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converges strongly to the unique solution of the variational inequality:

p ∈ F (T ) such that ⟨(I − f)p, j(p− x∗)⟩ ≤ 0 ∀x∗ ∈ F (T ).

Theorem 1.2. Let K be a nonempty closed convex subset of a uniformly convex
Banach space X which has a uniformly Gâteaux differentiable norm and T : K → K
an asymptotically nonexpansive mapping with F (T ) ̸= ∅ and f a contraction on C.
Let {αn}, {βn} be a sequence in (0, 1) satisfying

C1 : lim
n→∞

αn = 0; C2 :
∞∑
n=1

αn = ∞ C3 : lim
n→∞

kn − 1

αn
= 0.

For arbitrary x0 ∈ K, let the sequence {xn} be defined iteratively by

xn+1 = αnf(xn) + βnxn + γnT
nxn.

Assume
(i) αn, βn, γn ∈ [0, 1], αn + βn + γn = 1;
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) T satisfies the asymptotically regularity; limn→∞ ∥Tn+1xn − Tnxn∥ = 0.
Then the sequence {xn} converges strongly to the unique solution of the varia-

tional inequality:

p ∈ F (T ) such that ⟨(I − f)p, j(p− x∗)⟩ ≤ 0 ∀x∗ ∈ F (T ).

Let X be a Banach space and let C be a nonempty closed convex subset of
X. A one parameter nonexpansive semigroup is a family F = {T (t) : t ≥ 0} of
self-mappings of C such that

(i) T (0)x = x for all x ∈ C;
(ii) T (t+ s)x = T (t)T (s)x for t, s > 0 and x ∈ C;
(iii) limt→0+ T (t)x = x for x ∈ C;
(iv) for each t > 0, T (t) is nonexpansive, i.e.,

∥T (t)x− T (t)y∥ ≤ ∥x− y∥,

for all x, y ∈ C.
In [8], Song and Xu give some strong convergence theorems for the viscosity

iteration process

xn+1 = αnf(xn) + (1− αn)T (tn)xn,

in a real reflexive strictly convex Banach space with a uniformly Gâteaux differen-
tiable norm. Here f is a contractive mapping on C, i.e., a mapping for which there
is some α ∈ (0, 1) such that

∥f(x)− f(y)∥ ≤ α∥x− y∥,

for all x, y ∈ C. They proved the following theorem.

Theorem 1.3. Let E be a real reflexive strictly convex Banach space with a uni-
formly Gâteaux differentiable norm, and K a nonempty closed convex subset of E
and {T (t)} a uniformly asymptotically regular nonexpansive semigroup from K into
itself such that F =

∩
t>0 F (T (t)) ̸= ∅, and f : K → K a fixed contractive mapping
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with contractive coefficient β ∈ (0, 1). Suppose limn→∞ tn = ∞, and αn ∈ (0, 1)
such that limn→∞ αn = 0 and

∑∞
n=1 αn = ∞. If {xn} is given by

xn+1 = αnf(xn) + (1− αn)T (tn)xn, n ≥ 1,

then the sequence {xn} converges strongly to some common fixed point p of solution
of F such that p is the unique solution in F to the co-variational inequality:

⟨f(p)− p, J(y − p)⟩ ≤ 0 ∀y ∈ F.

In this paper, we study a one parameter asymptotically nonexpansive semigroup.
Let X be a Banach space and let C be a nonempty closed convex subset of X. A one
parameter asymptotically nonexpansive semigroup is a family F = {T (t) : t ≥ 0}
of self-mappings of C such that

(i) T (0)x = x for all x ∈ C;
(ii) T (t+ s)x = T (t)T (s)x for t, s > 0 and x ∈ C;
(iii) limt→0+ T (t)x = x for x ∈ C;
(iv) for each t > 0, T (t) is asymptotically nonexpansive, i.e., there exists a

sequence {r(t)n } ⊂ [0, 1) with r
(t)
n → 0 as n → ∞ such that

∥(T (t))nx− (T (t))ny∥ ≤ (1 + r(t)n )∥x− y∥,

for all x, y ∈ C and n ≥ 1.
We give some strong convergence for the viscosity iterative process defined by

yn = αnf(xn) + (1− αn)(βnxn + (1− βn)(T (tn))
nxn),

xn+1 = γnf(yn) + (1− γn)(δnyn + (1− δn)(T (tn))
nyn), n ≥ 1,(1.1)

where {tn} is a sequence of positive real numbers.
We need the following lemmas for our main results.

