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A NON-INTERIOR POINT HOMOTOPY-SMOOTHING
METHODS FOR SOLVING EQUILIBRIUM PROBLEMS

JIA-WEI CHEN, ZHONGPING WAN, AND YEOL JE CHO

ABSTRACT. In this paper, the homotopy-smoothing methods for solving the equi-
librium problem (shortly, (EP)) is proposed without the initial point in the in-
terior of the feasible set assumption and the equivalence between (EP) and the
Robinson’s normal equation is given and then the smooth homotopy equation is
suggested by Robinson’s normal equation of (EP) and the twice continuously dif-
ferentiable approximation of the metric projection operator. The existence and
global convergence of a smooth homotopy path from almost any starting point
in R™ to a solution of (E'P) is derived under some mild conditions.

1. INTRODUCTION

Throughout this paper, let K be a nonempty closed and convex subset of the
n-dimensional Euclidean space R™ and F : R" x R" — R U {400} be a function
such that F(y,y) = 0 for all y € K and, for each z € K, y — F(x,y) is convex
and continuously differentiable on R™ and its partial derivative Iy (2, y)|y=z is twice
continuously differentiable on R™, where Fé(l’, Y)|y=2 means the derivative value of
F with respect to the second variable y at y = z.

Now, we consider the following equilibrium problem (EP):

Find =z € K such that
F(z,y) >0
for all y € K. Denote the solutions set of (EP) by ©.

It is well known that the equilibrium problem were first introduced by Blum and
Oettli [6], which provided a very general formulation of many problems as follows:

(1) Optimization problems: min,ck g(y), where g : K — R is a mapping. In
this case, one can define F'(z,y) = g(y) — g(z) for all z,y € K
(2) Variational inequalities: Find x € K such that

(T(z),y —z) 20
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for all y € K, where T : R™ — R"™ is a vector-valued mapping. In this case, one can
define F(x,y) = (T'(x),y — x) for all z,y € K;;
(3) Nonlinear complementarities: Find x € K such that

(T'(x),z) =0, (T(z),y) =0

for all y € K, where K is a closed convex cone of R™ and T': K — R" is a mapping.
In this case, one can define F(z,y) = (T'(z),y) for all z,y € K.

The equilibrium problems have been intensively studied over the past decades on
various models of the equilibrium problems and the properties of their solutions such
as nonemptiness, boundeness and stability of their solution set and well-posedness
(see, for example, [2, 8, 10, 18, 19, 22] and the references therein). One of the most
important and interesting problems in the theory of equilibrium is to develop effi-
cient and implementable algorithms for solving equilibrium and its generalizations,
for details, we refer to ([5, 7, 11, 12, 29, 30, 34, 41]) and the references therein.

Homotopy method, which is a kind of the fixed point method, had been devel-
oped in 1970s (see, for example, [3, 13, 21, 24, 33, 35] and the references therein). A
remarkable advantage of the homotopy method is that the algorithm generated by it
possesses the global convergence under weaker conditions. Watson [36, 37, 38] uti-
lized the homotopy-type methods to solve the linear complementarity problems and
nonlinear complementarity problems, respectively. In order to avoid the require-
ment that Jacobian matrix is regular as Watson [38], Ding and Yin [14] presented a
new homotopy method for the nonlinear complementarity problems. Chen and Ye
[9] proposed a homotopy-smoothing method for solving the variational inequality
problem and showed that the method converges globally and superlinearly under
mild conditions and, moreover, the method found a solution of the problem in finite
steps under some special cases.

Later on, Lin and Li [26] and Xu et al. [39, 40] studied nonmonotone variational
inequalities by the combined homotopy method (see, for example, [20]) together
with its equivalent KKT system and derived existence and convergence of homotopy
pathway without the monotonicity. Nevertheless, the combined homotopy method
to solve the KK'T system increases the number of variables which make the problem
more complicated.

