

# BEST PROXIMITY POINT THEOREMS FOR A NEW CLASS OF $\alpha$ - $\psi$ -PROXIMAL CONTRACTIVE MAPPINGS

#### ALI FARAJZADEH AND ANCHALEE KAEWCHAROEN\*

ABSTRACT. Recently, Jleli and Samet [3] introduced a new concept of  $\alpha$ - $\psi$ -contractive mappings and they studied the existence and uniqueness of best proximity points. In this paper, we follow their work by relaxing some assumptions and considering a new family of the mappings  $\psi$ .

#### 1. Introduction and preliminaries

Fixed point theory focuses on the strategies for solving nonlinear equations of the kind Tx = x in which T is a self mapping defined on a subset of a metric space, a normed linear space, a topological vector space or some pertinent framework. But, when T is not a self mapping, it is plausible that Tx = x has no solution. Subsequently, one targets to determine an element x that is in some sense closest to Tx. In fact, best approximation theorems and best proximity point theorems are suitable to be explored in this direction. A well known best approximation theorem, due to Fan [2], ascertains that if K is a nonempty compact convex subset of a Hausdorff locally convex topological vector space E and  $T: K \to E$  is a continuous non-self mapping, then there exists an element x in such a way that d(x,Tx) =d(Tx, K). Several authors, including Prolla [5], Reich [7] and Sehgal and Singh [11, 12, have accomplished extensions of this theorem in various directions. Moreover, a result that unifies all such best approximation theorems has been obtained by Vetrivel et al. [13]. Despite the fact that the best approximation theorems are befitting for furnishing an approximate solution to the equation Tx = x, such results may not afford an approximate solution that is optimal. On the other hand, best proximity point theorems offer an approximate solution that is optimal. Indeed, a best proximity point theorem details sufficient conditions for the existence of an element x such that the error d(x,Tx) is minimum. A best proximity point theorem is fundamentally concerned with the global minimization of the real valued function  $x \to d(x,Tx)$  that is an indicator of the error involved for an approximate solution of the equation Tx = x (see, for example, [1]).

In 2012, Samet et al. [10] introduced the concepts of  $\alpha$ - $\psi$ -contractive and admissible mappings and established various fixed point theorems for such mappings in complete metric spaces. Afterwards Karapinar and Samet [4] generalized these notions to obtain fixed point results. The aim of this paper is to modify further

<sup>2010</sup> Mathematics Subject Classification. Primary 47H10; Seconday 54H25.

Key words and phrases.  $\alpha$ - $\psi$ -contractive type mappings, best proximity points, fixed points, upper semicontinuity from the right.

<sup>\*</sup>Corresponding author.

This research is supported by Naresuan University under grant R2557C031. The authors would like to express their deep thanks to Naresuan University.

the notions of  $\alpha$ - $\psi$ -contractive and  $\alpha$ -admissible mappings and establish fixed point theorems for such mappings in complete metric spaces.

Very recently, Jleli and Samet [3] introduced a new concept of  $\alpha$ - $\psi$ -contractive mappings and using the results given in [10] they studied the existence and uniqueness of best proximity points. In this paper we follow their work by relaxing some assumptions and considering a new family of the mappings  $\psi$ .

The rest of this section for the sake of convenience, we recall some notations and definitions that will be used in the sequel.

Let A and B be nonempty subsets of a metric space (X, d). In this paper, we use the following notations:

$$d(A, B) = \inf\{d(a, b) : a \in A \text{ and } b \in B\},\$$

$$A_0 = \{ a \in A : d(a, b) = d(A, B) \text{ for some } b \in B \},$$

and

$$B_0 = \{ b \in B : d(a, b) = d(A, B) \text{ for some } a \in A \}.$$

**Definition 1.1.** Let A and B be nonempty subsets of a metric space (X, d) and  $T: A \to B$ . An element  $x^* \in A$  is said to be a best proximity point of T if  $d(x^*, Tx^*) = d(A, B)$ .

Raj [6] introduced the following concept.

**Definition 1.2.** Let A and B be nonempty subsets of a metric space (X, d) with  $A_0 \neq \emptyset$ . The pair (A, B) is said to satisfy the P-property if for all  $x_1, x_2 \in A$  and  $y_1, y_2 \in B$ ,

$$\frac{d(x_1, y_1) = d(A, B)}{d(x_2, y_2) = d(A, B)}$$
 imply  $d(x_1, x_2) = d(y_1, y_2)$ .

