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But in the case of an infinite dimensional complex Hilbert space, the situation
changes radically, that is, the Denjoy-Wolff theorem no longer holds. More precisely,
in a complex infinite dimensional Hilbert space H, this convergence result fails
even for biholomorphic self-mappings of the Hilbert ball BH ([56]; see also [19]).
Stachura’s example shows that in order to obtain a generalization of the Denjoy-
Wolff theorem, we not only need additional properties of the boundary of the domain
D, but we also have to impose some restrictions on the holomorphic self-mapping
F : D → D itself. Therefore the following notions were introduced in [39] and [51,
page 224]. Let BH be the open unit ball in an infinite dimensional complex Hilbert
space H. We say that a self-mapping F of BH has the Denjoy-Wolff iteration
property (DWIP) if F has no fixed point in BH and for each x ∈ BH , the sequence
of iterates {Fn(x)} strongly converges to a unique point ξ on the boundary ∂BH

of BH . We will also say that a class G of self-mappings of BH has the Denjoy-
Wolff iteration property if whenever F ∈ G has no fixed point in BH , then for each
x ∈ BH , the sequence of iterates {Fn(x)} strongly converges to a unique point
ξ on the boundary ∂BH of BH . Next, a self-mapping F of BH has the compact
Denjoy-Wolff iteration property (cDWIP) if F has no fixed point in BH and the
sequence of iterates {Fn} converges in the compact-open topology to a unique point
ξ on the boundary ∂BH of BH . A class G of self-mappings of BH has the compact-
open Denjoy-Wolff iteration property if each F ∈ G has the cDWIP. Finally, if a
self-mapping F of BH has no fixed point in BH and the sequence of iterates {Fn}
converges uniformly on each closed ball B(0, r) ⊂ BH , 0 < r < 1, to a unique
point ξ on the boundary ∂BH of BH , then we say that F has the strong Denjoy-
Wolff iteration property (sDWIP). A class G of self-mappings of BH has the strong
Denjoy-Wolff iteration property if each F ∈ G has the sDWIP.

The following classes of self-mappings of BH are known to have the Denjoy-Wolff
iteration property:

1) ( [30]; see also [7–9], [14, 29, 34] and [38]) the class G1 consisting of mappings
which are condensing with respect to the Kuratowski measure of noncompactness
( [43]; see also [4, 44] and [5]);

2) ( [21,22,48] and [49]) the class G2 of firmly kBH
-nonexpansive mappings of the

first kind;
3) ( [21,22,48] and [49]) the class G3 of firmly kBH

-nonexpansive mappings of the
second kind;

4) ( [47]) the class G4 consisting of the averaged mappings of the first kind, that
is, F = (1− c)I ⊕ cT, where T is kBH

-nonexpansive and c ∈ (0, 1) (see Theorem 2.2
below for the definition of the operation ⊕);

5) ( [47]) the class G5 consisting of the averaged mappings of the second kind,
that is, F = (1 − c)I + cT , where T is kBH

-nonexpansive and c ∈ (0, 1);

6) ([25,37] and [41]) the class G6 consisting of mappings F of BH onto BH which
are kBH

-isometries in BH , have exactly two fixed points in BH and these fixed
points lie on the boundary ∂BH .

In this paper we first present new conditions which are equivalent to the Denjoy-
Wolff iteration property in the Hilbert ball BH and then use them to find new
classes of mappings with this property (see Section 3 below).
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2. Preliminaries

We use the following concepts and notations. Let D1 and D2 be domains in
the complex Banach spaces X1 and X2, respectively. The set of all holomorphic
mappings from D1 into D2 is denoted by H(D1, D2). A mapping f ∈ H(D1, D2) is
said to be biholomorphic if f(D1) = D2, f is one-to one, and f−1 ∈ H(D2, D1). If
such a mapping exists, then we say that D1 is biholomorphically equivalent to D2.

The Kobayashi distance ([31, 32] and [33]; see also [2, 21, 26] and [27]) plays an
important role in the fixed point theory of holomorphic mappings. So first we recall
its definition and a few of its important properties, which will be used in the proof
of our theorems.

