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BEST PROXIMITY POINT THEOREMS FOR A NEW CLASS OF
a-)-PROXIMAL CONTRACTIVE MAPPINGS

ALI FARAJZADEH AND ANCHALEE KAEWCHAROEN*

ABSTRACT. Recently, Jleli and Samet [3] introduced a new concept of a-i-
contractive mappings and they studied the existence and uniqueness of best prox-
imity points. In this paper, we follow their work by relaxing some assumptions
and considering a new family of the mappings .

1. INTRODUCTION AND PRELIMINARIES

Fixed point theory focusses on the strategies for solving nonlinear equations of
the kind T'x = x in which T is a self mapping defined on a subset of a metric space,
a normed linear space, a topological vector space or some pertinent framework.
But, when 7' is not a self mapping, it is plausible that Tz = z has no solution.
Subsequently, one targets to determine an element x that is in some sense closest to
Tz. In fact, best approximation theorems and best proximity point theorems are
suitable to be explored in this direction. A well known best approximation theorem,
due to Fan [2], ascertains that if K is a nonempty compact convex subset of a
Hausdorff locally convex topological vector space E and T : K — F is a continuous
non-self mapping, then there exists an element z in such a way that d(z,Tx) =
d(Txz, K). Several authors, including Prolla [5], Reich [7] and Sehgal and Singh [11,
12], have accomplished extensions of this theorem in various directions. Moreover,
a result that unifies all such best approximation theorems has been obtained by
Vetrivel et al. [13]. Despite the fact that the best approximation theorems are
befitting for furnishing an approximate solution to the equation T'r = x, such results
may not afford an approximate solution that is optimal. On the other hand, best
proximity point theorems offer an approximate solution that is optimal. Indeed,
a best proximity point theorem details sufficient conditions for the existence of an
element z such that the error d(z, Tx) is minimum. A best proximity point theorem
is fundamentally concerned with the global minimization of the real valued function
x — d(z,Tx) that is an indicator of the error involved for an approximate solution
of the equation Tx = z (see, for example, [1]).

In 2012, Samet et al. [10] introduced the concepts of a-i-contractive and ad-
missible mappings and established various fixed point theorems for such mappings
in complete metric spaces. Afterwards Karapinar and Samet [4] generalized these
notions to obtain fixed point results. The aim of this paper is to modify further
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the notions of a-1-contractive and a-admissible mappings and establish fixed point
theorems for such mappings in complete metric spaces.

Very recently, Jleli and Samet [3] introduced a new concept of a-1)-contractive
mappings and using the results given in [10] they studied the existence and unique-
ness of best proximity points. In this paper we follow their work by relaxing some
assumptions and considering a new family of the mappings .

The rest of this section for the sake of convenience, we recall some notations and
definitions that will be used in the sequel.

Let A and B be nonempty subsets of a metric space (X, d). In this paper, we use
the following notations:

d(A, B) = inf{d(a,b) : a € A and b € B},

Ap={a € A:d(a,b) = d(A, B) for some b € B},
and
By ={b € B:d(a,b) = d(A, B) for some a € A}.

Definition 1.1. Let A and B be nonempty subsets of a metric space (X,d) and
T : A — B. An element z* € A is said to be a best proximity point of T if
d(z*,Txz*) = d(A, B).

Raj [6] introduced the following concept.

Definition 1.2. Let A and B be nonempty subsets of a metric space (X, d) with
Ap # 0. The pair (A, B) is said to satisfy the P-property if for all z1,29 € A and
Y1,Y2 € B7

N 28R} iy dtes e = don

Recently, Jleli and Samet [3] introduced the a-proximal admissible mappings and
a-y-proximal contractions where ¢ € ¥ and

o
Uy ={¢:9:[0,+00) = [0,+00) is nondecreasing with Zw”(t) < 00,
n=1

vt € (0,+00)}.

