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ON EXISTENCE AND UNIQUENESS OF BEST PROXIMITY
POINTS UNDER A POPESCU’S TYPE CONTRACTIVITY
CONDITION

ANGEL ALMEIDA, ANTONIO FRANCISCO ROLDAN LOPEZ DE HIERRO,
AND KISHIN SADARANGANI

ABSTRACT. The main purpose of this paper is to present a best proximity point
theorem. The novelty of the result is that assumption relative to the contractivity
condition is only satisfied by elements verifying a certain condition.

1. INTRODUCTION
In 1976, Bogin [4] proved the following fixed point theorem.

Theorem 1.1 (Bogin [4]). Let (X, d) be a complete metric space and let T : X — X
be a mapping verifying

d(Tz, Ty) < ad(x,y) + b(d(z,Tz) + d(y, Ty)) + c(d(z, Ty) + d(y, Tx)),

forallz,y € X, where a >0,b>0,c>0and a+2b+2c=1. Then T has a fized
point.

Very recently, Popescu [15] extended the previous result using an antecedent
condition to the contractive property.

Theorem 1.2 (Popescu [15]). Let (X,d) be a complete metric space and let T :
X — X be a mapping satisfying

1

= d(Tz,Ty) < ad(z,y) +b(d(z,Tz) + d(y, Ty)) + c(d(z, Ty) + d(y, T'x)) ,

forallz,y € X, where a>0,b>0,c>0and a+2b+2c=1. ThenT has a fized
point.

Currently, the fixed point theory has became into one of the most useful branches
of Nonlinear Analysis due to its applications. Their results have inspired the modern
field in which best proximity points are the essential key. This theory is based in
the following idea: when a non-self-mapping 7' : A — B (between two subsets of
a metric space) has no fixed points, then it is interesting to study if there exists a
point x € A such that d(z,Tx) = d(A, B). This kind of points are known as best
prozimity points of T. In this paper, inspired by the previous results, we show some
theorems that guarantee existence and uniqueness of best proximity points using
an antecedent condition.
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2. PRELIMINARIES

Let N denote the set of all non-negative integers. Henceforth, n, m and k will
denote non-negative integers and “for all n” will mean “for all n > 0”. Throughout
the manuscript, let (X, d) be a metric space, let A and B two nonempty subsets of
X and let T': A — B be a mapping. Define:

d(A, B) = inf ({d(a,b) : a € A,b € B}),

Ap={a€cA: d(a,b) =d(A,B) for some b € B },

By={be B: d(a,b) =d(A,B) for some a € A }.
Notice that if a € A and b € B verify d(a,b) = d(A, B), then a € Ay and b € By.
Therefore, Ay is nonempty if, and only if, By is nonempty. Therefore, is Ag is
nonempty, then A, B and By are nonempty subsets of X. It is clear that if ANB # 0,
then Ay is nonempty. In [7], the authors discussed sufficient conditions in order to
guarantee the nonemptiness of Ag. In general, if A and B are closed subsets of a
normed linear space such that d(A, B) > 0, then Ay is contained in the boundary
of A (see [20]).

The main aim of this paper is to study sufficient conditions to ensure the existence
and the unicity, of the following kind of points.

Definition 2.1. We will say a point = € A is a best prozimity point of T if d(z, Tx) =
d(A, B). If A = B, a best proximity point of T is a fized point of T (that is, Tz = x).
Definition 2.2. Let A and B be two subsets of a metric space (X, d) such that A
is nonempty. We say that the pair (A, B) has the P-property if

ai,az € Ag, b1,by € By
d(al,bl) = d(A, B) = d(al,ag) = d(bl,bg).
d(ag,bz) = d(A, B)

We will consider a weaker condition than the P-property as follows.

