounded, we may
assume, without loss of generality, that there exists a subsequence {z,, } of {z,} such
that {x,, } converges weakly to some w € H. From (4.9), (4.10) and the assumption
limy, o0 [|#n — Yn|| = 0 we have that y,, — w, Un, = w, vn, = w, AL 2z, — w and
AP wp, — w, where k € {1,2,..., M} and m € {1,2,..., N}. Utilizing Lemma 2.9,
we deduce from x,, = w, v,, = w, (4.8), (4.11) and (4.12) that w € Fix(Pc(I —
2Vf)) = VI(C,Vf) = I', w € GSVI(G) and w € Fix(W) = N2, Fix(S,) (due
to Lemma 2.11). Thus, we get w € N2 Fix(S,) N GSVI(G) N I". Repeating the
same arguments as in the proof of Theorem 3.1 we get w € NY_,VI(C, Ap) N
ﬁé\ilGMEP(Qk, ¢k, Br). Consequently,

w € N, Fix(S,) N NIL,GMEP( 6y, ¢k, Br) NN, VI(C, A;) N GSVI(G) N I =: 2.

This shows that wy,(z,) C £2.

Next let us show that wy, () is a single-point set. As a matter of fact, let {w,,}
be another subsequence of {x,} such that z,, — w'. Then we get w' € 2. If
w # w', from the Opial condition, we have

lim ||z, —w| = lim ||z, —w| < lim ||z, — |
n—o0 1—00 100
= lim ||z, — '] = lim |20, — w'||
n—o00 j—roo
< lim ||zp, —w|| = lim |[[z, —wl,
J—00 n—oo

which attains a contradiction. So we have w = w’. This completes the proof. O
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Remark 4.2. In Theorem 4.1, whenever M = 1 and N = 2, the iterative scheme
(3.1) reduces to the iterative one (3.42). If all conditions in Theorem 4.1 are satisfied,
then the sequence {z,} generated by (3.42) converges weakly to a point w € 2 :=
N2, Fix(S,) N GMEP(6y, ¢1, B) N VI(C, As) N VI(C, A;) N GSVI(G) N I provided
i — gll — 0 (n — 00)

Remark 4.3. In Theorem 4.1, whenever M = N = 1, the iterative scheme (3.1)
reduces to the iterative one (3.43). If all conditions in Theorem 4.1 are satisfied,
then the sequence {z,} generated by (3.43) converges weakly to a point w € {2 :=
N>, Fix(S,) N\GMEP (61, ¢1, B1)NVI(C1, A)NGSVI(G) N I" provided ||z, —yn| —
0 (n — 00).

Remark 4.4. In the proof of Theorem 3.1, we apply Lemma 2.15 (Suzuki’s Lemma)
to prove lim, o ||Zn — Znt1]] = 0 according to the conditions imposed on the
parameter sequences {)\; ,} and {r,}, that is,

m [Njpy1 —Xin| =0 and lim |rg .41 — 760 =0,
Vie{1,2,....N},ke{1,2,..., M}

Note that in the proof of Theorem 4.1, the role of lim, o |7 — Zpy1|| = 0 is
replaced by the existence of lim,_, ||z, — p|| for each p € 2. Hence our Theorem
4.1 drops the above conditions.

REFERENCES

[1] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image
reconstruction, Inverse Problems 20 (2004), 103-120.

[2] L. C. Ceng and S. Al-Homidan, Algorithms of common solutions for generalized mized equilib-
ria, variational inclusions, and constrained convex minimization, 2014, Art. ID 132053, 25pp.

[3] L. C. Ceng, S. M. Guu and J. C. Yao, Hybrid iterative method for finding common solutions
of generalized mized equilibrium and fixed point problems, Fixed Point Theory Appl. 2012,
2012:92, 19pp

[4] L. C. Ceng, S. M. Guu and J.C. Yao, Hybrid viscosity CQ method for finding a common
solution of a variational inequality, a general system of variational inequalities, and a fixed
point problem, Fixed Point Theory Appl. 2013, 2013:313, 25pp.

[5] L. C. Ceng, A. Petrusel and J. C. Yao, lterative approaches to solving equilibrium problems
and fized point problems of infinitely many nonexpansive mappings, J. Optim. Theory Appl.
143 (2009), 37-58.