Definition 1.3. Let A and B be nonempty subsets of a metric space (X, d). Assume
that T: A — B and a: A x A — [0,400). We say that T" is a-proximal admissible
if for all 21,29, u1,us € A,

a(zy,z2) > 1
d(uy,Txy) = d(A, B) imply a(uy,ug) > 1.
d(ug, Txe) = d(A, B)
Remark 1.4. If A = B, then every a-proximal admissible mapping is an a-

admissible mapping.
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Definition 1.5. Let A and B be nonempty subsets of a metric space (X, d). Assume
that T: A — B,a: AxA — [0,400) and ¢ € U1. We say that T is an a-1)-proximal
contraction if for all z,y € A,

oz, y)d(Tz, Ty) < Y(d(z,y)).

Jleli and Samet [3] proved the existence of the best proximity point theorems for
a-1-proximal admissible mappings as the following.

Theorem 1.6 ([3]). Let A and B be nonempty closed subsets of a complete metric
space (X,d) such that Ay is nonempty and ¢ € V. Suppose that T : A — B is a
mapping satisfying the following conditions:
(i) T(Ao) C By and (A, B) satisfies the P-property;
(ii) T is an a-prozimal admissible mapping;
(iii) T is an a-p-proximal contraction;
(iv) there exist xg and x1 in Ag such that

d(thxO) = d(A,B) and (X(mo,l'l) > 1’

(v) T is continuous or if {xyn} is a sequence in A such that o(zy,Tn11) > 1 for
alln € N and x,, — x € X asn — oo, then there exists a subsequence {x, }
of {zn} such that a(xy,,x) > 1 for all k € N.

Then there exists an element * € Ay such that d(z*,Tx*) = d(A, B).

In order to assure the uniqueness of the best proximity point, [3] introduced the
following definition.

Definition 1.7. Let A and B be nonempty subsets of a metric space (X, d). Suppose
that T: A — B and av: A x A — [0, +00). We say that T is («, d) regular if for all
x,y € A with a(z,y) < 1, there exists z € Ay such that

a(z,z) > 1 and a(y,z) > 1.

Theorem 1.8 ([3]). Suppose all hypotheses of Theorem 1.6 hold and T is («,d)
reqular. Then T has a unique best proximity point.

We now introduce the concepts of a-proximal admissible mappings with respect
to n and (a,n, d) regularity for non-self mappings.

Definition 1.9. Let A and B be nonempty subsets of a metric space (X, d). Assume
that T: A— B, a: Ax A—[0,400) and n: A x A — [0,+00). We say that T is
a-proximal admissible with respect to n if for all 1, 9, u1,us € A,

a(z1,w2) > n(z1,72)

d(uy,Tzy) = d(A, B) imply a(u1,us) > n(ui,ug).

d(ug, Txe) = d(A, B)
Definition 1.10. Let A and B be nonempty subsets of a metric space (X,d).
Assume that T: A - B, a: Ax A — [0,400) and n: A x A — [0,400). We

say that T is (a,n,d) regular if for all z,y € A with a(z,y) < n(z,y), there exists
z € Ag such that

a(z,2) > n(z,2) and aly,z) > n(y.2).
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Remark 1.11. If we suppose that n(z,y) = 1 for all z,y € A, then the Definition
1.9 and Definition 1.10 are reduced to Definition 1.3 and Definition 1.7, respectively.

Lemma 1.12 ([10]). Suppose that ¢ : [0,4+00) — [0,400). If 1) is nondecreasing,
then for each t € (0,+00),lim, o ¥"™(t) = 0 implies ¥ (t) < t.

Remark 1.13. It is easily seen that if ¥ : [0, +00) — [0, +00) is nondecreasing and
(t) < t for all t € (0,400), then 1(0) = 0.

Remark 1.14. By Lemma 1.12 for each 1) € ¥y, we have ¢(t) < ¢ for all t € (0, +00)
and by Remark 1.13 we obtain that ¢(0) = 0.

Remark 1.15. Since every nondecreasing mapping is differentiable almost every-
where (see [8]), we observe that nondecreasing condition is closed to continuity and
it is restrictive.

We denote with Ws the family of mappings v : [0, +00) — [0, +00) such that
(i) % is an upper semicontinuous mapping from the right;
(ii) ¥ (t) < t for all t € (0,400);
(iii) ¢(0) = 0.
Example 1.16. Let ¢ : [0, +00) — [0, +00) be a mapping defined by

1
z, teN;
39 5
() { 0, otherwise.