Definition 2.3. Let A and B be two subsets of a metric space (X, d) such that A
is nonempty. We say that the pair (A, B) has the weak P-property if

ai,az € Ag, b1,by € By
d(al,bl) = d(A, B) = d(al,ag) < d(bl,bg).
d(ag,bz) = d(A, B)

In the following Example, we show that the weak P-property does not imply the

P-property.
Example 2.4. Let X = R? provided with the Euclidean metric and, given n € N
with n > 1, consider

A={(z,24+2): -1 <z <0}U{(z,—z+2):0<z <1},

B ={(-n,0), (n,0) }.
It is easy to prove that d(4, B) = y/(n —1)2+ 1, Ag = {(-1,1),(1,1)} and By = B.
Taking into account that

d((-1,1),(1,1)) =2, d((—n,0),(n,0)) = 2n,
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d((1,1,),(n,0)) = d(A, B) = d((—1,1), (—n,0)),
we have that

d((-1,1),(1,1)) =2 < 2n =d((—n,0), (n,0)).
Therefore, the pair (A, B) has the weak P-property but it only verifies the P-
property if n = 1.

We will consider the following kind of functions.

Definition 2.5. A comparison function is a non-decreasing function ¢ : [0,00) —

[0, 00) such that lim,, s ¢™(t) = 0 for all £ > 0, where ¢" = p o @ o ™ o ¢ denotes
the n-iterate of . Let F denote the family of all comparison functions.

It is clear that every comparison function ¢ verifies the following properties.
(1) p(t) < t for all t > 0; (i7) ¢(0) = 0;
(2.1) (131) p(t) <tforallt>0; (iv)p(t)=t = t=0.

3. MAIN RESULTS
The following result is the main aim of the present paper.

Theorem 3.1. Let A and B two closed subsets of a complete metric space (X, d)
such that Ag # 0 and let T : A — B be a mapping such that TAy C By. Suppose
that there exists p € F wverifying that, for all x,y € Ay,
(3.1)  d(z,Tz) < d(z,y) +d(A,B) = d(Tz,Ty) < ¢(M(z,y) —d(A,B)),
where M(z,y) = max {d(z,y),d(z,Tx),d(y,Ty)}. Also assume that
(a): T is continuous and (A, B) has the weak P-property.
Then T has a unique best prorimity point.

Notice that we only suppose that the contractivity condition holds for all z,y €
Ap, but not necessarily in A.

Proof. Existence. Fix any xg € Ag. Since T'xg € T'Ag C By, there exists 1 € A such
that d(x1,Tz9) = d(A, B). In particular, z; € Ag. Now, since Tzy € T Ay C By,
there exists x9 € A such that d(x2,Tx1) = d(A, B), and, in particular, xo € Aj.
Repeating this process, we can consider a sequence {z,} C Ay verifying that

(3.2) d(xpy1, Txy) = d(A, B) for all n > 0.

Suppose that there is ng € N such that x,, = xp,+1. In this case, d(zpy, Tan,) =
d(xng+1,TTn,) = d(A, B), and the existence of a best proximity point of 7" is proved.
On the contrary, suppose that z,, # z,41 for all n > 0, that is,

(3.3) d(zp,xps1) >0  foralln>0.
Using the weak P-property, for all n,m > 0,

Tn4+1, Tm+1 € Ag, Ty, Txy € By
(3.4) d(zns1, Tay) = d(A, B) = ATt wmsr) < ATz, Tam).
d(xm+1, Txy) = d(A, B)
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Furthermore, for all n,

(3.5) d(zp, Txy) < d(xn, Tny1) + d(@pg1, Tay) = d(xn, ny1) + d(A, B).
Next we claim that

(3.6) d(Txp, Txni1) < @(d(Tn, Tni1)) for all n > 0.