Lemma 1.4 (See [4, Lemma 2.1]). Let {an}, {bn} and {δn} be sequences of non-
negative real numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn for all n.

If
∑∞

n=1 δn < ∞ and
∑∞

n=1 bn < ∞, then
(1) limn→∞ an exists.
(2) limn→∞ an = 0 if {an} has a subsequence converging to zero.

Lemma 1.5. Let C be a nonempty closed subset of a Banach space X and T (t) :
C → C be an asymptotically nonexpansive self-mapping for each t > 0 with the
fixed point set F =

∩
t>0 F (T (t)) ̸= ∅, where F (T ) is the set of all fixed points of

the mapping T. Then F is a closed subset in C.

Proof. Let {pn} be a sequence in F such that pn → p as n → ∞. Since C is
closed and {pn} is a sequence in C, we must have p ∈ C. Since T (t) : C → C is
asymptotically nonexpansive, we obtain

∥T (t)p− pn∥ = ∥T (t)p− T (t)pn∥ ≤ (1 + r1)∥p− pn∥,

for each t > 0. Taking limit as n → ∞, we get

∥T (t)p− p∥ ≤ 0,
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for each t > 0, which implies that T (t)p = p, for each t > 0. Hence p ∈ F. The proof
is complete. �

2. Main results

In this section, we present our main results. The first theorem gives the necessary
and sufficient condition for the convergence of the sequence {xn} defined in (1.1).

Theorem 2.1. Let X be a real Banach space and let C be a nonempty closed convex
subset of X. Let F = {T (t) : t ≥ 0} be an asymptotically nonexpansive semigroup
of self-mappings of C such that F =

∩
t>0 F (T (t)) ̸= ∅ in C. Assume that, for each

t > 0, T (t) is an asymptotically nonexpansive mapping with respect to r
(t)
n such that∑∞

n=1 rn < ∞, where rn = supt>0 r
(t)
n . Let f : C → C be a contractive mapping and

let {αn}, {βn}, {γn} and {δn} be real sequences in [0, 1] such that
∑∞

n=1 αn < ∞
and

∑∞
n=1 γn < ∞.

Then, the iterative sequence {xn} defined in (1.1) converges to a common fixed point
of T (tn) if and only if

lim inf
n→∞

d(xn, F ) = 0.

Proof. The necessity is obvious, so it is omitted. We now proof the sufficiency. Let
p ∈ F. Since T (t) : C → C is an asymptotically nonexpansive mapping for t > 0
and C is a nonempty closed convex subset of X, we have

∥yn − p∥ = ∥αnf(xn) + (1− αn)(βnxn + (1− βn)(T (tn))
nxn)− p∥

≤ αn∥f(xn)− p∥+ (1− αn)βn∥xn − p∥
+ (1− αn)(1− βn)∥(T (tn))nxn − p∥

≤ αnα∥xn − p∥+ αn∥f(p)− p∥+ (1− αn)βn∥xn − p∥

+ (1− αn)(1− βn)(1 + r(tn)n )∥xn − p∥
≤ αnα∥xn − p∥+ αn∥f(p)− p∥+ (1− αn)βn∥xn − p∥

+ (1− αn)(1− βn)∥xn − p∥+ r(tn)n (1− αn)(1− βn)∥xn − p∥
≤ (1− (1− α)αn + rn)∥xn − p∥+ αn∥f(p)− p∥
≤ (1 + rn)∥xn − p∥+ αn∥f(p)− p∥.(2.1)

Similarly we have that

∥xn+1 − p∥ ≤ (1 + rn)∥yn − p∥+ γn∥f(p)− p∥.
From this and (2.1), we have

∥xn+1 − p∥ ≤ (1 + rn){(1 + rn)∥xn − p∥+ αn∥f(p)− p∥}+ γn∥f(p)− p∥
≤ (1 + rn)(1 + rn)∥xn − p∥+ [(1 + rn)αn + γn]∥f(p)− p∥
= (1 + rn(2 + rn))∥xn − p∥+ [(1 + rn)αn + γn]∥f(p)− p∥
= (1 + cn)∥xn − p∥+ bn,(2.2)

where cn = rn(2 + rn) and bn = [(1 + rn)αn + γn]∥f(p) − p∥. Since
∑∞

n=1 rn <
∞, we have that {2 + rn} and {1 + rn} are bounded. Thus

∑∞
n=1 αn < ∞ and∑∞

n=1 γn < ∞, imply that
∑∞

n=1 cn < ∞ and
∑∞

n=1 bn < ∞. Hence Lemma 1.4
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implies that limn→∞ ∥xn−p∥ exists. Thus {xn} is bounded and so are {(T (tn))nxn}
and {f(xn)} because T (tn) is asymptotically nonexpansive and f is contractive.
Now since {xn} is bounded and from (2.1), we conclude that {yn} is bounded and
so are {(T (tn))nyn} and {f(yn)}.