Let ∆ be the open unit disc in the complex plane C. The Poincaré distance
k∆ = ω on ∆ is given by

k∆ (z, w) = ω (z, w) := arg tanh

∣∣∣∣ z − w

1 − zw

∣∣∣∣
= arg tanh (1 − σ (z, w))

1
2 ,

where

σ (z, w) :=

(
1 − |z|2

)(
1 − |w|2

)
|1 − zw|2

, z, w ∈ ∆

([22,23] and [51]).
Next, we recall the Lempert function.

Definition 2.1 ([45]). The Lempert δ : D → [0,∞) is defined by the following
formula:

δD (x, y) := inf {ω (0, λ) : λ ∈ [0, 1) and there exists f ∈ H(∆, D)

so that f (0) = x and f (λ) = y} ,
where x, y ∈ D.

Definition 2.2 ([31, 32] and [33]). Let D be a domain in a Banach space X. The
Kobayashi pseudodistance kD in D is defined by

kD(x, y) := inf
{∑n

j=1
δD (xj , xj+1) : n ∈ N, {x = x1, ..., xn+1 = y} ⊂ D

}
.

Now we recall connections between holomorphic mappings and the Kobayashi
pseudodistances. Namely, if D1 and D2 are domains in the complex Banach spaces
X1 and X2, respectively, then each holomorphic mapping f : D1 → D2 is nonex-
pansive, that is,

kD2(f(x), f(y)) ≤ kD1(x, y)

for all x, y ∈ D1 ([31,32] and [33]; see also [22,24,38] and [51]).
Observe that if D1 is biholomorphically equivalent to D2 by the biholomorphic

function f : D1 → D2, then

kD2(f(x), f(y)) = kD1(x, y)

for all x, y ∈ D1.
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Next, if D is a domain in a complex Banach space X and a mapping f : D → D
satisfies

kD(f(x), f(y)) ≤ kD(x, y)

for all x, y ∈ D, then f is called kD-nonexpansive ([20]). Directly from this defini-
tion we get that if D1 is biholomorphically equivalent to D2, by the biholomorphic
mapping f : D1 → D2, then a mapping g : D1 → D1 is kD1-nonexpansive if and
only if the mapping h := f ◦ g ◦ f−1 : D2 → D2 is kD2-nonexpansive.

If the Kobayashi pseudodistance kD is a metric in the topological sense, then it is
called the Kobayashi distance. For example, if D is a bounded and convex domain,
then kD is the Kobayashi distance which coincides with the Lempert function δD
([17] and [45]).

In general, there are no explicit formulae for the Kobayashi pseudodistance kD of
domains D. However, in the case of the Hilbert ball BH , we do have the following
explicit formula for the Kobayashi distance kBH

. Namely,

kBH
(x, y) = arg tanh (1 − σ (x, y))

1
2 ,

where x, y ∈ BH and

σ (x, y) =

(
1 − ∥x∥2

)(
1 − ∥y∥2

)
|1 − (x, y)|2

,

where (·, ·) is the inner product in the Hilbert space H ( [22] and [23]).
Observe that if ∆ is the open unit disc in the complex plane C, then the Kobayashi

distance k∆ is simply the Poincaré distance on ∆.
Now we recall the following very important property of the Kobayashi distance

kBH
.

Lemma 2.3 ([22] and [24]). The Kobayashi distance kBH
is locally equivalent to

the norm ∥·∥ in the Hilbert space H, that is, the following inequalities are valid:

(i)

arg tanh

(
∥x− y∥

2

)
≤ kBH

(x, y)

for all x, y ∈ BH ;
(ii)

kBH
(x, y) ≤ arg tanh

(
∥x− y∥

dist∥·∥(x, ∂BH)

)
whenever ∥x− y∥ < dist∥·∥ (x, ∂BH) , where

dist∥·∥ (x, ∂BH) := inf{∥x− y∥ : y ∈ ∂BH}.

Next, we present further properties of the distance kBH
.