Taking into account (3.5) and applying the contractivity condition (3.1) to z = x,,
and y = z,41, we notice that, for all n,

d(T.%'n, T:Bn—l-l) S 2 (M(I'n, xn-l-l) - d(Aa B))
(37) =@ (max {d($n, xn—H): d(l’n, T.I‘n), d(xTH-lv Txn-‘rl)} - d(A? B))
Consider the subsets

Ni ={neN: the maximum in (3.7) is d(zp, Tnt1) },
Ny ={neN: the maximum in (3.7) is d(zp,Tzy) },

N3 ={neN: the maximum in (3.7) is d(zp+1,TTn+1) }.

Clearly, N1 U Ny U N3 = N. We distinguish three cases.
e If n € Ny, then

d(Tzn, Trpi1) < @ (d(Tn, Tng1) — d(A, B)) < @ (d(@n, Tpi1))

since ¢ is non-decreasing, so (3.6) holds in this case.

o If n € Ny, it follows from (3.5) that M (zp, xny1) — d(A, B) = d(xy, Txy) —
d(A, B) < d(xyn,Tny1), and taking into account that ¢ is non-decreasing, we
deduce that

d(Txp, Trny1) < @ (d(n, Tzn) — d(A, B)) < @ (d(Tn, Tnt1))

which means that (3.6) also holds in this case.
o If n € Ns, it also follows from (3.5) that M(z,,xn+1) — d(A, B)
= d(zpt1, Txns1)—d(A, B) < d(zp41,Znt2) but, in this case, applying (3.3)
and (3.4),
d($n+17 xn+2) < d(Tl‘ny T"En+1) <o (d(l’n+1, TZCnJrl) - d(A7 B))
< o (d(Tns1, Tny2)) < d(Tntr; Tnya),

which is false. Therefore, the case n € N3 is impossible.

The previous cases show that (3.6) holds. Combining (3.4) and (3.6), we have
that
d(Tp41, Tnt2) < d(Txp, Trps1) < @(d(Tn, Tpi1)) for all n > 0,
(pn

and repeating this process, d(zy,Znt1) < ¢@"(d(zp,x1)) for all n > 1. As ¢ is a

comparison function,

(38) {d(xna xn-l—l)} — 0.

Next, we show that {z,} is a Cauchy sequence reasoning by contradiction. As-
sume that {x,} is not a Cauchy sequence and we are going to get a contradiction.
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In such a case, there exists g9 > 0 and two partial subsequences {IL‘m(k)}keN and
{@n@) tren verifying that, for all k € N,

(3.9) k<m(k) <n(k), d@mnm)Tomr)) =0,  ATmr)s Tnr)-1) < €0
(3.10) Hm d(zm ), Tngry) = MM d(Z k)11, Tn(ry41) = €0-

By (3.8), there exists ny € N such that d(z,, z,4+1) < €9/2 for all n > ny. Moreover,
by (3.10), there exists ny € N such that d(2p, k), Tp)—1) > €0/2 for all k > na.
Letting ng = max(n1, n2), we have that for all k > ng, as n(k) —1 > m(k) > k > no,

(3.11) d(xg, rpy1) < %0 < d( Ty () s Tr(r)—1)-
Therefore, for all & > ng,
ATy TT(ry) < d(%'m(k +1) + A @) 11 Tmr))
= d(Tpm (k) 4+1)+d(A, B)
(3.12) <2+ d(A, B) d(@m(s)s T(ry1) + d(A, B).

We are going to show that
(3.13) (T (k)15 Tn@ry) < p(e0)  for all k > ny.

Applying (3.4), (3.12) and the contractivity condition (3.1) to x = @, and y =
Tp(k)—1, for all k > ng,

AT (k)41 Tn(ky) < AT Tmrys Tnry—1) < @ (M(Zm(r)s Tnry—1) — d(A, B))
= ¢ (max {d(Zp(k)> Tr(k)-1)> AT (i) TTm(r))
(3.14) d(@ )1, TTn(ky—1)} — d(A, B)) .
Consider the subsets

= { k > ng: the maximum in (3.14) is d(y,k)> Tn(k)—1) },
N} = { k > mng: the maximum in (3.14) is d(@p k), T (k) } )