[6] L. C. Ceng, C. Y. Wang and J. C. Yao, Strong convergence theorems by a relazed extragradient
method for a general system of variational inequalities, Math. Methods Oper. Res. 67 (2008),
375-390.

[7] L. C. Ceng and J.C. Yao, A hybrid iterative scheme for mized equilibrium problems and fized
point problems, J. Comput. Appl. Math. 214 (2008), 186—201.

[8] V. Colao, G. Marino and H. K. Xu, An iterative method for finding common solutions of
equilibrium and fized point problems, J. Math. Anal. Appl. 344 (2008), 340-352.

[9] K. Geobel, W.A. Kirk, Topics on Metric Fized-Point Theory, Cambridge University Press,
Cambridge, England, 1990.

[10] G. M. Korpelevich, The eztragradient method for finding saddle points and other problems,
Matecon. 12 (1976), 747-756.

[11] J. L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires,
Dunod, Paris, 1969.

[12] J. G. O’Hara, P. Pillay and H. K. Xu, Iterative approaches to convex feasibility problems in
Banach spaces, Nonlinear Anal. 64 (2006), 2022-2042.



SYSTEM OF VARIATIONAL INEQUALITIES WITH CONSTRAINTS 421

[13] M. O. Osilike, S. C. Aniagbosor and B. G. Akuchu, Fized points of asymptotically demicon-
tractive mappings in arbitrary Banach space, Panamer. Math. J. 12 (2002), 77-88.

[14] J. W. Peng and J. C. Yao, A new hybrid-extragradient method for generalized mized equilibrium
problems, fized point problems and variational inequality problems, Taiwanese J. Math. 12
(2008), 1401-1432.

[15] R. T. Rockafellar, Monotone operators and the proxzimal point algorithms, SIAM J. Control
Optim. 14 (1976), 877-898.

[16] T. Suzuki, Strong convergence of Krasnoselskii and Mann’s type sequences for one parameter
nonezpansive semigroups without Bochner integrals, J. Math. Anal. Appl. 305 (2005), 227—-239.

[17] S. Takahashi and W. Takahashi, Strong convergence theorem for a generalized equilibrium
problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal. 69 (2008), 1025—
1033.

[18] H. K. Xu, Averaged mappings and the gradient-projection algorithm, J. Optim. Theory Appl.
150 (2011), 360-378.

[19] H. K. Xu and T. H. Kim, Convergence of hybrid steepest-descent methods for variational
inequalities, J. Optim. Theory. Appl. 119 (2003), 185-201.

[20] I. Yamada, The hybrid steepest-descent method for the variational inequality problems over the
intersection of the fized-point sets of nonexpansive mappings, in Inherently Parallel Algorithms
in Feasibility and Optimization and Their Applications, D. Batnariu, Y. Censor and S. Reich
(eds.), Amsterdam, North-Holland, Holland, 2001, pp. 473-504.

[21] Y. Yao, Y. C. Liou and S. M. Kang, Approach to common elements of variational inequality
problems and fized point problems via a relazed extragradient method, Comput. Math. Appl.
59 (2010), 3472-3480.

[22] Y. Yao, Y. C. Liou and J.C. Yao, Convergence theorem for equilibrium problems and fized
point problems of infinite family of nonerpansive mappings, Fixed Point Theory Appl. 2007
(2007) Article ID 64363, 12pp.

Manuscript received February 2, 2014
revised May 6, 2014

L. C. CENc
Department of Mathematics, Shanghai Normal University, and Scientific Computing Key Labora-
tory of Shanghai Universities, Shanghai 200234, China

E-mail address: zenglc@hotmail.com

S. PLUBTIENG
Department of Mathematics, Faculty of Science Naresuan University, Phitsanulok, 65000 Thailand
E-mail address: somyotp@nu.ac.th

M. M. WonaG
Department of Applied Mathematics, Chung Yuan Christian University, Chung Li, 32023, Taiwan
E-mail address: mmwong@cycu.edu.tw

J. C. Yao

Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan; and De-

partment of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
E-mail address: yaojc@kmu.edu.tw