Recently, Jleli and Samet [3] introduced the  $\alpha$ -proximal admissible mappings and  $\alpha$ - $\psi$ -proximal contractions where  $\psi \in \Psi_1$  and

$$\Psi_1 = \{ \psi : \psi : [0, +\infty) \to [0, +\infty) \text{ is nondecreasing with } \sum_{n=1}^{\infty} \psi^n(t) < \infty,$$
 
$$\forall t \in (0, +\infty) \}.$$

**Definition 1.3.** Let A and B be nonempty subsets of a metric space (X, d). Assume that  $T: A \to B$  and  $\alpha: A \times A \to [0, +\infty)$ . We say that T is  $\alpha$ -proximal admissible if for all  $x_1, x_2, u_1, u_2 \in A$ ,

$$\begin{cases}
\alpha(x_1, x_2) \ge 1 \\
d(u_1, Tx_1) = d(A, B) \\
d(u_2, Tx_2) = d(A, B)
\end{cases}$$
 imply  $\alpha(u_1, u_2) \ge 1$ .

**Remark 1.4.** If A=B, then every  $\alpha$ -proximal admissible mapping is an  $\alpha$ -admissible mapping.

**Definition 1.5.** Let A and B be nonempty subsets of a metric space (X, d). Assume that  $T: A \to B$ ,  $\alpha: A \times A \to [0, +\infty)$  and  $\psi \in \Psi_1$ . We say that T is an  $\alpha$ - $\psi$ -proximal contraction if for all  $x, y \in A$ ,

$$\alpha(x,y)d(Tx,Ty) \le \psi(d(x,y)).$$

Jleli and Samet [3] proved the existence of the best proximity point theorems for  $\alpha$ - $\psi$ -proximal admissible mappings as the following.

**Theorem 1.6** ([3]). Let A and B be nonempty closed subsets of a complete metric space (X,d) such that  $A_0$  is nonempty and  $\psi \in \Psi_1$ . Suppose that  $T: A \to B$  is a mapping satisfying the following conditions:

- (i)  $T(A_0) \subseteq B_0$  and (A, B) satisfies the P-property;
- (ii) T is an  $\alpha$ -proximal admissible mapping;
- (iii) T is an  $\alpha$ - $\psi$ -proximal contraction;
- (iv) there exist  $x_0$  and  $x_1$  in  $A_0$  such that

$$d(x_1, Tx_0) = d(A, B)$$
 and  $\alpha(x_0, x_1) \ge 1$ ;

(v) T is continuous or if  $\{x_n\}$  is a sequence in A such that  $\alpha(x_n, x_{n+1}) \geq 1$  for all  $n \in \mathbb{N}$  and  $x_n \to x \in X$  as  $n \to \infty$ , then there exists a subsequence  $\{x_{n_k}\}$  of  $\{x_n\}$  such that  $\alpha(x_{n_k}, x) \geq 1$  for all  $k \in \mathbb{N}$ .

Then there exists an element  $x^* \in A_0$  such that  $d(x^*, Tx^*) = d(A, B)$ .

In order to assure the uniqueness of the best proximity point, [3] introduced the following definition.

**Definition 1.7.** Let A and B be nonempty subsets of a metric space (X, d). Suppose that  $T: A \to B$  and  $\alpha: A \times A \to [0, +\infty)$ . We say that T is  $(\alpha, d)$  regular if for all  $x, y \in A$  with  $\alpha(x, y) < 1$ , there exists  $z \in A_0$  such that

$$\alpha(x,z) \ge 1$$
 and  $\alpha(y,z) \ge 1$ .

**Theorem 1.8** ([3]). Suppose all hypotheses of Theorem 1.6 hold and T is  $(\alpha, d)$  regular. Then T has a unique best proximity point.

We now introduce the concepts of  $\alpha$ -proximal admissible mappings with respect to  $\eta$  and  $(\alpha, \eta, d)$  regularity for non-self mappings.

**Definition 1.9.** Let A and B be nonempty subsets of a metric space (X, d). Assume that  $T: A \to B$ ,  $\alpha: A \times A \to [0, +\infty)$  and  $\eta: A \times A \to [0, +\infty)$ . We say that T is  $\alpha$ -proximal admissible with respect to  $\eta$  if for all  $x_1, x_2, u_1, u_2 \in A$ ,

$$\left. \begin{array}{l} \alpha(x_1, x_2) \geq \eta(x_1, x_2) \\ d(u_1, Tx_1) = d(A, B) \\ d(u_2, Tx_2) = d(A, B) \end{array} \right\} \text{ imply } \alpha(u_1, u_2) \geq \eta(u_1, u_2).$$

**Definition 1.10.** Let A and B be nonempty subsets of a metric space (X,d). Assume that  $T:A\to B,\ \alpha:A\times A\to [0,+\infty)$  and  $\eta:A\times A\to [0,+\infty)$ . We say that T is  $(\alpha,\eta,d)$  regular if for all  $x,y\in A$  with  $\alpha(x,y)<\eta(x,y)$ , there exists  $z\in A_0$  such that

$$\alpha(x,z) \ge \eta(x,z)$$
 and  $\alpha(y,z) \ge \eta(y,z)$ .

