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The SFP has been proved very useful in dealing with a variety of signal processing
and image recovery [4, 7]. An efficient method that solves the SFP is due to Byrne’s
CQ algorithm [1]:

xk+1 = PC(xk − ϱA⊤(I − PQ)Axk),(1.4)

where the stepsize ϱ is a fixed real number in (0, 2∥A∥−2). Compared with the
original algorithm in [5], the CQ algorithm (1.4) is more easily performed because
it dose not involve matrix inverses. However, to implement the CQ algorithm, one
has to compute or estimate the value of ∥A∥, which is not always possible in practice.
To overcome this drawback, many authors have conducted worthwhile research on
the CQ algorithm so that the choice of the step does not depend on the matrix
morms (see for instance [7, 11, 13, 10, 14, 15, 16]).

A similar question of Byrne and Moudafi’s method also arises: Does there exist
a way to select the step in algorithm (1.2) that dose not depend on the matrixes
norms? It is the purpose of this paper to answer the above question affirmatively.
By using the idea in the variable-step CQ algorithm, we construct a new method in a
way that the implementation of algorithm (1.2) does not need any prior information
of matrix norms. Under some mild conditions, we establish the convergence of the
proposed algorithm.

2. The algorithms

In this section we will introduce our iterative scheme to solve the SEP. Choose
an arbitrary initial guess x1, calculate:[

xk+1 = PC(xk − ϱkA
⊤(Axk −Byk))

yk+1 = PQ(xk − ϱkB
⊤(Byk −Axk)),

(2.1)

where ϱk is a sequence of positive real numbers such that
∞∑
k=0

ϱk = ∞,

∞∑
k=0

ϱ2k < ∞.(2.2)

It is clear our choice of the step does not need any information on the matrix norms
of A and B.

The following lemmas play an important role in our subsequent convergence anal-
ysis.

Lemma 2.1 ([9]). Let (ϵk) and (sk) be positive real sequences. Assume that
∑

k ϵk <
∞. If either (i) sk+1 ≤ (1+ϵk)sk, or (ii) sk+1 ≤ sk+ϵk, then the limit of (sk) exists.

Let C be a nonempty closed convex subset of Rn. Denote by PC the projection
from Rn onto C; that is,

PCx = argmin
y∈C

∥x− y∥, x ∈ Rn.

The projection operator has the following properties (see [6]).

Lemma 2.2. Let PC be the projection operator onto C. Then for any x, y ∈ Rn,

(i) PC is nonexpansive, i.e.,

∥PCx− PCy∥ ≤ ∥x− y∥,
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(ii) PC is firmly nonexpansive, i.e.,

∥PCx− PCy∥2 ≤ ⟨x− y, PCx− PCy⟩,
(iii) I − PC is firmly nonexpansive.

Denote by S the solution set of the SEP, namely

S = {(x, y) : x ∈ C, y ∈ Q,Ax = By}.
For x ∈ Rn, y ∈ Rm, let z = (x, y) be an element in the product space Rn × Rm

with the norm
∥z∥ =

√
∥x∥2 + ∥y∥2.

3. convergence analysis

Let us now establish the convergence analysis of the proposed algorithm.

Theorem 3.1. If the SEP is consistent, namely S ̸= ∅, then the sequence zn =
(xn, yn) generated by (2.1) converges to an element in S.

Proof. Let δ = max(∥A∥2, ∥B∥2). Taking z∗ = (x∗, y∗) ∈ S, we have that

∥xk+1 − z∥2 = ∥PC(xk − ϱkA
⊤(Axk −Byk))− x∗∥2

≤ ∥(xk − x∗)− ϱkA
⊤(Axk −Byk)∥2

= ∥xk − x∗∥2 − 2ϱk⟨A(xk − x∗), Axk −Byk⟩

+ ϱ2k∥A⊤(Axk −Byk)∥2

≤ ∥xk − x∗∥2 − 2ϱk⟨A(xk − x∗), Axk −Byk⟩
+ ϱ2kδ∥Axk −Byk∥2,

and also that

∥yk+1 − y∗∥2 = ∥PQ(yk + ϱkB
⊤(Axk −Byk))− y∗∥2

≤ ∥(yk − y∗) + ϱkB
⊤(Axk −Byk)∥2

= ∥yk − y∗∥2 + 2ϱk⟨B(yk − y∗), Axk −Byk⟩

+ ϱ2k∥B⊤(Axk −Byk)∥2

≤ ∥yk − y∗∥2 + 2ϱk⟨B(yk − y∗), Axk −Byk⟩
+ ϱ2kδ∥Axk −Byk∥2.