We obtain that ¢ is upper semicontinuous from the right, ¢(t) < ¢ for all t €
(0, +00) and 1 (0) = 0. Moreover ¢ is not nondecreasing.

In this paper, we introduce a new class of a-i-proximal contractive type mappings
with respect to n where ¢ € W5. We prove the existence of the the uniqueness best
proximity point theorems for such mappings. Furthermore, we also present the
applications using the our obtained results.

2. MAIN RESULTS

We now assure the existence of a best proximity point for a new class of a-v-
proximal contractive type mapping with respect to n where ¥ € Ws.

Theorem 2.1. Let A and B be nonempty closed subsets of a complete metric space
(X, d) such that Ay is nonempty and p € Wy. Suppose that T : A — B is a mapping
satisfying the following conditions:

(i) T(Ao) C By and (A, B) satisfies the P-property;
(ii) T is a-proximal admissible with respect to n;
(iii) if z,y € A and a(x,y) > n(x,y), then d(Tx, Ty) < Y(d(z,y));
(iv) there exist xy and x1 in Ay such that

d(z1,Tzg) = d(A, B) and a(xo,x1) > n(zo,1);

(v) T is continuous or if {x,} is a sequence in A such that a(xp,Tpi1) >
N(Zp, Tpt1) for allm € N and x,, — x € X as n — oo, then there exists a
subsequence {xn, } of {xn} such that a(xy,,x) > n(xy,,,z) for all k € N.

Then there exists an element z* € Ay such that d(z*,Tz*) = d(A, B).
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Proof. Since T'(Ag) C By, there exists xo € Ay such that d(xe,Tx1) = d(A, B).
Therefore

d(z1,Tzo) = d(A, B), d(z,Tz1) = d(A, B) and «o(zg,z1) > n(xg, x1).
Since T' is a-proximal admissible with respect to 7, we obtain that
a(z1,z2) > n(xy, x2).

By continuing the process as above, we can construct a sequence {x,} in Ay such
that
(2.1) d(xpi1,Txy) = d(A, B) and oy, Tpi1) = 9(Tn, Tntl),
for all n € NU {0}. Using the P-property of (4, B), we have
(2.2) d(xp, Tpt1) = d(Txp—1,Tx,) for alln € N.
Using (iii) and (2.1), this yields
(2.3) d(xn, Tpt1) = d(Txp—1,Txy) < P(d(Tn-1,2n)),

for all n € N. If .41 = x,, for some n € NU{0}, then by (2.1) we have z,, is a best
proximity point. Assume that x,, # x,4+1 for all n € NU {0}. Since ¥(¢t) < ¢ for all
t € (0,+00) and using (2.3), we have

(2.4) d(xp, Tpt1) < Y(d(Xp—1,2n)) < d(Tp—1,Tn),

for all n € N. Therefore {d(zy,xn+1)} is a nonincreasing sequence. It follows that
there exists ¢ > 0 such that

nh—>Holo d(Tp, Tpt1) = c.

We will prove that ¢ = 0. Suppose that ¢ > 0. Since ¢ is upper semicontinuous
from the right and by using (2.4), we have

¢ =limsup d(zp, Tpt1) < limsup ¥ (d(xn—1,2,)) < P(c) <c,

n—oo n—oo

which leads to a contradiction. Therefore

7}1_)1{.10 d(Zp, Tpi1) = 0.

This implies that for each k € N, there exists ny € N such that
1
d($nk,$nk+1) < ﬁ
We obtain that

(o]
Z d(xp,, Tn,+1) < 00.
k=1

Therefore {x,, } is a Cauchy sequence in Ag. Since X is complete and A is closed,
we have {z,, } converges to some z* € A. By continuity of T', we have

lim Tx,, =Tz".
k—o00

Using the continuity of a metric d, we obtain that

d(A,B) = lim d(A, B) = lim d(xn,+1,Txy,) = d(z*, Tz").
n—00 k—o0
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On the other hand, there exists a subsequence {xnk]} of {xy, } such that
(2.5) a(a:nkj,:c) > n(xnkj,a:) for all j € N.
Using (2.1) and (2.5), for each j € N, we obtain that
d(Tz*, z%) < d(Ta:,Tmnkj) + d(Txnkj,a:nij) + d(a:nkjﬂ, x¥)
< Qp(d(:rnkj ,x))+d(A,B)+ d(xnkj+1, x").
Since 9 is upper semicontinuous from the right, we obtain that

lim sup ¢(d(:1:nkj,$)) < (0) = 0.