**Remark 1.11.** If we suppose that  $\eta(x,y) = 1$  for all  $x,y \in A$ , then the Definition 1.9 and Definition 1.10 are reduced to Definition 1.3 and Definition 1.7, respectively.

**Lemma 1.12** ([10]). Suppose that  $\psi : [0, +\infty) \to [0, +\infty)$ . If  $\psi$  is nondecreasing, then for each  $t \in (0, +\infty)$ ,  $\lim_{n\to\infty} \psi^n(t) = 0$  implies  $\psi(t) < t$ .

**Remark 1.13.** It is easily seen that if  $\psi : [0, +\infty) \to [0, +\infty)$  is nondecreasing and  $\psi(t) < t$  for all  $t \in (0, +\infty)$ , then  $\psi(0) = 0$ .

**Remark 1.14.** By Lemma 1.12 for each  $\psi \in \Psi_1$ , we have  $\psi(t) < t$  for all  $t \in (0, +\infty)$  and by Remark 1.13 we obtain that  $\psi(0) = 0$ .

**Remark 1.15.** Since every nondecreasing mapping is differentiable almost everywhere (see [8]), we observe that nondecreasing condition is closed to continuity and it is restrictive.

We denote with  $\Psi_2$  the family of mappings  $\psi:[0,+\infty)\to[0,+\infty)$  such that

- (i)  $\psi$  is an upper semicontinuous mapping from the right;
- (ii)  $\psi(t) < t$  for all  $t \in (0, +\infty)$ ;
- (iii)  $\psi(0) = 0$ .

**Example 1.16.** Let  $\psi:[0,+\infty)\to[0,+\infty)$  be a mapping defined by

$$\psi(t) = \begin{cases} \frac{1}{3}, & t \in \mathbb{N}; \\ 0, & \text{otherwise.} \end{cases}$$

We obtain that  $\psi$  is upper semicontinuous from the right,  $\psi(t) < t$  for all  $t \in (0, +\infty)$  and  $\psi(0) = 0$ . Moreover  $\psi$  is not nondecreasing.

In this paper, we introduce a new class of  $\alpha$ - $\psi$ -proximal contractive type mappings with respect to  $\eta$  where  $\psi \in \Psi_2$ . We prove the existence of the uniqueness best proximity point theorems for such mappings. Furthermore, we also present the applications using the our obtained results.

## 2. Main results

We now assure the existence of a best proximity point for a new class of  $\alpha$ - $\psi$ -proximal contractive type mapping with respect to  $\eta$  where  $\psi \in \Psi_2$ .

**Theorem 2.1.** Let A and B be nonempty closed subsets of a complete metric space (X,d) such that  $A_0$  is nonempty and  $\psi \in \Psi_2$ . Suppose that  $T: A \to B$  is a mapping satisfying the following conditions:

- (i)  $T(A_0) \subseteq B_0$  and (A, B) satisfies the P-property;
- (ii) T is  $\alpha$ -proximal admissible with respect to  $\eta$ ;
- (iii) if  $x, y \in A$  and  $\alpha(x, y) \ge \eta(x, y)$ , then  $d(Tx, Ty) \le \psi(d(x, y))$ ;
- (iv) there exist  $x_0$  and  $x_1$  in  $A_0$  such that

$$d(x_1, Tx_0) = d(A, B)$$
 and  $\alpha(x_0, x_1) \ge \eta(x_0, x_1)$ ;

(v) T is continuous or if  $\{x_n\}$  is a sequence in A such that  $\alpha(x_n, x_{n+1}) \geq \eta(x_n, x_{n+1})$  for all  $n \in \mathbb{N}$  and  $x_n \to x \in X$  as  $n \to \infty$ , then there exists a subsequence  $\{x_{n_k}\}$  of  $\{x_n\}$  such that  $\alpha(x_{n_k}, x) \geq \eta(x_{n_k}, x)$  for all  $k \in \mathbb{N}$ .

Then there exists an element  $x^* \in A_0$  such that  $d(x^*, Tx^*) = d(A, B)$ .