Ny ={ k>ng: the maximum in (3.14) is d(Tp k)15 TTr(k)—1) }.
Clearly N U Nj U N4 = N.
o If k € Nj, it follows from (3.9) that
AT () +1> Tngk)) < @ (A Tm(r)s Tn(ey—1) — d(A, B))
< o (d(@mky Tnr)-1)) < @(€),

o (3.13) holds.
e If k € NJ, then by (3.2) and (3.11),

M (ks Tnk)—1) — d(A, B) = d(Zpry, TTimr)) — d(4, B)
< d(@m(k)s Tm(k)+1) T A Zpe)+1, TTmy) — d(A, B)
= d(Tp(k)> Tm(k)+1) < €0/2,
which means that
AT (k) 415 Tr(ry) < @ (M (T, Tgry—1) — d(A, B))
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< p(e0/2) < p(eo),

o (3.13) also holds.
o If k € Ni, then

M (2 () s T (i) — ) ( B) = d(zn)- 1,T96 (k)—1) — d(A, B)
< d(zy (k) + (@ (k) TTn(r)—1) — d(A, B)
= d(Tpk)y—1, Tn(k )) < &0/2,
and the same reasoning yields to (3.13).

In any case, (3.13) holds. But, in this case, taking limit as & — oo in (3.13)
and using (3.10), we deduce that 9 < ¢(gg) < €0, which is impossible. This
contradiction shows us that {z,} is a Cauchy sequence. Since (X, d) is complete,
there exists z € X such that {x,} — . Furthermore, z € A because A is closed
and z, € A9 C A for all n. Applying the continuity of 7" and taking limit in (3.2),
we conclude that d(xz, Tx) = d(A, B), that is, z is a best proximity point of 7.

Uniqueness. Assume that z,y € A are two best proximity points of 7', that is,
d(z,Tx) = d(y,Ty) = d(A, B), and we are going to show that x = y. In such a
case, using that weak P-property,

x,y € Ag, Tx, Ty € By
(3.15) d(z,Tz) = d(A, B) = d(z,y) <d(Tz,Ty).
d(y,Ty) = d(A, B)

Notice that d(x,Tz) = d(A, B) < d(z,y) + d(A, B). Applying (2.1) and the con-
tractivity condition (3.1) to x and y, we have that
d(z,y) < d(Tz,Ty) < ¢ (M(z,y) — d(A, B))
= ¢ (max{d(z,y),d(z, Tx),d(y, Ty)} — d(A, B))
= ¢ (max{d(z,y),d(A, B)} — d(A, B))
= ¢ (max{d(z,y) — d(A, B),0}) .
If max{d(z,y) —d(A,B),0} = 0, then d(z,y) < ¢(0) = 0, so x = y. And if
max {d(x,y) — d(A, B),0} = d(z,y) — d(A, B), then
d(z,y) < ¢ (d(z,y) — d(A, B)) < ¢ (d(z,y)) < d(z,y).
The equality ¢ (d(z,y)) = d(x,y) also yields to d(z,y) = 0, that is, x = y. This
finishes the proof. O

Remark 3.2. Notice that in the previous proof we have showed that, starting
from any xg € Ay, it is possible to consider a sequence {x,} C Ag verifying that
d(xp41,Tzy) = d(A,B) for all n > 0, and any sequence verifying this property
converges to the unique best proximity point of 7T'.

In the following result, we replace the continuity of T' by other hypotheses.

Theorem 3.3. Let A and B two closed subsets of a complete metric space (X, d)
such that Ay # 0 and let T : A — B be a mapping such that T Ay C By. Suppose
that there exists p € F wverifying that, for all x € Ag and all y € A,

(3.16) rd(x,Tz) <d(xz,y)+d(A,B) = d(Tz,Ty) < p(M(z,y) —d(A,B)),
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where M (z,y) = max {d(z,y),d(z,Tx),d(y,Ty)} andr verifiesr < 1 ifd(A,B) >0
andr <1/2 if d(A,B) = 0. Also assume that
(a"): (A, B) has the P-property.
Then T has a unique best prorimity point.