J]—00

Therefore d(Tz*, x*) < d(A, B). From the fact that d(A, B) < d(Tz*, z*), we obtain
the desired result. a

Theorem 2.2. Suppose all hypotheses of Theorem 2.1 hold. Assume that T is
(a,n,d) regular. Then T has a unique best proximity point.

Proof. Assume that * and y* are two best proximity points of 7. This implies that

(2.6) d(Tz*,x*) = d(A,B) =d(Ty",y").
Since (A, B) satisfies the P-property, we obtain that
(2.7) d(Tz*, Ty*) = d(z*,y").

We prove the result in two cases.
Case I. Suppose that a(z*,y*) > n(z*,y*). By the assumption and (2.7), we obtain
that

(2.8) dz*,y*) =d(Tz*, Ty*) < (d(z*,y")).
By the fact that ¢(t) < ¢ for all t € (0, 400), we have (2.8) holds when d(z*,y*) =0
and so z* = y*.

Case II. Suppose that a(z*,y*) < n(x*,y*). Since T is («, 1, d) regular, there exists
2o € Ap such that

(2.9) a(x®, z0) > n(z*, z0) and a(y*, zo0) > n(y*, 20)-
Since T'(Ap) C By, there exists z; € Ay such that
(2.10) d(z1,Tz9) = d(A, B).

Using a-proximal admissibility with respect to n of T' together with (2.6),(2.9) and
(2.10), we have
a(z®, z1) > n(x*, z1).

By continuing the process as before, we con construct a sequence {z,} in Ag such
that

(2.11) d(zn41,Tzn) = d(A, B) and a(z*, z,) > n(z*, zp),

for all n € N U {0}. Since (A, B) satisfies the P-property and by using (2.11), it
follows that

(2.12) d(zns1,2") = d(Tzp, Tx™)
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Using (2.11), this yields
(2.13) d(znt1,2) = d(Tzn, Tx™) < Y(d(zp,x")),

for all n € NU {0}. If 2z, = a* for some k£ € NU {0}, then by (2.12) we obtain
that z, = z* for all n > k. Therefore lim,_,~ 2z, = z*. Assume that z, # x* for all
n € NU{0}. Since 9(t) < t for all t € (0,+00) and by using (2.13), we have

d(zny1,77) < P(d(2n,27)) < d(zn, 27),
for all n € N U {0}. Therefore {d(z,,2*)} is a nonincreasing sequence and then
converges to some ¢ € R. We will show that ¢ = 0. Suppose that ¢ > 0. Since ¥ is
upper semicontinuous from the right, we have
c= limsup d(2n+1,x*) < limsup w(d(zna $*)) < 1/1<C) <,

n—oo n—oo

which leads to contradiction. It follows that
lim d(z,,z") =0.
n—oo

This yields lim,, ;o 2, = z*. Similarly, by the same argument we can prove that
limy, 00 2, = ¥*. Since the limit of the sequence is unique, we can conclude that
x* =y O

Applying Theorem 2.1 and Theorem 2.2, we immediately obtain the following
result.

Corollary 2.3. Let A and B be nonempty closed subsets of a complete metric space
(X, d) such that Ay is nonempty and » € Wy. Suppose thatT : A — B is a mapping
satisfying the following conditions:

(i) T(Ao) C By and (A, B) satisfies the P-property;
(ii) T is an a-prozimal admissible mapping;
(iii) T is an a-y-proximal contraction;
(iv) there exist xy and x1 in Ay such that

d(z1,Tzo) = d(A, B) and a(xg,x1) > 1;

(v) T is continuous or if {x,} is a sequence in A such that a(x,, xny1) > 1 for
alln € N and x,, — x € X asn — oo, then there exists a subsequence {x, }
of {zn} such that a(xy,,x) > 1 for all k € N;

(vi) T is (a, d) regular.