*Proof.* Since  $T(A_0) \subseteq B_0$ , there exists  $x_2 \in A_0$  such that  $d(x_2, Tx_1) = d(A, B)$ . Therefore

$$d(x_1, Tx_0) = d(A, B), d(x_2, Tx_1) = d(A, B) \text{ and } \alpha(x_0, x_1) \ge \eta(x_0, x_1).$$

Since T is  $\alpha$ -proximal admissible with respect to  $\eta$ , we obtain that

$$\alpha(x_1, x_2) \ge \eta(x_1, x_2).$$

By continuing the process as above, we can construct a sequence  $\{x_n\}$  in  $A_0$  such that

(2.1) 
$$d(x_{n+1}, Tx_n) = d(A, B) \text{ and } \alpha(x_n, x_{n+1}) \ge \eta(x_n, x_{n+1}),$$

for all  $n \in \mathbb{N} \cup \{0\}$ . Using the P-property of (A, B), we have

$$(2.2) d(x_n, x_{n+1}) = d(Tx_{n-1}, Tx_n) mtext{ for all } n \in \mathbb{N}.$$

Using (iii) and (2.1), this yields

$$(2.3) d(x_n, x_{n+1}) = d(Tx_{n-1}, Tx_n) < \psi(d(x_{n-1}, x_n)),$$

for all  $n \in \mathbb{N}$ . If  $x_{n+1} = x_n$  for some  $n \in \mathbb{N} \cup \{0\}$ , then by (2.1) we have  $x_n$  is a best proximity point. Assume that  $x_n \neq x_{n+1}$  for all  $n \in \mathbb{N} \cup \{0\}$ . Since  $\psi(t) < t$  for all  $t \in (0, +\infty)$  and using (2.3), we have

$$(2.4) d(x_n, x_{n+1}) \le \psi(d(x_{n-1}, x_n)) < d(x_{n-1}, x_n),$$

for all  $n \in \mathbb{N}$ . Therefore  $\{d(x_n, x_{n+1})\}$  is a nonincreasing sequence. It follows that there exists  $c \geq 0$  such that

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = c.$$

We will prove that c = 0. Suppose that c > 0. Since  $\psi$  is upper semicontinuous from the right and by using (2.4), we have

$$c = \limsup_{n \to \infty} d(x_n, x_{n+1}) \le \limsup_{n \to \infty} \psi(d(x_{n-1}, x_n)) \le \psi(c) < c,$$

which leads to a contradiction. Therefore

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = 0.$$

This implies that for each  $k \in \mathbb{N}$ , there exists  $n_k \in \mathbb{N}$  such that

$$d(x_{n_k}, x_{n_k+1}) < \frac{1}{2^k}.$$

We obtain that

$$\sum_{k=1}^{\infty} d(x_{n_k}, x_{n_k+1}) < \infty.$$

Therefore  $\{x_{n_k}\}$  is a Cauchy sequence in  $A_0$ . Since X is complete and A is closed, we have  $\{x_{n_k}\}$  converges to some  $x^* \in A$ . By continuity of T, we have

$$\lim_{k \to \infty} Tx_{n_k} = Tx^*.$$

Using the continuity of a metric d, we obtain that

$$d(A, B) = \lim_{n \to \infty} d(A, B) = \lim_{k \to \infty} d(x_{n_k+1}, Tx_{n_k}) = d(x^*, Tx^*).$$

On the other hand, there exists a subsequence  $\{x_{n_{k_i}}\}$  of  $\{x_{n_k}\}$  such that

(2.5) 
$$\alpha(x_{n_{k_i}}, x) \ge \eta(x_{n_{k_i}}, x) \text{ for all } j \in \mathbb{N}.$$

Using (2.1) and (2.5), for each  $j \in \mathbb{N}$ , we obtain that

$$d(Tx^*, x^*) \leq d(Tx, Tx_{n_{k_j}}) + d(Tx_{n_{k_j}}, x_{n_{k_j}+1}) + d(x_{n_{k_j}+1}, x^*)$$
  
$$\leq \psi(d(x_{n_{k_i}}, x)) + d(A, B) + d(x_{n_{k_i}+1}, x^*).$$

Since  $\psi$  is upper semicontinuous from the right, we obtain that

$$\limsup_{j \to \infty} \psi(d(x_{n_{k_j}}, x)) \le \psi(0) = 0.$$

Therefore  $d(Tx^*, x^*) \leq d(A, B)$ . From the fact that  $d(A, B) \leq d(Tx^*, x^*)$ , we obtain the desired result.

**Theorem 2.2.** Suppose all hypotheses of Theorem 2.1 hold. Assume that T is  $(\alpha, \eta, d)$  regular. Then T has a unique best proximity point.

*Proof.* Assume that  $x^*$  and  $y^*$  are two best proximity points of T. This implies that

(2.6) 
$$d(Tx^*, x^*) = d(A, B) = d(Ty^*, y^*).$$

Since (A, B) satisfies the P-property, we obtain that

$$(2.7) d(Tx^*, Ty^*) = d(x^*, y^*).$$

We prove the result in two cases.