Recently, Fan and Yu [16] applied a smoothing homotopy method to solve the
nonsmooth equation reformulation of bounded box constrained variational inequal-
ity problem and established the existence and convergence of the homotopy pathway
without monotonicity. Further, they studied the variational inequality problem on
unbounded convex set in [17], constructed the homotopy equation by the smooth
approximation to its Robinson’s normal equation (see [31]) and proved that, for the
starting point chosen almost everywhere in R", the existence and convergence of a
smooth homotopy pathway to some of its solution. In order to relax the existent as-
sumption of the initial interior point in Xu et al. [39], Shang and Yu [32] introduced
a new homotopy method for solving variational inequalities in unbounded sets based
on a smooth perturbation of its constraints and proved the existence of solution path
and a globally convergent of the proposed algorithm under some assumption. To
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the best our knowledge, there are little results concerning the homotopy method for
equilibrium problems.

Inspired and motivated by the above works, the aim of this paper is to propose
a homotopy-smoothing method for solving the equilibrium problem (EP) based on
Robinson’s normal equation. Under some suitable assumptions, the existence and
global convergence of the smooth homotopy path from almost any starting point in
R™ are proven.

2. MAIN RESULTS

Let z € K and denote by f.(y) = F(z,y) and T'(x) = F,(x,y)|y=z, respectively.

Now, we consider the following optimization problem (shortly, (PF¥:z)) corre-
sponding with (EP):

2.1 inf .
(2.1) Jnf fa(y)

It is easy to see that x € K is a solution to (EP) if and only if it is an optimal
solution to (PFP; ).

The following results are well-known:

Lemma 2.1. x € K is an optimal solution to (P*T; x) if and only if it is a solution
of the following variational inequality problem (shortly, (VI)):

(2.2) (T(z),y —2) 20
forally € K.
Proof. For the sake of completeness, the readers could refer to [25]. O

It is worth noting that (V1) is equivalent to the following nonsmooth equation
(see [15, 23])

(2.3) y—1Ilx(y—T(y)) =0,

where Ik (y) is the metric projection from y onto K. The (V) is also equivalent
to the Robinson’s normal equation (shortly, (RNE)) ([31]):

(2.4) R(z) = T(Ilg(x)) + o — g (x) = 0.
The following lemma shows the equivalence between (EP) and (RNE):

Lemma 2.2. (1) Ifz € R" is a solution of (RNE), then z* = Il (z) is a solution
of (EP);

(2) If z* is a solution to (EP), then x = x* — Fy(2*,y)ly=o+ is a solution of
(RNE).

Proof. 1t follows from Lemma 2.1 that (EP) is equivalent to (VI). Again, from [17,
Sect. 2, pp. 212] and [42, Sect. 2], we know that, if x € R™ is a solution of (RNE),
then x* = IIx(z) is a solution of (V).

Conversely, if z* is a solution of (VI), then z = 2*—T'(z*) is a solution of (RN E).
Note that T'(x*) = F,(z*,y)|y=+. Therefore, the desired results are obtained. This
completes the proof. O
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For this reason, we now try to find a solution of (RN E) by a homotopy-smoothing
method. Nevertheless, R(z) is nonsmooth since the metric projection Ilx (x). Moti-
vated by [42], we introduce a C%-smooth operator s(z, ) to approximate the metric
projection ITx (z) such that the proposed homotopy-smoothing method is globally
convergent.

Assumption 2.3. Let x € R" and [ € [0, 1], assume that
(1) There exists a constant ¢ > 0 such that
ls(2,1) — g (2)]| < el
(2) There exists a constant v > 0 such that
(g (z) — x,s(z,l) — i (x)) <l

(3) s(z,l) € K;
(4) s(z,!l) is twice continuously differentiable on R™ x (0, 1];
(5) s(z,0) =g (x).

If Assumption 2.3 holds, then, by (1), we have

I|s(z,1) — g (z)|]| - 0asl— 0.