Theorem 2.4. The metric space (BH , kBH
) has the following properties:

(i) ([23] and [22]) For each pair of distinct points x, y ∈ BH , there exist a unique
geodesic line passing through them and a unique geodesic segment [x, y] joining them.
For each 0 ≤ t ≤ 1, there is a unique point z = (1 − t)x⊕ ty satisfying kBH

(x, z) =
tkBH

(x, y) and kBH
(z, y) = (1 − t) kBH

(x, y).
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(ii) ([22]) If x, y, w and z are in BH and 0 ≤ t ≤ 1, then

kBH
((1 − t)x⊕ tw, (1 − t)x⊕ tz) ≤ tkBH

(w, z)

and

kBH
((1 − t)x⊕ tw, (1 − t) y ⊕ tz) ≤ (1 − t) kBH

(x, y) + tkBH
(w, z).

Strict inequalities occur if 0 < t < 1 and the relevant points do not lie on the same
geodesic.

(iii) ( [23] and [22]) The metric space (BH , kBH
) has the Opial property with

respect to the weak topology in H ([46]), that is, if a kBH
-bounded sequence {xn} in

BH tends weakly to x ∈ BH , then

lim sup
n

kBH
(xn, x) < lim sup

n
kBH

(xn, y)

for each y ∈ BH \ {x}.
(iv) ( [28] and [36]) Let {xn} and {yn} be two sequences in BH and let {xn}

converge strongly to ξ ∈ ∂BH . If

sup {kD (xn, yn) : n ∈ N} = c < ∞,

then {yn} is also strongly convergent to ξ.

Before reviewing a few results from the fixed point theory of holomorphic self-
mappings of BH (or, more generally, kBH

-nonexpansive self-mappings of BH), we
recall the following notion. A mapping T : BH → BH is said to map BH strictly
inside BH if supx∈BH

∥T (x)∥ < 1. Now we are ready to present the Earle-Hamilton
theorem for BH .

Theorem 2.5 ([18] (see also [52] and [53])). If a holomorphic T : BH → BH maps
BH strictly inside itself, then there exists a number 0 ≤ s < 1 such that

kBH
(T (x), T (y)) ≤ skBH

(x, y)

for all x, y ∈ BH , and therefore T has a unique fixed point. Moreover, for each
x ∈ BH , the sequence of its iterates {Tn(x)} converges to this point.

Using Theorems 2.4 and 2.5 and the explicit formula for the Kobayashi distance
kBH

, we get the following fixed point theorem for the Hilbert ball.

Theorem 2.6 ( [22,23,40] and [35]). Let T : BH → BH be a holomorphic mapping
or, more generally, a kBH

-nonexpansive mapping. Then the following statements
are equivalent:

(i) T has a fixed point.
(ii) For each point x ∈ BH , the sequence of its iterates {Tn (x)} lies strictly

inside BH (this means that {Tn (x)} is kBH
-bounded).

(iii) There exists a ball B (x, r) in (BH , kBH
) which is T -invariant.

(iv) There exists a nonempty, kBH
-bounded, kBH

-closed and kBH
-convex subset

of BH which is T -invariant.
(v) There exists a nonempty, kBH

-bounded, kBH
-closed and convex subset of BH

which is T -invariant.
(vi) There exists a kBH

-bounded sequence {xn} in BH with xn − T (xn) → 0.
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When we study the behavior of iterates of kBH
-nonexpansive mappings, then the

following theorem is very useful.

Theorem 2.7 ( [23] and [22]; see also [1,2,50,51] and [60]). If a kBH
-nonexpansive

mapping T : BH → BH is fixed point free, then there exists a unique point ξT of
norm one such that all the “ellipsoids”

E (ξT , R) :=

{
x ∈ BH :

|1 − (x, ξT )|2

1 − ∥x∥2
< R

}
, R > 0,

are invariant under T , E (ξT , R) ∩ ∂BH = {ξT } and for every x ∈ BH , there exists
R > 0 such that x ∈ E (ξT , R). Moreover, all the approximating curves defined by

wa (t) := (1 − t) a⊕ tT (wa (t))

and

za (t) := (1 − t) a + tT (za (t)) ,

where t ∈ [0, 1) and a ∈ BH , converge strongly to ξT as t → 1−.