Since Ax∗ = By∗, adding up the last two inequalities yields

∥zk+1 − z∗∥2 ≤ ∥zk − z∗∥2 − 2ϱkδ∥Axk −Byk∥2

+ 2ϱ2kδ∥Axk −Byk∥2.
(3.1)

On the other hand, it follows that

∥Axk −Byk∥2 = ∥A(xk − x∗) +B(y∗ − yk)∥2

≤ (∥A∥∥xk − x∗∥+ ∥B∥∥y∗ − yk∥)2

≤ 2δ(∥xk − x∗∥2 + ∥y∗ − yk∥2)
= 2δ∥zk − z∗∥2.
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Substituting this into (3.1), we have

∥zk+1 − z∗∥2 ≤ (1 + σk)∥zk − z∗∥2 − 2δϱk∥Axk −Byk∥2(3.2)

where σk = 4δ2ϱ2k. It is readily seen that
∑

σk < ∞ due to (2.2). By Lemma
2.1, we conclude that the sequence (∥zk − z∗∥) is convergent; in particular, (zk) is
bounded.

We next prove that limk ∥Axk −Byk∥ = 0. Take M > 0 so that

∥zk − z∥ ≤ M, ∀ k ∈ N.

From (3.2), it follows that

2δϱk∥Axk −Byk∥2 ≤ ∥zk − z∥2 − ∥zk+1 − z∥2 + σk∥zk − z∗∥2

≤ ∥zk − z∥2 − ∥zk+1 − z∥2 +M2σk,

which immediately implies that

2δ

k∑
j=1

ϱj∥Axj −Byj∥2 ≤ ∥z1 − z∗∥2 +M2
k∑

j=1

σ2
j .

Taking the limit by letting k → ∞ in the last relation yields
∞∑
k=1

ϱk∥Axk −Byk∥2 < ∞.(3.3)

This together with the assumption
∑

k ϱk = ∞ particularly implies that

lim inf
k→∞

∥Axk −Byk∥ = 0.

To prove limk ∥Axk − Byk∥ = 0, it suffices to verify the existence of the
limk ∥Axk −Byk∥. Actually, we have that

∥A(xk+1 − xk)∥ ≤ ∥A∥∥PC(xk − ϱkA
⊤(Axk −Byk))− xk∥

≤ ∥A∥∥ϱkA⊤(Axk −Byk)∥
≤ δϱk∥Axk −Byk∥,

and also that

∥B(yk+1 − yk)∥ ≤ ∥B∥∥PQ(yk + ϱkB
⊤(Axk −Byk))− yk∥

≤ ∥B∥∥ϱkB⊤(Axk −Byk)∥
≤ δϱk∥Axk −Byk∥.

Let ak = Axk −Byk. By the last two inequalities, we have

∥ak+1 − ak∥ = ∥(Axk+1 −Byk+1)− (Axk −Byk)∥
≤ ∥A(xk − xk+1)∥+ ∥B(yk+1 − yk)∥
≤ 2δϱk∥Axk −Byk∥
= 2δϱk∥ak∥.

Hence, we have

∥ak+1∥2 = ∥ak∥2 + 2⟨ak, ak+1 − ak⟩+ ∥ak+1 − ak∥2
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≤ ∥ak∥2 + 2∥ak∥∥ak+1 − ak∥+ ∥ak+1 − ak∥2

≤ ∥ak∥2 + 4δϱk∥ak∥2 + 4δ2ϱ2k∥ak∥2

≤ ∥ak∥2 + 4δϱk∥ak∥2 + 8δ3M2ϱ2k,

where the last inequality follows from the following estimates:

∥ak∥ = ∥Axk −Ax∗ +By∗ −Byk∥

≤
√
δ(∥xk − x∗∥+ ∥yk − y∗∥)

≤
√
2δ(∥xk − x∗∥2 + ∥yk − y∗∥2)1/2

=
√
2δ∥zk − z∗∥ ≤

√
2δM.

Setting ηk = 4δϱk∥ak∥2 + 8δ3M2ϱ2k, we have

∥ak+1∥2 ≤ ∥ak∥2 + ηk.(3.4)

It is clear that
∑

k ηk < ∞ due to (3.3) and (2.2). We can therefore apply Lemma 2.1
to (3.4) to get the existence of the limk ∥Axk −Byk∥. Hence limk ∥Axk −Byk∥ = 0.

Finally, we show that every cluster point of (zk) is in the set S. Suppose that a
subsequence (zkj ) = (xkj , ykj ) of (zk) converges to a point ẑ = (x̂, ŷ). It is readily
seen that x̂ ∈ C, ŷ ∈ Q. Consequently

∥Ax̂−Bŷ∥ = lim
j→∞

∥Axkj −Bykj∥

= lim
k→∞

∥Axk −Byk∥ = 0,

that is, ẑ = (x̂, ŷ) ∈ S. Note that lim ∥zk − z∥ exists for all z ∈ S. In particular, we
have that lim ∥zk − ẑ∥ exists. Since, however, the subsequence (zkj ) converges to ẑ,
we must have lim ∥zk − x̂∥ = 0. Therefore zk → ẑ ∈ S, or equivalently xk → x̂ and
yk → ŷ. �
Remark 3.2. The above result can be easily extended to the infinite dimensional
Hilbert spaces. The only difference is that one can establish the weak convergence
of the proposed algorithm to a solution of the SEP.
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