We next turn to another calculation for ∥yn − p∥ and ∥xn+1 − p∥ as follows.

∥yn − p∥ = ∥αnf(xn) + (1− αn)(βnxn + (1− βn)(T (tn))
nxn)− p∥

≤ αn∥f(xn)− (T (tn))
nxn∥+ (1− αn)βn∥xn − p∥

+ (1− βn + αnβn)∥(T (tn))nxn − p∥
≤ αn∥f(xn)− (T (tn))

nxn∥+ (1− αn)βn∥xn − p∥

+ (1− βn + αnβn)(1 + r(tn)n )∥xn − p∥
= αn∥f(xn)− (T (tn))

nxn∥+ (1− αn)βn∥xn − p∥

+ (1− βn + αnβn)∥xn − p∥+ r(t)n (1− βn + αnβn)∥xn − p∥
= (1 + rn(1 + αnβn))∥xn − p∥+ αn∥f(xn)− (T (tn))

nxn∥
≤ (1 + 2rn)∥xn − p∥+ αn∥f(xn)− (T (tn))

nxn∥.(2.3)

Similarly, we have that

∥xn+1 − p∥ ≤ (1 + 2rn)∥yn − p∥+ γn∥f(yn)− (T (t))nyn∥.(2.4)

Putting (2.3) in (2.4), we obtain that

∥xn+1 − p∥ ≤ (1 + 2rn)
2∥xn − p∥+ (1 + 2rn)αn∥f(xn)− (T (tn))

nxn∥
+ γn∥f(yn)− (T (tn))

nyn∥
= (1 + dn)∥xn − p∥+ en,(2.5)

where dn = 4rn(1 + rn) and en = (1 + 2rn)αn∥f(xn) − (T (tn))
nxn∥ + γn∥f(yn) −

(T (tn))
nyn∥. By the assumption that

∑∞
n=1 rn < ∞,

∑∞
n=1 αn < ∞,

∑∞
n=1 γn < ∞,

and {(T (tn))nxn}, {(T (tn))nyn}, {f(xn)} and {f(yn)} are bounded, we have that∑∞
n=1 dn < ∞ and

∑∞
n=1 en < ∞. Hence Lemma 1.4 tells us that limn→∞ ∥xn − p∥

exists. Thus {∥xn − p∥} is bounded. Let L = supn ∥xn − p∥. We can rewrite (2.5)
as

∥xn+1 − p∥ ≤ ∥xn − p∥+ Ldn + en for n ≥ 1.(2.6)

From this and by induction, we obtain, for m,n ≥ 1 and p ∈ F, that

∥xn+m − p∥ ≤ ∥xn − p∥+ L
n+m−1∑
i=n

di +
n+m−1∑
i=n

ei.(2.7)

Also from (2.6), we obtain

d(xn+1, F ) ≤ d(xn, F ) + Ldn + en.

By the assumption lim infn→∞ d(xn, F ) = 0 and because
∑∞

n=1(Ldn + en) < ∞,
Lemma 1.4 tells us that

lim
n→∞

d(xn, F ) = 0.(2.8)
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We now show that {xn} is a Cauchy sequence in X. Let ϵ > 0. From (2.7) and since∑∞
n=1 dn < ∞ and

∑∞
n=1 en < ∞, there exists n0 such that, for n ≥ n0, we have

d(xn, F ) < ϵ/6,
∞∑
i=n

di < ϵ/(3L) and
∞∑
i=n

ei < ϵ/3.(2.9)

By the first inequality in (2.9) and the definition of infimum, there exists p0 ∈ F
such that

∥xn0 − p0∥ < ϵ/6.(2.10)