Directly from Theorems 2.4–2.7 and the explicit formula for kBH
we get the

following corollary.

Corollary 2.8 ([47]). Let BH be the Hilbert ball and let T : BH → BH be kBH
-

nonexpansive. If T is fixed point free and limn ∥Tn(x̃)∥ = 1 for some x̃ ∈ BH , then
T has the DWIP.

At this point we need the notions of total boundedness and finite total bound-
edness of a metric space. Recall that a metric space is said to be totally bounded
if for each ε > 0, it can be decomposed into a finite number of sets of diameter
< ε ([43]; see also [44]). We also say that a metric space is finitely totally bounded
if each nonempty and bounded subset of X is totally bounded. Now we are able
to recall Ca lka’s theorem regarding the behavior of the sequence of iterates of a
nonexpansive mapping on a finitely totally bounded metric space X.

Theorem 2.9 ( [12]). Let f be a nonexpansive mapping of a finitely totally bounded
metric space X into itself. If for some x0 ∈ X, the sequence {fn (x0)} contains a
bounded subsequence, then for each x ∈ X, the sequence {fn (x)} is bounded.

.

3. Main result

In this section we present the main result of our paper and some of its applications.
First we observe the following fact.

Theorem 3.1. Let BH be the Hilbert ball and let T : BH → BH be kBH
-nonexpansive.

Then the following statements are equivalent:

1) T has the DWIP.
2) T has the cDWIP.
3) T has the sDWIP.
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Proof. The implications 3) ⇒ 2) and 2) ⇒ 1) are obvious. To get the implication
1) ⇒ 3), it is sufficient to apply Theorem 2.4 (iv) and the inequality

kBH
(Tn(x), Tn(y)) ≤ kBH

(x, y),

which is valid for all n ∈ N and all x, y ∈ BH . �

Now we are ready to state and prove the main theorem of our paper.

Theorem 3.2. Let BH be the Hilbert ball and let T : BH → BH be kBH
-nonexpansive.

The following statements are equivalent:

1) T has the DWIP.
2) There exists a point x̃ ∈ BH such that limn ∥Tn(x̃)∥ = 1.
3) There exists a point x̃ ∈ BH such that the sequence of its iterates {Tn(x̃)}

is relatively compact in the Hilbert space H and lim supn ∥Tn(x̃)∥ = 1.
4) T has no fixed point and there exists a point x̃ ∈ BH such that the sequence

of its iterates {Tn(x̃)} is relatively compact in the Hilbert space H.

Proof. The implications 1) ⇒ 2) and 1) ⇒ 3) are obvious. Next, it follows from
Theorem 2.6 (ii) and Corollary 2.8 that 2) ⇒ 1) and by Theorem 2.9 we get 3) ⇒ 2).
Finally, using Theorem 2.6 (ii), we obtain 3) ⇔ 4). �

Before presenting a few applications of this theorem, we recall that the Hilbert
ball BH is biholomorfically equivalent to the Siegel upper half-space Ω ([13, 22, 54]
and [56]). Indeed, let BH be the open unit ball in the complex infinite-dimensional
Hilbert space H and let e be a vector in H of norm 1. Then the Hilbert space H
can be written as the orthogonal direct sum decomposition C ×H⊥, where H⊥ is
the subspace of H orthogonal to e with codimension 1, that is,

H ∋ w = λe + w′ =
(
λ,w′) ∈ C×H⊥.

The Hilbert ball BH is biholomorphically equivalent to the domain

Ω :=
{
w =

(
λ,w′) ∈ C×H⊥ : Im λ >

∥∥w′∥∥2}
by the Cayley transform C : BH → Ω given by

BH ∋ z = (ξ, z′) 7→ C (z) = C
(
ξ, z′

)
=

(
i
1 + (z, e)

1 − (z, e)
,
i (z − (z, e) e)

1 − (z, e)

)
=

(
i
1 + ξ

1 − ξ
,

iz′

1 − ξ

)
=

(
λ,w′) = w ∈ Ω.

As mentioned above, the mapping C is invertible and

z = (ξ, z′) = C−1(w) = C−1(λ,w′) =
2w

λ + i
− e =

(λ− i

λ + i
,

2w′

λ + i

)
.

