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THE NEW VARIATIONAL INCLUSION PROBLEMS FOR
FIXED POINT THEOREM

WONGVISARUT KHUANGSATUNG AND ATID KANGTUNYAKARN

ABSTRACT. For the purpose of this article, we modify the variational inclusion
problems and prove the strong convergence theorem for approximating a common
element of two sets of solutions of variational inclusion problems, variational
inequality problem and the set of fixed points of a nonexpansive mapping without
the conditions >77 | an = o0 and limp 00 an = 0 in a framework of Hilbert
space.

1. INTRODUCTION

Throughout this article, we assume that H is a real Hilbert space with inner
product (-,-) and norm || - ||. Let C' be a nonempty closed convex subset of H. Let
T : C — C be a nonlinear mapping. A point x € C is called a fized point of T if
Tx = x. The set of fixed points of T' is denoted by F(T) :=={z € C : Tx =z}. A
mapping 1" of C into itself is called nonexpansive if

A mapping A : C — H is called a-inverse strongly monotone if there exists a
positive real number « such that

(Az — Ay,z — y) > a || Az — Ay|,

for all z,y € C. A bounded linear operator A : C' — H is called strongly positive
with coefficient 7 if there exists a constant 4 > 0 with the property

(Az,z) > ]|,

for all 2 € C. Let B: H — H be a mapping and M : H — 2/ be a multi-valued
mapping. The variational inclusion problem is to find v € H such that

(1.1) 0 € Bu+ Mu,

where 6 is a zero vector in H. The set of the solution of (1.1) is denoted by
VI(H, B, M). Variational inclusion problem is widely studied in various problems
such as mathematical programming, complementarity problems, variational inequal-
ities, optimal control, mathematical economics and game theory, etc. Many authors
have increasingly investigated the problem (1.1); see for instance, [2], [4] and the
references therein.
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Let A: C — H. The variational inequality problem is to find a point u € C such
that

(1.2) (Au,v —u) >0,

for all v € C. The set of solutions of the variational inequality problem is denoted
by VI(C,A). The applications of the variational inequality problem have been
expanded to problems for economics, finance, optimization and game theory. Some
methods have been proposed to solve the variational inequality problem; see, for
example, [3], [10] and the references therein.

Let M : H — 2H be a multi-valued maximal monotone mapping, then the single-
valued mapping Jys x : H — H defined by

Jua(u) = (I +AM)~(u),Vu € H,

is called the resolvent operator associated with M, where A is a positive number
and I is a identity mapping, see [11].

In 2008, Zhang et al. [11] introduced the iterative scheme for finding a common
element of the set of solutions of the variational inclusion problem with a multivalued
maximal monotone mapping and inverse-strongly monotone mappings and the set
of fixed points of nonexpansive mappings in Hilbert space as follows:

Yn = JM,)\(xn - )\Al‘n)a
Tnt1 = an® + (1 — ) Syn, Vn > 0,

and proved strong convergence theorem of the sequence {x,} under suitable condi-
tions of parameter {«,} and .

It is well-known that the Banach’s contraction mapping principle is the basis
theorem of fixed point theory. This theorem guarantees the existence and uniqueness
of fixed points. One classical way to investigate nonexpansive mappings is to use
contractions to approximate a nonexpansive mapping. For t € (0,1), defined a
contraction T3 : C' — C' by

Tix=tu+ (1 —t)Tx,z € C,

where v € C. Banach’s contraction mapping principle guarantees that 7T; has a
unique fixed point z; in C, see [1] and [8].

Recently, Kangtunyakarn [5] proved a strong convergence theorem of the sequence
{zy} for finding a common element of the set of fixed point of a nonexpansive map-
ping and the set of solution of variational inequality problem without assumption
on the set of fixed points of a nonexpansive mapping and the set of variational
inequality. He defined the sequence {z,} as follows:

Tpy1 = Txy + (1 —a)Po(l — pA)z,,YVn=0,1,2,...,

where T : C — C is a nonexpansive mapping, A : C — H is a strongly positive
linear bounded operator with coefficient 4 > 0 and positive real numbers «, p.

Let A,B : H — H be mappings and M : H — 29 be a multi-valued mapping.
Motivated by (1.1), we introduce the new problem for finding a point v € H such
that

(1.3) 0 € aAu+ (1 — a)Bu+ Mu,Va € [0,1],
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where 6 is a zero vector. The set of solutions of (1.3) is denoted by VI(H,aA +
(1—-a)B,M). If A= B, then (1.3) reduces to (1.1).

From motivated by Zhang et al.[11], Kangtunyakarn [5], the concept of Banach’s
contraction mapping principle and (1.3), we prove a strong convergence theorem for
approximating a common element of two sets of solutions of (1.1) and the set of solu-
tions of variational inequality problem and the set of fixed points of a nonexpansive
mapping without the conditions 220:1 oy = 00 and limy, oo oy = 0.