Proof. If r1,ry € |—00,1/2] verify r1 < ro and the result holds for 7o, then it is
also valid for r1. Then, it is only necessary to prove it when r > 0. Taking into
account that the P-property implies the weak P-property and following the lines of
the proof of Theorem 3.1, we can deduce that {z,,} C Ay is a convergent sequence,
and there is © € A such that {z,,} — x. Using the P-property as in (3.4), we deduce
that, for all n,m > 0,

Tn+1, Tm+1 € Ag, Txp, Tz € By
d(zpt1,Txy) = d(A, B) = d(xpt1, Tms1) = ATz, Trp,).
d(xmt1, Txy) = d(A, B)

This means that {Tx,} C By C B is also a Cauchy sequence. Thus, there is z € B
such that {T'z,} — z. Taking limit in d(zp4+1,T2,) = d(A,B) as n — oo, we
deduce that
(3.17) d(z,z) = d(A, B).
Next, we distinguish whether z = x or not.

Case 1: z = x. In this case, by (3.17), d(A,B) =0, so r < 1/2 and xp41 = Tz,
for all n. We are going to show that the set N = {n € N: d(zy, xpt+1) < 2d(xn, )}

is not finite reasoning by contradiction. If IV is finite, there exists ng € N such that
d(Zpn, Tpy1) > 2d(zy, ) for all n > ng. Therefore, for n > ny,

2d(xn, ) < d(xp, Tni1) < d(xn, z) + d(z, 2041) = d(zp,x) < d(Tpe1, ).

As 0 < d(zpy,x) < d(xpg+1,2) < d(xy,z) for all n > ng + 2, we have that ¢g =
d(xng+1,2) > 0 verifies g9 < d(zy,x) for all n > ng + 2, which contradicts the fact
that {x,} — 2. This proves that N is not finite. Therefore, there exists a partial
subsequence {z,,x)} of {x,} such that

1

Applying the contractive condition (3.16) to x,;) € Ag and z € A, we have that,
for all k,

d(xn(k)—&—la T$) = d(Txn(k)aTx) <y (M($n(k)a 1}))
= (maX {d(xn(k)7 .T), d(xn(k)a Txn(k))a d(l‘, T(L’)})
(318) =@ (max {d(xn(k)a $>, d(xn(k)a xn(k)-‘rl)? d(:Ev T$) }) .
Next we show that Tx = x reasoning by contradiction. Taking into account that
{d(@p > ) fren — 0 and {d(wy k), Tp(ky+1) fren — 0, if d(z,Tz) > 0, there exists
ko € N such that max {d(z, ), ), d(Tpk) Tpp)11), d(x, Tx)} = d(z, Tz) for all
k > ko. Therefore d(x )41, Tr) < ¢ (d(x,Tx)) for all k > ko. Letting k — oo, we
deduce that d(z,Tz) < ¢ (d(z,Tx)), but this is only possible when d(z,Tz) = 0,

which contradicts Tx # x. As a consequence, x is a fixed point of T, that is, a best
proximity point.
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Case 2: z # x. In this case, we are going to prove that z = Tx. Notice that
d(A,B) =d(z,z) >0, s0r < 1. Indeed, as

nh—>Holo rd(xn, Tzy,) = rd(z,z) and

nh_)rrolo (d(zp,z) +d(A,B)) =d(A,B) =d(z, z),
there exists ng € N such that

rd(zn, Tr,) < d(xp, x) + d(A, B)  for all n > ny.
Applying the contractivity condition (3.1), for all n > ny,
d(Tzy,, Tx) < o (M(xn,x) — d(A, B))