Observe that the boundary of Ω in H is given by

∂Ω =
{
w =

(
λ,w′) ∈ C×H⊥ : Im λ =

∥∥w′∥∥2}
and therefore Ω = Ω∪∂HΩ is the closure of Ω in H. If we add ∞ to H and introduce
a basis for the open neighborhoods of ∞ in H ∪ {∞} by {x ∈ H : ∥x∥ > ε}, where
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ε > 0, then the closure Ω
∞

of Ω in H ∪ {∞} is equal to Ω ∪ {∞}. Next, we extend
the Cayley transform C to the closure of BH by setting

BH \ {e} ∋ z = (ξ, z′) → C (z) = C
(
ξ, z′

)
=

(
i
1 + (z, e)

1 − (z, e)
,
i (z − (z, e) e)

1 − (z, e)

)
=

(
i
1 + ξ

1 − ξ
,

iz′

1 − ξ

)
=

(
λ,w′) = w ∈ Ω

and
C (e) = ∞.

Then this extended Cayley transform C : BH → Ω
∞

is also invertible and C−1 :
Ω
∞ → BH is given by the following formula:

Ω ∋ z = (ξ, z′) = C−1(w) = C−1(λ,w′) =
2w

λ + i
− e =

(λ− i

λ + i
,

2w′

λ + i

)
∈ BH \ {e}

and
C−1(∞) = e.

Both mappings C and C−1 are continuous in H ∪{∞}. Observe that if Y is a finite-
dimensional subspace of H with e ∈ Y , then BY := BH ∩ Y is biholomorphically

equivalent to ΩY := Ω ∩ Y by the Cayley transform C restricted to BY , and BY
H

is isomorphic to ΩY
∞

= ΩY ∪ {∞} by the Cayley transform C.
Next, if a set A ⊂ Ω is relatively compact in H, then its image C−1(A) ⊂ BH is

also relatively compact in H.
Now we are ready to formulate the following Denjoy-Wolff theorem for holo-

morphic self-mappings of Ω or, more generally, kΩ-nonexpansive self-mappings of
Ω. This theorem is a direct consequence of Theorem 3.2 and the above remarks
regarding the Cayley transform C and its extension.

Theorem 3.3. Let f : Ω → Ω be kΩ-nonexpansive. The following statements are
equivalent:

I) The sequence of iterates {fn} converges pointwise to a point ξ̃ on the bound-
ary ∂∞Ω = ∂Ω ∪ {∞} of Ω in Ω

∞
.

II) For some w̃ ∈ Ω, the sequence of its iterates {fn(w̃)} converges to a point ξ̃
on the boundary ∂∞Ω of Ω.

III) There exists w̃ ∈ Ω such that the sequence of its iterates {fn(w̃)} is either
relatively compact in the Hilbert space H and

lim inf
n

dist({fn(w̃)}, ∂HΩ) = inf{∥fn(w̃) − w∥ : n ∈ N, w ∈ ∂HΩ} = 0,

or limn ∥fn(w̃)∥ = +∞.
IV) Either f has no fixed point and there exists w̃ ∈ Ω such that the sequence

of its iterates {fn(w̃)} is relatively compact in the Hilbert space H or there
exists w̃ ∈ Ω such that limn ∥fn(w̃)∥ = +∞.

As a direct consequence of the above theorem we get the following corollary.

Corollary 3.4. If f : Ω → Ω is fixed point free and there exists a finite-dimensional
subspace Y of H such that the set ΩY = Ω∩Y is f-invariant, then for each w ∈ Ω,
the sequence of its iterates {fn(w)} converges to a unique point ξ̃ on the boundary
∂∞Ω of Ω.
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Hence if f : Ω → Ω satisfies one of the condition given in Theorem 3.3, then we
see that the mapping T = C−1 ◦ f ◦ C : BH → BH has the DWIP.

Next, observe that sometimes it is easier to construct a function f : Ω → Ω such
that the mapping T = C−1 ◦ f ◦ C : BH → BH has the claimed properties, than it
is to seek such a function directly in BH .