2. PRELIMINARIES

Let H be a real Hilbert space and C' be a nonempty closed convex subset of H.
We denote weak and strong convergence by notations ' —" and ' —", respectively.
In a real Hilbert space H, it is well known that

laz + (1 = a)y[* = aJl|* + (1 — @) lyl|* — a(l = a) [lz =y,

for all z,y € H and « € [0, 1].
Let Pc be the metric projection of H onto C i.e., for x € H, Pox satisfies the
property
x — Peox|| = min ||z — y||.
lz = Pex| = min [l — y|

Lemma 2.1 ([7]). Let A be a strongly positive linear bounded operator on a Hilbert
space H with coefficient ¥ > 0 and 0 < p < ||A||7L. Then ||I — pA|| < 1 — p7.

Lemma 2.2 ([9]). Let H be a Hilbert space, let C' be a nonempty closed convex
subset of H and let A be a mapping of C into H. Let u € C. Then, for A > 0,

u=Po(I - A)u<sueVIC, A),
where Po s the metric projection of H onto C.

Lemma 2.3 ([11]). Let u € H is a solution of variational inclusion (1.1) if and
only if w = Jyx(u — ABu), YA > 0, i.e.,

VI(H, B, M) = F(Jy(I — AB)),VA > 0.
Further, if A € (0,2«]|, then VI(H, B, M) is closed convex subset in H.

Lemma 2.4 ([11]). The resolvent operator Jys x associated with M is single-valued,
nonezxpansive for all A > 0 and 1-inverse strongly monotone.

Lemma 2.5. Let C' be a nonempty closed convexr subset of a real Hilbert space H.
Let M : H — 2% be a multi-valued mazximal monotone mapping and A, B : C — H
be o and B-inverse strongly monotone mapping, respectively, with F'(Jpy (I —XA))N

F(IaaI = MaA + (1= a)B))) = F(Jaa(I — M) 0 F(Jya(I - AB)),

for alla € (0,1) and 0 < X < 2n where n = min{«, B}. Moreover, Jpyx(I — N aA+
(1 —a)B)) is a nonexpansive mapping.

Proof. It is easy to see that F(Jya( — AA)) N F(Jux(I — AB)) € F(Jua(I —
AMaA + (1 —a)B))).
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Let zg € F(Jua(I—=AaA+(1—a)B))) and z* € F(Jy x(I=AA)NF(Jyr(I—-AB)).
From Lemma 2.3, we have
(2.1) xo € VI(H,aA+ (1 —a)B,M).
Since F'(Jya(I — XA)) N EF(Jya(I —AB)) C F(Jua(I — AMaA+ (1 —a)B))), we
have
z* € F(Jy (I — XaA+ (1 —a)B))).
From Lemma 2.3, we have
(2.2) z* e VI(H,aA+ (1 —a)B,M).
From the nonexpansiveness of Jys \, we have
lz* = zo[|* = [ Jaga(I = MaA + (1 = a)B))a* = Japa(I = AaA + (1 — a) B))ao |
<|I(I=XNaA+(1—-a)B))z" — (I — NaA+ (1 - a)B))wou2
=||z* — zo||* — 2 a(z* — o, Az — Axg)
(2.3) —2X(1 —a){z™ — x9, Bx* — Bxy)
+ A [la(Az* — Axo) + (1 — a)(Bz* — Baxy)|?
<lz* = wol® = Aa(2a = A)|| Az* — Aw|?
— A1 —a)(28 = \)||Bz* — Baxol*.

This implies that
Aa(20 — N)||Az* — Azol]* < 0.

Then

(2.4) Azx® = Axyg.

Using the same method as (2.4), we have

(2.5) Bzx* = Buxy.

From (2.1), we have

(2.6) 0 € Mzo+ (aA+ (1 —a)B)xo.
From (2.2), we have

(2.7) 0 € Mz" + (aA+ (1 —a)B)z".

From (2.6) and (2.7), we have
0 € Mxzo+ aAxo+ (1 —a)Brg — Mz* — aAx™ — (1 — a)Bx™.
From (2.4) and (2.5), we have

(2.8) € Mxog— Mz*.
Since z* € F(Jy (I — AA)) and Lemma 2.3, we have
(2.9) ¥ e VI(H,A,M)

From (2.4), (2.8) and (2.9), we have
0ec Mxog— Mzx* + Mx* + Az*
(210) = Mzq + Axg.
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It implies that xy € VI(H, A, M). Using the same method as (2.10), we have
xg € VI(H,B,M). Then

xo € VI(H,A,M)NVI(H,B,M).

From Lemma 2.3, we have

zo € F(Jya(I — AA) N F(Jya(I — AB)).
Then

F(Jux(I—=XaA+ (1—a)B))) C F(Jurx(I —XA))NF(Jux(I — AB)).
Applying (2.3), we have Jyr (I — A(aA + (1 — a)B)) is a nonexpansive mapping.
O
Remark 2.6. From Lemma 2.3 and 2.5, we can conclude that
VI(H,aA+ (1 —a)B,M)=VIH,A M)NVI(H,B,M),
for all a € (0,1). From Lemma 2.3, we have
F(Jux(I—=XNaA+ (1—a)B)))=VIH,A M)NVIH,B,M).