Then there exists a unique element x* € Ay such that d(z*,Tx*) = d(A, B).
Letting A = B in Theorem 2.1, we have the following result.

Corollary 2.4. Let A be a nonempty closed subset of a complete metric space
(X,d) and ¢ € ¥y. Suppose that T : A — A is a mapping satisfying the following
conditions:
(i) T is a-admissible with respect to n;
(i) if 2,y € A and o(x,y) = n(x,y), then d(Txz,Ty) < ¢(d(z,y));
(iii) there exists xo in A such that a(xo, Txo) > n(xo, Txo);
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(iv) T is continuous or if {x,} is a sequence in A such that a(zy,Tpi1) >
N(Tpn, Tnt1) for alln € N and z, — x € X as n — oo, then there exists a
subsequence {xn, } of {xn} such that a(xy,,x) > n(xy,,,z) for all k € N.

Then T has a fixed point.

Corollary 2.5. Suppose all hypotheses of Theorem 2.4 hold. Assume that for all
x,y € A with a(z,y) < n(z,y), there exists z € A such that

a(z,z) > n(z,z) and aly,z) = n(y, z).
Then T has a unique fixed point.

3. APPLICATIONS
Using Theorem 2.2, we obtain the standard best proximity point theorem.

Theorem 3.1. Let A and B be nonempty closed subsets of a complete metric space
(X, d) such that Ay is nonempty and b € Wy. Suppose that T : A — B is a mapping
satisfying the following conditions:

(i) T(Ao) € By and (A, B) satisfies the P-property;

(i) for each x,y € A, there exists k € [0,1) such that d(Txz,Ty) < kd(z,y).
Then there exists a unique element x* € Ay such that d(z*,Tx*) = d(A, B).

Proof. Let a,m: X x X — [0, 4+00) be mappings defined by
a(z,y) =1 and n(z,y) =1 for all z,y € A.

It follows that T is a-proximal admissible with respect to 7. Suppose that ¢ :
[0,4+00) — [0,4+00) defined by () = kt for all ¢t € [0,+00). This implies that 1)
is upper semicontinuous from the right, ¢ (¢) < t for all ¢t € (0,4o00) and 1(0) = 0.
Let z € Ap. Since T'(Ag) C By, there exists y € Ap such that d(Tz,y) = d(A, B).
Furthermore, we can see that all assumptions in Theorem 2.2 are now satisfied.
This completes the proof. O

We next prove the existence of the best proximity points on a metric space en-
dowed with an arbitrary binary relation. Let (X, d) be a metric space and R be
a binary relation over X. Suppose that S is a symmetric relation attached to R.
Therefore S = R UR L. It follows that for all z,y € X,

xSy if and only if 2Ry or yRzx.
Jleli and Samet [3] introduced the concept of proximal comparative mappings

and proved the best proximity point results for such mappings.

Definition 3.2. Let A and B be nonempty subsets of a metric space (X,d). We
say that a mapping T : A — B is a proximal comparative mapping if for all
x1,T2,U1, Ul € A,
.%'18:E2
d(uy,Tz1) = d(A, B) imply u1Sus.
d(UQ, Tl‘Q) = d(A, B)
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Theorem 3.3. Let A and B be nonempty closed subsets of a complete metric space
(X, d) such that Ay is nonempty and 1p € V. Suppose that R be a binary relation
over X and T : A — B is a mapping satisfying the following conditions:

(i) T(Ao) € By and (A, B) satisfies the P-property;
(ii) T is a prozximal comparative mapping;
(iii) there exist xg,x1 € Ao such that
d(x1,Txo) = d(A, B) and xoSx1;
(iv) for all z,y € A, xSy implies d(Tx,Ty) < (d(z,y));
(v) T is a continuous mapping.
Then there exists an element x* € Ag such that d(x*,Tz*) = d(A, B).

Proof. Suppose that o,n: A x A — [0,+00) are mappings defined by

1, aSy; [ 1, xSy
a(x,y)—{ 0, otherwise and r](a:,y)—{ 2, otherwise.