Case I. Suppose that  $\alpha(x^*, y^*) \ge \eta(x^*, y^*)$ . By the assumption and (2.7), we obtain that

(2.8) 
$$d(x^*, y^*) = d(Tx^*, Ty^*) \le \psi(d(x^*, y^*)).$$

By the fact that  $\psi(t) < t$  for all  $t \in (0, +\infty)$ , we have (2.8) holds when  $d(x^*, y^*) = 0$  and so  $x^* = y^*$ .

Case II. Suppose that  $\alpha(x^*, y^*) < \eta(x^*, y^*)$ . Since T is  $(\alpha, \eta, d)$  regular, there exists  $z_0 \in A_0$  such that

(2.9) 
$$\alpha(x^*, z_0) \ge \eta(x^*, z_0) \text{ and } \alpha(y^*, z_0) \ge \eta(y^*, z_0).$$

Since  $T(A_0) \subseteq B_0$ , there exists  $z_1 \in A_0$  such that

$$(2.10) d(z_1, Tz_0) = d(A, B).$$

Using  $\alpha$ -proximal admissibility with respect to  $\eta$  of T together with (2.6),(2.9) and (2.10), we have

$$\alpha(x^*, z_1) \ge \eta(x^*, z_1).$$

By continuing the process as before, we con construct a sequence  $\{z_n\}$  in  $A_0$  such that

(2.11) 
$$d(z_{n+1}, Tz_n) = d(A, B) \text{ and } \alpha(x^*, z_n) \ge \eta(x^*, z_n),$$

for all  $n \in \mathbb{N} \cup \{0\}$ . Since (A, B) satisfies the P-property and by using (2.11), it follows that

$$(2.12) d(z_{n+1}, x^*) = d(Tz_n, Tx^*)$$

Using (2.11), this yields

(2.13) 
$$d(z_{n+1}, x^*) = d(Tz_n, Tx^*) \le \psi(d(z_n, x^*)),$$

for all  $n \in \mathbb{N} \cup \{0\}$ . If  $z_k = x^*$  for some  $k \in \mathbb{N} \cup \{0\}$ , then by (2.12) we obtain that  $z_n = x^*$  for all  $n \geq k$ . Therefore  $\lim_{n \to \infty} z_n = x^*$ . Assume that  $z_n \neq x^*$  for all  $n \in \mathbb{N} \cup \{0\}$ . Since  $\psi(t) < t$  for all  $t \in (0, +\infty)$  and by using (2.13), we have

$$d(z_{n+1}, x^*) \le \psi(d(z_n, x^*)) < d(z_n, x^*),$$

for all  $n \in \mathbb{N} \cup \{0\}$ . Therefore  $\{d(z_n, x^*)\}$  is a nonincreasing sequence and then converges to some  $c \in \mathbb{R}$ . We will show that c = 0. Suppose that c > 0. Since  $\psi$  is upper semicontinuous from the right, we have

$$c = \limsup_{n \to \infty} d(z_{n+1}, x^*) \le \limsup_{n \to \infty} \psi(d(z_n, x^*)) \le \psi(c) < c,$$

which leads to contradiction. It follows that

$$\lim_{n \to \infty} d(z_n, x^*) = 0.$$

This yields  $\lim_{n\to\infty} z_n = x^*$ . Similarly, by the same argument we can prove that  $\lim_{n\to\infty} z_n = y^*$ . Since the limit of the sequence is unique, we can conclude that  $x^* = y^*$ .

Applying Theorem 2.1 and Theorem 2.2, we immediately obtain the following result.

**Corollary 2.3.** Let A and B be nonempty closed subsets of a complete metric space (X,d) such that  $A_0$  is nonempty and  $\psi \in \Psi_2$ . Suppose that  $T: A \to B$  is a mapping satisfying the following conditions:

- (i)  $T(A_0) \subseteq B_0$  and (A, B) satisfies the P-property;
- (ii) T is an  $\alpha$ -proximal admissible mapping;
- (iii) T is an  $\alpha$ - $\psi$ -proximal contraction;
- (iv) there exist  $x_0$  and  $x_1$  in  $A_0$  such that

$$d(x_1, Tx_0) = d(A, B)$$
 and  $\alpha(x_0, x_1) \ge 1$ ;

- (v) T is continuous or if  $\{x_n\}$  is a sequence in A such that  $\alpha(x_n, x_{n+1}) \geq 1$  for all  $n \in \mathbb{N}$  and  $x_n \to x \in X$  as  $n \to \infty$ , then there exists a subsequence  $\{x_{n_k}\}$  of  $\{x_n\}$  such that  $\alpha(x_{n_k}, x) \geq 1$  for all  $k \in \mathbb{N}$ ;
- (vi) T is  $(\alpha, d)$  regular.