(3.19) = ¢ (max {d(zp,x),d(xn, Txy),d(x, Tx)} —d(A, B)).
Consider the subsets

Ny ={mneN: the maximum in (3.19) is d(z,, ) },
NJ ={mneN: the maximum in (3.19) is d(z,, Tx,) },

N§ ={neN: the maximum in (3.19) is d(z,Tx) }.
Clearly N{UNJUNY = N, so both three subsets can not be finite at the same time.
e Suppose that Nj' is not finite. Then there exists a partial subsequence
{7y} of {zn} such that
max {d(zk), ), d(@p ) TZp)), d(@, Tx) } = d(2p), ) for all k.
In such a case,
and letting k& — oo we deduce that d(z,Tz) = 0, that is, z = T'z.

e If Ny is not finite, there exists a partial subsequence {x,)} of {z,} such
that, for all k,

M (21, x) — d(A, B) = max {d(:vn(k),x), d(Tpky> TTn(r)), d(, T:U)} —d(A, B)
= d(Tp(), Tonm)) — d(A, B)
< d(Tp(ky, Trk)+1) T A @p)y—1, TTnr)) — d(A, B) = d(p(r), Tk)+1)s
and also letting £k — oo in
d(Txn(r), Tx) < ¢ (M (2, ) — d(A, B))
< M(zpr), z) — d(A, B) < d(Tpr), Tn(r)+1);

we deduce that d(z,Tz) = 0.
e Finally, if V3 is not finite, there exists a partial subsequence {1} of {,}
such that, for all &,

M(a}n(k), .%') — d(A, B)
= max {d(2,,x), ), ATy, TTn(ry), d(z, Tx) } — d(A, B)
=d(z,Tz) —d(A,B) <d(z,z)+d(z,Tx) — d(A, B)
=d(A,B) +d(z,Tx) —d(A,B) = d(z,Tx).
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Therefore, d(Tx,py, Tx) < @ (M(2npy,x) — d(A, B)) < @(d(z,Tx)) for all
k. Letting k — oo we conclude that d(z,Tz) < ¢(d(z, Tx )) d(z,Tz), and
the equality ¢(d(z,Tz)) = d(z,Tz) holds that d(z, Ta:)
This means that, in any case, d(z,Tz) = d(z,z) = d(A, B), that is, = is a best
proximity point of 7. The uniqueness of x can be proved as in Theorem 3.1. O

Taking into account that the pair (X, X)) satisfies the P-property, if we put A =
B = X in Theorems 3.1 and 3.3, we obtain the following counterparts in the fixed
point theory.

Corollary 3.4. Let T : X — X be a mapping form a complete metric space (X, d)
into itself and suppose that there exists p € F and r € R wverifying that, for all
z,y € X,

rd(z,Tx) < d(z,y) = d(Tz,Ty) < ¢ (M(z,y)),
where M (z,y) = max {d(z,y),d(z,Tx),d(y,Ty)}. Also assume that either

(b) T is a continuous mapping and r =1, or
(t') r verifiesr <1 ifd(A,B) >0 andr <1/2 if d(A,B) = 0.
Then T has a unique fized point.

Next, we particularize Theorems 3.1 and 3.3 to the case in which (t) = kt for
all t > 0, where k € [0,1).

Corollary 3.5. Let A and B two closed subsets of a complete metric space (X, d)
such that Ay # 0 and let T : A — B be a mapping such that T Ay C By. Suppose
that there exists k € [0,1) and r € R wverifying that, for all x € Ay and all y € A,

rd(z,Tx) < d(z,y) + d(A,B) = d(Tz,Ty) < k(M(z,y) —d(A, B)),
where M (z,y) = max {d(z,y),d(x,Tx),d(y,Ty)}. Also assume that either

(a) T is continuous, r =1 and (A, B) has the weak P-property, or
(a") (A, B) has the P-property and r verifies r < 1 if d(A,B) >0 and r < 1/2 if
d(A,B) =0.

Then T has a unique best prorimity point.
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