Let x1, 9, u1,us € A be such that
a(xry,x2) > n(xy, z2), d(ur, Txy) = d(A, B) and d(ug, Txe) = d(A, B).
This implies that
x1S8xa, d(ur,Tz1) = d(A, B) and d(ua, T'z2) = d(A, B).

Since T is a proximal comparative mapping, we obtain that wu;Sus. Therefore
a(ui,ug) > n(ui,us) and then T is a-proximal admissible with respect to 1. Using
(iii), we have

d(z1,Txo) = d(A, B) and a(xg,z1) > n(xo, x1)-
Assume that z,y € A and a(z,y) > n(x,y). It follows that xSy. By (iv), we get
that

d(Tz, Ty) < ¢(d(z,y)).

Hence all assumptions in Theorem 2.1 are now satisfied. Thus we obtain the desired
result. O

Theorem 3.4. Let A and B be nonempty closed subsets of a complete metric space
(X, d) such that Ay is nonempty and 1 € V. Suppose that R be a binary relation
over X and T : A — B is a mapping satisfying the following conditions:
(i) T(Ag) C By and (A, B) satisfies the P-property;
(ii) T is a proximal comparative mapping;
(ili) there exist xo,z1 € Ag such that

d(xz1,Tzg) = d(A, B) and xoSxq;

(iv) for all x,y € A, xSy implies d(Tx,Ty) < (d(z,y));

(v) if {xn} is a sequence in A such that x,Sxyny1 for alln € N and x, — v € X
as n — 0o, then there exists a subsequence {xy,} of {zn} such that x,, Sx
for all k € N.

Then there exists an element z* € Ay such that d(z*,Tz*) = d(A, B).
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Proof. Suppose that a,n: X x X — [0,+00) defined as in Theorem 3.3. Assume
that {z,} is a sequence in A such that a(x,,xn11) > n(xn, xpy1) for all n € N
and z, - x € X as n — oo. This implies that z,Sxz, 1 for all n € N. Using (v),
there exists a subsequence {x,, } of {z,} such that z,, Sz for all k£ € N. Therefore
a(xp,, ) > n(zy,,z) for all £ € N. Hence all assumptions in Theorem 2.1 are now
satisfied. Thus we obtain the desired result. 0

Theorem 3.5. Suppose all hypotheses of Theorem 3.3 (resp. Theorem 3.4) hold.
Assume that for all x,y € A with (x,y) ¢ S, there exists z € Ay such that xSz and
ySz. Then T has a unique best proximity point.

Proof. Suppose that «,n : X x X — [0,400) defined as in Theorem 3.3. Let
z,y € A and a(z,y) < n(z,y). This implies that (x,y) ¢ S. By assumption, there
exists z € Ap such that xSz and ySz. Therefore

a(z,2) > n(z,z) and aly, ) > n(y. ).

Thus T is («, 1, d) regular. Hence all assumptions in Theorem 2.2 are now satisfied.
So the proof is complete. O

The concept of comparative mappings is introduced by Samet and Turinici [9].
They also assured the unique fixed point theorem for such mappings in complete
metric spaces.

Definition 3.6. Let A be a nonempty subset of a metric space (X, d). We say that
T:A— Ais acomparative mapping if for all z,y € A, xSy implies Tz S Ty.

Remark 3.7. If T : A — A is a comparative mapping, then it is a proximal
comparative mapping.

Corollary 3.8. Let A be a nonempty closed subset of a complete metric space

(X,d) and ¢ € ¥y. Suppose that R be a binary relation over X and T : A — A is

a mapping satisfying the following conditions:
(i) T is a comparative mapping;

(ii) there exists xg € X such that xoSTxy.

(iii) for all z,y € A, xSy implies d(Tx,Ty) < Y (d(z,y));

(iv) T is continuous or if {x,} is a sequence in A such that x,Sxn 1 for all
n €N and z, - € X asn — oo, then there ezists a subsequence {x,,} of
{zn} such that x,, Sz for all k € N.

Then T has a fized point.

Corollary 3.9. Suppose all hypotheses of Theorem 3.8 hold. Assume that for all
x,y € A with (x,y) ¢ S, there exists z € A such that xSz and ySz. Then T has a
unique fixed point.
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