Then there exists a unique element  $x^* \in A_0$  such that  $d(x^*, Tx^*) = d(A, B)$ .

Letting A = B in Theorem 2.1, we have the following result.

**Corollary 2.4.** Let A be a nonempty closed subset of a complete metric space (X,d) and  $\psi \in \Psi_2$ . Suppose that  $T: A \to A$  is a mapping satisfying the following conditions:

- (i) T is  $\alpha$ -admissible with respect to  $\eta$ :
- (ii) if  $x, y \in A$  and  $\alpha(x, y) \ge \eta(x, y)$ , then  $d(Tx, Ty) \le \psi(d(x, y))$ ;
- (iii) there exists  $x_0$  in A such that  $\alpha(x_0, Tx_0) \geq \eta(x_0, Tx_0)$ ;

(iv) T is continuous or if  $\{x_n\}$  is a sequence in A such that  $\alpha(x_n, x_{n+1}) \geq \eta(x_n, x_{n+1})$  for all  $n \in \mathbb{N}$  and  $x_n \to x \in X$  as  $n \to \infty$ , then there exists a subsequence  $\{x_{n_k}\}$  of  $\{x_n\}$  such that  $\alpha(x_{n_k}, x) \geq \eta(x_{n_k}, x)$  for all  $k \in \mathbb{N}$ .

Then T has a fixed point.

**Corollary 2.5.** Suppose all hypotheses of Theorem 2.4 hold. Assume that for all  $x, y \in A$  with  $\alpha(x, y) < \eta(x, y)$ , there exists  $z \in A$  such that

$$\alpha(x,z) \ge \eta(x,z)$$
 and  $\alpha(y,z) \ge \eta(y,z)$ .

Then T has a unique fixed point.

#### 3. Applications

Using Theorem 2.2, we obtain the standard best proximity point theorem.

**Theorem 3.1.** Let A and B be nonempty closed subsets of a complete metric space (X,d) such that  $A_0$  is nonempty and  $\psi \in \Psi_2$ . Suppose that  $T: A \to B$  is a mapping satisfying the following conditions:

- (i)  $T(A_0) \subseteq B_0$  and (A, B) satisfies the P-property;
- (ii) for each  $x, y \in A$ , there exists  $k \in [0, 1)$  such that  $d(Tx, Ty) \leq kd(x, y)$ .

Then there exists a unique element  $x^* \in A_0$  such that  $d(x^*, Tx^*) = d(A, B)$ .

*Proof.* Let  $\alpha, \eta: X \times X \to [0, +\infty)$  be mappings defined by

$$\alpha(x,y) = 1$$
 and  $\eta(x,y) = 1$  for all  $x, y \in A$ .

It follows that T is  $\alpha$ -proximal admissible with respect to  $\eta$ . Suppose that  $\psi$ :  $[0,+\infty) \to [0,+\infty)$  defined by  $\psi(t) = kt$  for all  $t \in [0,+\infty)$ . This implies that  $\psi$  is upper semicontinuous from the right,  $\psi(t) < t$  for all  $t \in (0,+\infty)$  and  $\psi(0) = 0$ . Let  $x \in A_0$ . Since  $T(A_0) \subseteq B_0$ , there exists  $y \in A_0$  such that d(Tx,y) = d(A,B). Furthermore, we can see that all assumptions in Theorem 2.2 are now satisfied. This completes the proof.

We next prove the existence of the best proximity points on a metric space endowed with an arbitrary binary relation. Let (X,d) be a metric space and  $\mathcal{R}$  be a binary relation over X. Suppose that  $\mathcal{S}$  is a symmetric relation attached to  $\mathcal{R}$ . Therefore  $\mathcal{S} = \mathcal{R} \cup \mathcal{R}^{-1}$ . It follows that for all  $x, y \in X$ ,

$$xSy$$
 if and only if  $xRy$  or  $yRx$ .

Jleli and Samet [3] introduced the concept of proximal comparative mappings and proved the best proximity point results for such mappings.

**Definition 3.2.** Let A and B be nonempty subsets of a metric space (X, d). We say that a mapping  $T: A \to B$  is a proximal comparative mapping if for all  $x_1, x_2, u_1, u_2 \in A$ ,

$$\begin{cases} x_1 \mathcal{S} x_2 \\ d(u_1, Tx_1) = d(A, B) \\ d(u_2, Tx_2) = d(A, B) \end{cases}$$
 imply  $u_1 \mathcal{S} u_2$ .