Again, from (5), it follows that s(x,!) is the smooth approximation of Ik (x).
Now, we define a mapping R : R™ x (0,1] — R" by

(2.5) R(x,l) =T (s(x,1)) +x — s(z,1)

for all (z,l) € R™ x (0,1]. Then R(z,l) is twice continuously differentiable on
R™ x (0,1] and so, for each z € R™, R(x,l) converges to R(x) as [ — 0. For the
relations between two constants ¢ and 7 in Assumption 2.3, one can refer to [42,
Subsections 2.1-2.3].

In order to solve the (RNE), let 2° € R™ be given and [ € (0,1], we construct
the following smooth homotopy equation (shortly, (SHE)):

(2.6)  H(x,1)=H(z" z,1):= (1 —-D)[T(s(x,1)) +z — s(z,))] +I(z — 2°) = 0.

Now, we recall some well-known results and definitions from differential topology
which are needed in our main results.

Definition 2.4 ([28]). Let U C R™ be an open set and ¢ : U — RP be a C*-
mapping, where a > max{0,n — p}. A vector w € RP is called a regular value for ¢
if

0
Range [
for all z € ¢~ (w).
Lemma 2.5 (Inverse Image Theorem [28]). Let ¢ : U C R™ — RP be a C*-mapping,

where o > max{0,n —p}. If 0 is a reqular value of ¢, then ¢$~*(0) consists of some
(n — p)-dimensional C* manifolds.
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Lemma 2.6 (Classification Theorem of One-Dimensional Smooth Manifolds [28]).
A one-dimensional smooth manifold is homeomorphic to a unite circle or a unit
interval.

Lemma 2.7 (Parameterized Sard Theorem [3]). Let U C R™ and V' C R™ be open
sets and ¢ : V x U — R¥ be a C*-mapping, where a > max{0,m —k}. If0 € R¥ is
a regular value of ¢, then, for almost all a € V', 0 is a reqular value of ¢, = ¢(a,-).

Theorem 2.8. Assume that Assumption 2.3 is true and there exist two nonempty
bounded subsets By and By of K such that, for each x € K \ By, there exists z € By
such that

(T(x),z—z) >0,
where T(x) = F(,y)ly=c. Then the following results hold:

(1) (EP) is solvable, i.e., © # 0;

(2) For almost all z° € R", (SHE) determines a smooth curve T C R™ x (0, 1]
starting from (z°,1) and approaching the hyperplane at | = 0. When | — 0, the
limit set L x {0} CR"™ x {0} of I is nonempty and each point (£,0) € L x {0} is a
solution of (SHE) and so Il (Z) € O.

The proof of Theorem 2.8 is complicated. For the sake of brevity, first, we prove
several lemmas which lead to the final proof of this theorem.

Lemma 2.9. If the conditions of Theorem 2.8 hold, then, for almost all z° € R™,
0 is a reqular value of H : R™ x (0,1] — R and H~1(0) consists of some smooth
curves, where H=1(0) = {(x,1) € R® x (0,1] : H(z,1) = 0}. Among them, a smooth
curve T' starts from (z°,1).

Proof. Since, for each z € K, y — F(z,y) is convex and triple continuously differ-
entiable on R”, T'(x) is twice continuously differentiable on R™ and so is H(z?, z,1).
Then, for all 2° € R” and [ € (0, 1], by the definition of H (2%, z,1) as a mapping of
the variables 2, z, [, one has

;30 (xO’ z, l) = _lIv

where I is the n x n unit matrix and the Jacobi matrix of H(z°,z,1), denoted by
JH (2%, 2,1),