3. MAIN RESULT

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let M : H — 2" be a multi-valued mazimal monotone mapping and A, B : C — H
be a and B-inverse strongly monotone mapping, respectively, and let D : C' — H be a
strongly positive bounded linear operator with coefficient ¥ > 0. LetT : C — C be a
nonezpansive mapping with F := F(T)NVI(H,A,M) N"VI(H,B,M)NVI(C, D) #
(. Suppose that the sequence {x,} is generated by x1 € C and
51) { yn = Japn( — AaA + (1 - a)B))an,

Tnt1 = anPo(I — pD)yy, + (1 — o) Ty, Vn > 1,
where a € (0,1), {an} C [e,d] C[0,1], foralln € N, 0 < p < ||D|7! and 0 < X < 27
with n = min{«, f}. Then the sequence {x,} converges strongly to * € F.

Proof. Let x,y € C'. From Lemma 2.1, we have
(I = pD)x — (I — pD)yl| =[|(I — pD)(x — y)||
(3.2) <(1 - p9)llz -yl
Let x* € F. From the definition of y,,, Lemma 2.5 and Remark 2.6, we have
g — 2*[| = Tara(I = A@A + (1 — @) B))zn — o
(3.3) <[lan — =]
From the definition of z,, (3.2) and (3.3), we have
[Zn41 — 2| =[lan(Pe(I — pD)yn — %) + (1 — an) (T — 27)||

<on|Po(I = pD)yn — ™| + (1 — an) | Ty — 27|
<an (I = pD)yn — (I — pD)a™|| + (1 — o)z — 27|
<an(1=pY)llyn — 2" + (1 — o) lzn — 27|
<an(l = py)llan — 2% + (1 — an)l|an — 27|
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<1 = pyam)|lzn — 27|
<(1 = pyo)llen — 27|
=pllzn — 7|
<p(Pllzn—1 —2"[])

=p°||zn-1 — 27|

(3-4) <p"|lwy — 2™,

where p = (1 — pyc) € (0,1).
Since p™ — 0 as n — oo and (3.4), we can conclude that the sequence {z,} converges
strongly to z* € F. O

4. APPLICATION

To prove a strong convergence theorem in this section, we need the definition and
lemma as follows:

Definition 4.1 ([6]). Let C' be a nonempty convex subset of a real Banach space
X. Let {T;})_, be a finite family of nonexpansive mappings of C into itself and
let A1, Ag,..., Ax be real numbers such that 0 < \; < 1 for every ¢ = 1,2,..., N.
Define a mapping K : C' — C as follows:

Uy =M1y + (1 — /\1)[,
Uy = Mo ThU; + (1 — M) Ui,
Us = A\3T3U5 + (1 — /\3)U2,

Unv-1=AN 1INy 1Un—2+ (1 = An_1)Un_2,
K=Uny = ANTNUn_1+ (1 — )\N)UN—l-
Such a mapping is called the K-mapping generated by 11,15, ..., Ty and A1, Ag,... AN.

Lemma 4.2 (See [6]). Let C be a nonempty closed convex subset of a strictly convex
Banach space. Let {Tz}f\il be a finite family of nonexpansive mappings of C into
itself with ﬂf\i1 F(T;) # 0 and let M, ..., \n be real numbers such that 0 < \; < 1
foreveryi=1,...,N —1 and 0 < Ay < 1. Let K be the K-mapping generated by
Tl,TQ, NN ,TN and )\1,)\2, e )\N. Then F(K) = ﬂi\il F(TZ)

Remark 4.3. From the definition of K, it is obvious that K is a nonexpansive
mapping.

Theorem 4.4. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let M : H — 2% be a multi-valued mazimal monotone mapping and A, B : C — H
be a and B-inverse strongly monotone mapping, respectively, and let D : C — H
be a strongly positive bounded linear operator with coefficient ¥ > 0. Let {Tz}f\il
be a finite family of nonexpansive mappings of C into itself and let \1,...,An be
real numbers such that 0 < \; < 1 for everyi =1,..., N —1 and 0 < Ay < 1.
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Let K be the K-mapping generated by T1,To,...,Tn and A, Ao, ... Ay. Assume
F =Y, F(T) nVIH,A M) NVI(H,B,M) N"VI(C,D) # 0. Suppose that the
sequence {xy} is generated by x1 € C' and

(41) Yn = Jur(I — ANaA+ (1 —a)B))x,,
' Tni1 = anPo(I — pD)y, + (1 — ap) Kz, V0 > 1,

where a € (0,1), {an} C [e,d] € [0,1] foralln € N, 0 < p < ||D||7! and 0 < X < 27

with n = min{«, 8}. Then the sequence {x,} converges strongly to x* € F.

Proof. From Theorem 3.1 and Lemma 4.2, we obtain the desired conclusion O
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