**Theorem 3.3.** Let A and B be nonempty closed subsets of a complete metric space (X,d) such that  $A_0$  is nonempty and  $\psi \in \Psi_2$ . Suppose that  $\mathcal{R}$  be a binary relation over X and  $T: A \to B$  is a mapping satisfying the following conditions:

- (i)  $T(A_0) \subseteq B_0$  and (A, B) satisfies the P-property;
- (ii) T is a proximal comparative mapping;
- (iii) there exist  $x_0, x_1 \in A_0$  such that

$$d(x_1, Tx_0) = d(A, B) \text{ and } x_0 Sx_1;$$

- (iv) for all  $x, y \in A, xSy$  implies  $d(Tx, Ty) \le \psi(d(x, y))$ ;
- (v) T is a continuous mapping.

Then there exists an element  $x^* \in A_0$  such that  $d(x^*, Tx^*) = d(A, B)$ .

*Proof.* Suppose that  $\alpha, \eta: A \times A \to [0, +\infty)$  are mappings defined by

$$\alpha(x,y) = \left\{ \begin{array}{ll} 1, & x\mathcal{S}y; \\ 0, & \text{otherwise} \end{array} \right. \quad \text{and} \quad \eta(x,y) = \left\{ \begin{array}{ll} \frac{1}{2}, & x\mathcal{S}y; \\ 2, & \text{otherwise}. \end{array} \right.$$

Let  $x_1, x_2, u_1, u_2 \in A$  be such that

$$\alpha(x_1, x_2) \ge \eta(x_1, x_2), d(u_1, Tx_1) = d(A, B) \text{ and } d(u_2, Tx_2) = d(A, B).$$

This implies that

$$x_1 S x_2$$
,  $d(u_1, T x_1) = d(A, B)$  and  $d(u_2, T x_2) = d(A, B)$ .

Since T is a proximal comparative mapping, we obtain that  $u_1Su_2$ . Therefore  $\alpha(u_1, u_2) \geq \eta(u_1, u_2)$  and then T is  $\alpha$ -proximal admissible with respect to  $\eta$ . Using (iii), we have

$$d(x_1, Tx_0) = d(A, B)$$
 and  $\alpha(x_0, x_1) \ge \eta(x_0, x_1)$ .

Assume that  $x, y \in A$  and  $\alpha(x, y) \geq \eta(x, y)$ . It follows that xSy. By (iv), we get

$$d(Tx, Ty) \le \psi(d(x, y)).$$

Hence all assumptions in Theorem 2.1 are now satisfied. Thus we obtain the desired result.  $\hfill\Box$ 

**Theorem 3.4.** Let A and B be nonempty closed subsets of a complete metric space (X,d) such that  $A_0$  is nonempty and  $\psi \in \Psi_2$ . Suppose that  $\mathcal{R}$  be a binary relation over X and  $T: A \to B$  is a mapping satisfying the following conditions:

- (i)  $T(A_0) \subseteq B_0$  and (A, B) satisfies the P-property;
- (ii) T is a proximal comparative mapping;
- (iii) there exist  $x_0, x_1 \in A_0$  such that

$$d(x_1, Tx_0) = d(A, B)$$
 and  $x_0 Sx_1$ ;

- (iv) for all  $x, y \in A, xSy$  implies  $d(Tx, Ty) \le \psi(d(x, y))$ ;
- (v) if  $\{x_n\}$  is a sequence in A such that  $x_n S x_{n+1}$  for all  $n \in \mathbb{N}$  and  $x_n \to x \in X$  as  $n \to \infty$ , then there exists a subsequence  $\{x_{n_k}\}$  of  $\{x_n\}$  such that  $x_{n_k} S x$  for all  $k \in \mathbb{N}$ .

Then there exists an element  $x^* \in A_0$  such that  $d(x^*, Tx^*) = d(A, B)$ .

Proof. Suppose that  $\alpha, \eta: X \times X \to [0, +\infty)$  defined as in Theorem 3.3. Assume that  $\{x_n\}$  is a sequence in A such that  $\alpha(x_n, x_{n+1}) \geq \eta(x_n, x_{n+1})$  for all  $n \in \mathbb{N}$  and  $x_n \to x \in X$  as  $n \to \infty$ . This implies that  $x_n \mathcal{S} x_{n+1}$  for all  $n \in \mathbb{N}$ . Using (v), there exists a subsequence  $\{x_{n_k}\}$  of  $\{x_n\}$  such that  $x_{n_k} \mathcal{S} x$  for all  $k \in \mathbb{N}$ . Therefore  $\alpha(x_{n_k}, x) \geq \eta(x_{n_k}, x)$  for all  $k \in \mathbb{N}$ . Hence all assumptions in Theorem 2.1 are now satisfied. Thus we obtain the desired result.