Combining (2.7),(2.9) and (2.10), we obtain

∥xn0+m − xn0∥ ≤ ∥xn0+m − p0∥+ ∥xn0 − p0∥

≤ 2∥xn0 − p0∥+ L

n0+m−1∑
i=n0

di +

n0+m−1∑
i=n0

ei

< ϵ/3 + ϵ/3 + ϵ/3 = ϵ,

which implies that {xn} is a Cauchy sequence in X. But X is a Banach space, so
there must be some q ∈ X such that xn → q. Since C is closed and {xn} is a sequence
in C, we have that q ∈ C. Now d(xn, F ) → 0 and xn → q as n → ∞, the continuity
of d(·, F ) implies that d(q, F ) = 0. Thus q ∈ F because F is closed, by Lemma 1.5.
Therefore {xn} converges to a common fixed point of T (t), as desired. �

If βn = 0 = δn for all n, then the iterative sequences in (1.1) become

yn = αnf(xn) + (1− αn)(T (tn))
nxn,

xn+1 = γnf(yn) + (1− γn)(T (tn))
nyn, n ≥ 1,(2.11)

and we have the following result for a fixed point of T (t).

Corollary 2.2. Let X be a real Banach space and let C be a nonempty closed
convex subset of X. Let F = {T (t) : t ≥ 0} be an asymptotically nonexpansive
semigroup of self-mappings of C such that F =

∩
t>0 F (T (t)) ̸= ∅ in C. Assume

that, for each t > 0, T (t) is an asymptotically nonexpansive mapping with respect to

r
(t)
n such that

∑∞
n=1 rn < ∞, where rn = supt>0 r

(t)
n . Let f : C → C be a contractive

mapping and let {αn} and {γn} be real sequences in [0, 1] such that
∑∞

n=1 αn < ∞
and

∑∞
n=1 γn < ∞. Then, the sequence {xn} defined in (2.11) converges to a fixed

point of T (t) if and only if

lim inf
n→∞

d(xn, F ) = 0.

We also have the following results involving asymptotic regularity and an auxil-
iary strictly increasing nonnegative function as in Ayaragarnchanakul [1].

Corollary 2.3. Let X,C, T (t)(t > 0) and the iterative sequence {xn} be as in
Theorem 2.1. Suppose that the conditions in Theorem 2.1 hold and
(1) the mapping T (t)(t > 0) is asymptotically regular in xn, i.e.,

lim inf
n→∞

∥xn − T (t)xn∥ = 0, t > 0;



A CONVERGENCE CRITERIA OF A COMMON FIXED-POINT ITERATIVE PROCESS 527

(2) lim infn→∞ ∥xn − T (t)xn∥ = 0 implies that

lim inf
n→∞

d(xn, F ) = 0.

Then the sequences {xn} converges to a common fixed point of T (t).

For a sequence {tn}, where tn > 0 for all n ≥ 1.

yn = αnf(xn) + (1− αn)(βnxn + (1− βn)(T (tn))
nxn),

xn+1 = γnf(yn) + (1− γn)(δnyn + (1− δn)(T (tn))
nyn), n ≥ 1.(2.12)

Theorem 2.4. Let X,C be as in Theorem 2.1 and the iterative sequence {xn} be
as in (2.12). Suppose that the mapping T (ti) is asymptotically nonexpansive and
asymptotically regular in xn, the conditions in Theorem 2.1 hold, and there exists
an increasing function g : R+ → R+ with g(r) > 0 for all r > 0 such that

∥xn − T (ti)xn∥ ≥ g(d(xn, F ), ∀i ≥ 1 ∀n ≥ 1.

Then the sequences {xn} defined in (2.12) converges to a common fixed point of
T (tn).

Proof. To apply Theorem 2.1, we prove that lim infn→∞ d(xn, F ) = 0. From the
assumption that ∥xn − T (ti)xn∥ ≥ g(d(xn, F )) for i ≥ 1 and for n ≥ 1, we have

1

m

m∑
i=1

∥xn − T (ti)xn∥ ≥ g(d(xn, F )),

for n ≥ 1 and m ≥ 1. Since T (ti) is asymptotically regular in xn, this implies that

lim inf
n→∞

g(d(xn, F )) = 0.(2.13)

Suppose that lim infn→∞ d(xn, F )) = L > 0. By definition of infimum, there exists
an N such that

| inf
n≥m

d(xn, F ))− L| < L

2
,

for all m ≥ N. Equivalently,

d(xn, F ) >
L

2
,

for all n ≥ m ≥ N. Since g is increasing, we have that

g(d(xn, F )) ≥ g
(L
2

)
,

for all n ≥ m ≥ N. This implies that

lim inf
n→∞

g(d(xn, F )) ≥ g
(L
2

)
> 0,

which contradicts (2.13). Hence lim infn→∞ d(xn, F ) = 0, as desired. �
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