JH(,Q}O,Q," l) = (H;;O(xovxu l),H;(JJO,QZ‘, l),Hl/(.fO,[B, l))
= (=11, H.(2°, 2,1), H|(2°, 2, 1))

is of full row rank, namely, 0 is a regular value of H(z", z,1). It follows from Lemmas
2.5 and 2.7 that, for almost all 20 € R”, 0 is a regular value of H(z,1) and the inverse
H~'(0) consists of some one-dimensional C® manifolds, where o > 1. Note that
H!(z,1) = I is nonsingular. Hence x° is the unique solution to the smooth equation
H(z,1) = 0 since H(z%,1) = 0. From this, there must exist a smooth curve I' in
H~1(0) starting from (z°,1). This completes the proof. O

Lemma 2.10. Let (z°,1y) € R x (0, 1] be given and the conditions of Theorem 2.8
hold. If 0 is a regular value of H : R™ x (0,1] — R"!, then T is a bounded curve
in R™ x (0, 1].
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Proof. Suppose to the contrary that I' is an unbounded curve in R™ x (0, 1]. Then
there exists a sequence {(z™,l,,)} C T such that ||(«™,1,;,)|| = oo as m — oo and
inf,, l,,, > 0. Further, from {l,,} C (0, 1], it follows that

(2.7) || — oo

as m — oo.

Suppose that the sequence s(x™,l,,) is bounded. Since, for each x € K, y —
F(z,y) is triple continuously differentiable, it follows that {T'(s(z™, l,,))} is bounded
too. By (SHE), we have

(L= In)[T(s(@™,lm)) + 2™ — s(z™, )] + I (2™ — xo) =0,
ie.,
(2.8) 2™ = (I, — D[T(s(x™, 1)) — s(z™, )] + L.
This yields that the sequence {z™} is bounded, which contradicts (2.7). Conse-
quently, the sequence s(z™, l,,) is unbounded. This together with Assumption 2.3 (1)
shows that {IIx (")} is unbounded. Without loss of generality, let ||TIx (z"™)| — oo
as m — oo. Then ||s(z™,1,,)|| = oo as m — oo. This implies that there exists a

positive integer number M such that, for any m > My, s(z™,l,,) € K \ By. So,
there exists z € By such that

(2.9) (T(s(z™, 1)), s(z™, 1) — z) > 0.
By the properties of the metric projection operator Ilx, we have
(2.10) (™ =g (z™),z — g (2™)) <0.

Now, we assert that [,, < 1 for sufficiently large m. If not and let [,,, = 1 in (2.8),
then we derive that ™ = 2%, which contradicts (2.7). Then there exists a positive
integer number M such that 1 —1[,, > 0. It follows from (2.8) that

L — 2 4 (1 — L) (2™, L)
1—-1n ’
Set M = max{My, M;}. For any m > M, one has
(1= lm) (T(s(x™, 1)), s(z™, lm) — 2)
= (Ima® — 2™ + (1 = Lp)s(z™, Im), (2™, Ly,) — 2)
= (I (2® = 2™) + (1 = L) (8(2™, 1) — 2™), 8(2™, Ly,) — 2)
= Iy (2° — T (™), 5(2™, L) — T (&™)
+ i (20 = Tk (a™), Mg (™) = 2)
+ (O (z™) — 2™, s(z™, lp) — i (™)) + g (z™) — 2™ g (2™) — 2)
+ (L =ln) - [(s(@™, lm) — g (2™), s(2™, ln) — Ik (z™))
+ (s(z"™, lm) — g (™), g (2™) — 2)]
< el la” = Tk (2™ + ln (27 = g (2™), Tk (2™) = 2) + 7
+ (1 = 1) [*12, + el | T (™) — 2|)].

(2.11) T(s(a™, 1)) =
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Then we have
(1= 1) (T(s(x™, 1)), s(x™, ) — 2)

ik TEDIE
B S RS AT RS AL REDEE)
T om0 [Tk (z™) 12
Ly (2 — Hg (™), g (z™) — 2)
[T (z™) 12 }
= — lim [,
m—0o0
- —niln>f1 b
<0.