**Theorem 3.5.** Suppose all hypotheses of Theorem 3.3 (resp. Theorem 3.4) hold. Assume that for all  $x, y \in A$  with  $(x, y) \notin S$ , there exists  $z \in A_0$  such that xSz and ySz. Then T has a unique best proximity point.

*Proof.* Suppose that  $\alpha, \eta : X \times X \to [0, +\infty)$  defined as in Theorem 3.3. Let  $x, y \in A$  and  $\alpha(x, y) < \eta(x, y)$ . This implies that  $(x, y) \notin S$ . By assumption, there exists  $z \in A_0$  such that xSz and ySz. Therefore

$$\alpha(x,z) \ge \eta(x,z)$$
 and  $\alpha(y,z) \ge \eta(y,z)$ .

Thus T is  $(\alpha, \eta, d)$  regular. Hence all assumptions in Theorem 2.2 are now satisfied. So the proof is complete.

The concept of comparative mappings is introduced by Samet and Turinici [9]. They also assured the unique fixed point theorem for such mappings in complete metric spaces.

**Definition 3.6.** Let A be a nonempty subset of a metric space (X, d). We say that  $T: A \to A$  is a comparative mapping if for all  $x, y \in A$ , xSy implies TxSTy.

**Remark 3.7.** If  $T: A \to A$  is a comparative mapping, then it is a proximal comparative mapping.

**Corollary 3.8.** Let A be a nonempty closed subset of a complete metric space (X,d) and  $\psi \in \Psi_2$ . Suppose that  $\mathcal{R}$  be a binary relation over X and  $T: A \to A$  is a mapping satisfying the following conditions:

- (i) T is a comparative mapping;
- (ii) there exists  $x_0 \in X$  such that  $x_0 STx_0$ .
- (iii) for all  $x, y \in A$ , xSy implies  $d(Tx, Ty) \le \psi(d(x, y))$ ;
- (iv) T is continuous or if  $\{x_n\}$  is a sequence in A such that  $x_n S x_{n+1}$  for all  $n \in \mathbb{N}$  and  $x_n \to x \in X$  as  $n \to \infty$ , then there exists a subsequence  $\{x_{n_k}\}$  of  $\{x_n\}$  such that  $x_{n_k} S x$  for all  $k \in \mathbb{N}$ .

Then T has a fixed point.

**Corollary 3.9.** Suppose all hypotheses of Theorem 3.8 hold. Assume that for all  $x, y \in A$  with  $(x, y) \notin S$ , there exists  $z \in A$  such that xSz and ySz. Then T has a unique fixed point.

### References

- [1] S. S. Basha and N. Shahzad, Best proximity point theorems for generalized proximal contractions, Fixed Point Theory Appl. **2012** :42 (2012)
- [2] K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969), 234-240.

- [3] M. Jleli and B. Samet, Best proximity points for  $\alpha$ - $\psi$ -proximal contractive type mappings and applications, Bull. Sci. Math. 137 (2013), 977–995.
- [4] E. Karapinar and B. Samet, Generalized  $\alpha \psi -$  contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal. **2012**, Article ID 793486 (2012)
- [5] J. B. Prolla, Fixed point theorems for set valued mappings and existence of best approximations, Numer. Funct. Anal. Optim. 5 (1982), 449–455.
- [6] V. S. Raj, A best proximity point theorem for weakly contractive non-self-mappings, Nonlinear Anal. 74 (2011), 4804–4808.
- [7] S. Reich, Approximate selections, best approximations, fixed points and invariant sets, J. Math. Anal. Appl. 62 (1978), 104–113.
- [8] H. L. Royden, Real Analysis, 3rd ed., Prentice Hall International, Inc., 1988.
- [9] B. Samet and M. Turinici, Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications, Commun. Math. Anal. 13 (2012), 82–97.
- [10] B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal. 75 (2012), 2154–2165.
- [11] V. M. Sehgal and S. P. Singh, A generalization to multifunctions of Fan's best approximation theorem, Proc. Am. Math. Soc. 102 (1988), 534–537.
- [12] V. M. Sehgal and S. P. Singh, A theorem on best approximations, Numer. Funct. Anal. Optim. 10 (1989), 181–184.
- [13] V. Vetrivel, P. Veeramani and P. Bhattacharyya, Some extensions of Fan's best approximation theorem, Numer. Funct. Anal. Optim. 13 (1992), 397–402.

Manuscript received February 14, 2014 revised May 20, 2014

#### A. Farajzadeh

Department of Mathematics, Razi University, Kermanshah, 67149, Iran  $E\text{-}mail\ address:}$  farajzadehali@gmail.com

#### A. Kaewcharoen

Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand *E-mail address*: anchaleeka@nu.ac.th