Now we are ready to present a few examples of mappings f : Ω → Ω which satisfy
the conditions given either in Theorem 3.3 or in Corollary 3.4. Among them there
are functions f such that the mappings T = C−1 ◦ f ◦ C are not elements of any of
the classes Gj , j = 1, ..., 6, mentioned in the Introduction.

Example 3.5. The mapping f : Ω → Ω is a translation defined by

f(w) = f(λ,w′) = (λ + a,w′)

for w ∈ Ω, where a is a nonzero real number. The mapping f has no fixed points
and f(Ωlin{e}) is a subset of Ωlin{e}.

As a matter of fact, we can present more general mappings of the above type.

Example 3.6. Let φ : H⊥ → H⊥ be holomorphic with ∥φ(w′)∥ ≤ ∥w′∥ for each
w′ ∈ H⊥. The mapping f : Ω → Ω is of the form

f(w) = f(λ,w′) = (λ + a, φ(w′)), w ∈ Ω,

where a is a nonzero real number. Assume that there exists a finite-dimensional
subspace Y of H⊥ such that the set ΩY is φ-invariant. It is obvious that f is fixed
point free.

Example 3.7. Let φ : H⊥ → H⊥ be holomorphic with ∥φ(w′)∥ ≤ ∥w′∥ for each
w′ ∈ H⊥. The mapping f : Ω → Ω is of the form

f(w) = f(λ,w′) = (λ + ia, φ(w′)), w ∈ Ω,

where a is a positive real number and there exists a finite-dimensional subspace Y
of H⊥ such that the set ΩY is φ-invariant. It is obvious that f is fixed point free.

Example 3.8. The mapping f : Ω → Ω is defined by

f(w) = f(λ,w′) = (λ + i(∥a∥2 + 2(w′, a)), w′ + a), w ∈ Ω,

where a is a nonzero element of H⊥. It is not difficult to note that the sequence
of iterates {φ}n(i, 0) lies in a two dimensional subspace of H and f has no fixed
points.

Example 3.9. Let φ : H⊥ → H⊥ be holomorphic with ∥φ(w′)∥ ≤ ∥w′∥ for each
w′ ∈ H⊥. Assume that there exists 0 ̸= a ∈ H⊥ \ φ(H⊥). Then the mapping
f : Ω → Ω given by

f(w) = f(λ,w′) = (λ + i∥a∥2, φ(w′) + a), w ∈ Ω,

has no fixed points. Let Φ(w′) = φ(w′) + a. Now it is sufficient to assume that
for some w′ ∈ H⊥, the sequence of its iterates {Φ}n(w′) lies in a finite-dimensional
subspace of H⊥ to get a mapping T := C−1 ◦ f ◦ C : BH → BH with the DWIP.
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Example 3.10. Consider the “nonisotropic” dilation Dt : Ω → Ω introduced in
the following way:

Dt(w) = Dt(λ,w
′) = (t2λ, tw′), w ∈ Ω,

where 0 < t < ∞ is a fixed constant ([54]). This holomorphic automorphism Dt is

the analog of the Möbius transformation Mse : BH → BH with −1 < s = t2−1
t2+1

< 1,
where

Mse (z) = Mse

(
ξ, z′

)
=

1

1 + sξ
(ξ + s,

√
1 − s2z′)

for z = (ξ, z′) ∈ BH . The mapping Dt can be continuously extended to Ω
∞

and for
t ̸= 1 this extended mapping Dt fixes only 0 and ∞. We also have Dt(Ωlin{e}) =
Ωlin{e}.

The last example yields a mapping T := C−1◦f ◦C : BH → BH (t > 0 and t ̸= 1),
which is a particular case of the following one.

Example 3.11. Let T be a mapping of BH onto BH which is a kBH
-isometry in

BH , has exactly two fixed points in BH , and these fixed points lie on the boundary
∂BH of BH . Then there exists a 2-dimensional T -invariant affine set in BH and
therefore the mapping T has the DWIP by Theorem 3.2 (see also example 6 in the
Introduction).
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[5] J. Banaś and K. Goebel, Measures of noncompactness in Banach spaces, Marcel Dekker, New

York, 1980.
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