Hence there exists a positive integer number M with M > M such that, for any
m > M,
(L= l) (T(s(2™, 1)), s(z"™ Im) — 2)
m)||2 < 0.
Mg ()]

Again, from 1 — [, > 0, one has
(T'(s(z™,lm)),s(z™,lym) —2) <0

for all m > M, which contradicts (2.9). Therefore, I' C R™ x (0, 1] is a bounded
curve. This completes the proof. U

We are now able to prove Theorem 2.8.

Proof. It follows from Lemmas 2.9 and 2.10 that, for almost all 20 € R”, 0 is a
regular value of H : R" x (0, 1] — R™*! and H~1(0) is a smooth curve I' C R™ x (0, 1]
starting from (2°,1). By the proof of Lemma 2.9, H.(z,1)|,-,0 = I. This together
with Lemma 2.6 yields that I" is homeomorphic to (0, 1]. The limit points of I" must
belong to R™ x [0,1]. Let (Z,l) be a limit point of I'. Again, from the proof of
Lemma 2.9, z° is the unique solution of the smooth equation H(z,1) = 0. Then

(z,1) € R™ x {0}. Therefore, (z,0) is the limit point of I" and so Z is a solution of
(RNE). By Lemma 2.2, [T (Z) is a solution of (EP). This completes the proof. [

Remark 2.11. (1) The global convergence of the homotopy path generated by
(SHE) is established under some quite mild assumptions and provides a unified
framework for the existing optimization problem, variational inequalities and com-
plimentarities by the homotopy method;

(2) The conditions of Theorem 2.8 are different from some known results in the
literature (see, for example, [17, 42, Theorem 1]). Since the condition “there exist
two nonempty bounded subsets By and B; of K such that, for each z € K \ By,
there exists z € By such that

<T(l’),3’} - Z> > 07
where T'(z) = F,(2,y)|y=." implies that the variational inequalities, which is to

find z* € K such that
(T(:U)?y - .1'> Z 0
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for all y € K, has no solution at infinity (see, for example, [42, Definition 1]) and
implies that Assumption 1 of [17] holds;

(3) The proof of Theorem 2.8 is different from that of Theorem 1 in [17]. Since
we found that “VIP(F,X) has a solution at infinity” can not be derived in the
proof of [42, Theorem 1] without the assumption “infy t; > 0”;

(4) Theorem 2.8 also can be applied to bilevel programming problem, bilevel
variational inequalities and bilevel equilibrium problem and so on (see, for example,

[1, 27]).
Now, we give some examples to illustrate Theorem 2.8.
Example 2.12. Let K = [-2,1] and F(z,y) = 2%(y — ) for all ,y € R. Then
T(x) = Fy(@,y)ly— = 2”

for all z € K and so there exist two nonempty bounded subsets By = {—2,0} and
By = {—2} such that, for each x € K \ Bj, there exists z = —2 € By such that

(T(z),z+2) =2%(x+2) > 0.
For almost all z° € R, the homotopy paths defined by (SHE) converge to {—6,0} x
{0}. Then ©® = {-2,0}.

The following example shows that the closedness of K in Theorem 2.8 is indis-
pensable:

Example 2.13. Let K = (1,2] and F(x,y) = 2%(y — z) for all 7,y € R. It is easy
to see that © = ().

Now, we denote the arc-length of the smooth homotopy path I" by £&. By Theorem
2.8, there exist continuously differentiable functions z(£) and [(€) such that

H(x(8),1(€)) = (1 = UO)T (s(x(€),U(&)) + x(8) — s(w(€), UEN] + UE (w(€) — )
and H(z(€),1(£)) = 0, where 2(0) = 2% and [(0) = [y = 1.

Corollary 2.14. The smooth homotopy path T is determined by the initial value
problem to the following ordinary differential equation:

THG©.1e)( ) =0
2(0) = 20,
10) = lo = 1.

Moreover, for the x component of the solution (x(€),1(£)) of (2) with € and 1(£) = 0,
IIx(z) is a solution of (EP).

Proof. The conclusion follows from Theorem 2.8. O
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