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2. Preliminaries

Let N denote the set of all non-negative integers. Henceforth, n, m and k will
denote non-negative integers and “for all n” will mean “for all n ≥ 0”. Throughout
the manuscript, let (X, d) be a metric space, let A and B two nonempty subsets of
X and let T : A → B be a mapping. Define:

d(A,B) = inf ({d(a, b) : a ∈ A, b ∈ B}) ,
A0 = { a ∈ A : d(a, b) = d(A,B) for some b ∈ B },
B0 = { b ∈ B : d(a, b) = d(A,B) for some a ∈ A }.

Notice that if a ∈ A and b ∈ B verify d(a, b) = d(A,B), then a ∈ A0 and b ∈ B0.
Therefore, A0 is nonempty if, and only if, B0 is nonempty. Therefore, is A0 is
nonempty, then A, B and B0 are nonempty subsets ofX. It is clear that if A∩B ̸= ∅,
then A0 is nonempty. In [7], the authors discussed sufficient conditions in order to
guarantee the nonemptiness of A0. In general, if A and B are closed subsets of a
normed linear space such that d(A,B) > 0, then A0 is contained in the boundary
of A (see [20]).

The main aim of this paper is to study sufficient conditions to ensure the existence
and the unicity, of the following kind of points.

Definition 2.1. We will say a point x ∈ A is a best proximity point of T if d(x, Tx) =
d(A,B). If A = B, a best proximity point of T is a fixed point of T (that is, Tx = x).

Definition 2.2. Let A and B be two subsets of a metric space (X, d) such that A0

is nonempty. We say that the pair (A,B) has the P-property if

a1, a2 ∈ A0, b1, b2 ∈ B0

d(a1, b1) = d(A,B)
d(a2, b2) = d(A,B)

 ⇒ d(a1, a2) = d(b1, b2).

We will consider a weaker condition than the P -property as follows.

Definition 2.3. Let A and B be two subsets of a metric space (X, d) such that A0

is nonempty. We say that the pair (A,B) has the weak P-property if

a1, a2 ∈ A0, b1, b2 ∈ B0

d(a1, b1) = d(A,B)
d(a2, b2) = d(A,B)

 ⇒ d(a1, a2) ≤ d(b1, b2).

In the following Example, we show that the weak P -property does not imply the
P -property.

Example 2.4. Let X = R2 provided with the Euclidean metric and, given n ∈ N
with n ≥ 1, consider

A = {(x, x+ 2) : −1 ≤ x ≤ 0} ∪ {(x,−x+ 2) : 0 ≤ x ≤ 1} ,
B = { (−n, 0), (n, 0) }.

It is easy to prove that d(A,B) =
√

(n− 1)2 + 1, A0 = {(−1, 1), (1, 1)} and B0 = B.
Taking into account that

d((−1, 1), (1, 1)) = 2, d((−n, 0), (n, 0)) = 2n,
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d((1, 1, ), (n, 0)) = d(A,B) = d((−1, 1), (−n, 0)),

we have that

d((−1, 1), (1, 1)) = 2 ≤ 2n = d((−n, 0), (n, 0)).

Therefore, the pair (A,B) has the weak P -property but it only verifies the P -
property if n = 1.

We will consider the following kind of functions.

Definition 2.5. A comparison function is a non-decreasing function φ : [0,∞) →
[0,∞) such that limn→∞ φn(t) = 0 for all t > 0, where φn = φ ◦ φ ◦ (n). . . ◦ φ denotes
the n-iterate of φ. Let F denote the family of all comparison functions.

It is clear that every comparison function φ verifies the following properties.

(i) φ(t) < t for all t > 0; (ii) φ(0) = 0;

(iii) φ(t) ≤ t for all t ≥ 0; (iv) φ(t) = t ⇒ t = 0.(2.1)

3. Main results

The following result is the main aim of the present paper.

Theorem 3.1. Let A and B two closed subsets of a complete metric space (X, d)
such that A0 ̸= 0 and let T : A → B be a mapping such that TA0 ⊆ B0. Suppose
that there exists φ ∈ F verifying that, for all x, y ∈ A0,

(3.1) d(x, Tx) ≤ d(x, y) + d(A,B) =⇒ d(Tx, Ty) ≤ φ (M(x, y)− d(A,B)) ,

where M(x, y) = max {d(x, y), d(x, Tx), d(y, Ty)}. Also assume that

(a): T is continuous and (A,B) has the weak P-property.

Then T has a unique best proximity point.

Notice that we only suppose that the contractivity condition holds for all x, y ∈
A0, but not necessarily in A.

Proof. Existence. Fix any x0 ∈ A0. Since Tx0 ∈ TA0 ⊆ B0, there exists x1 ∈ A such
that d(x1, Tx0) = d(A,B). In particular, x1 ∈ A0. Now, since Tx1 ∈ TA0 ⊆ B0,
there exists x2 ∈ A such that d(x2, Tx1) = d(A,B), and, in particular, x2 ∈ A0.
Repeating this process, we can consider a sequence {xn} ⊆ A0 verifying that

(3.2) d(xn+1, Txn) = d(A,B) for all n ≥ 0.

Suppose that there is n0 ∈ N such that xn0 = xn0+1. In this case, d(xn0 , Txn0) =
d(xn0+1, Txn0) = d(A,B), and the existence of a best proximity point of T is proved.
On the contrary, suppose that xn ̸= xn+1 for all n ≥ 0, that is,

(3.3) d(xn, xn+1) > 0 for all n ≥ 0.

Using the weak P -property, for all n,m ≥ 0,

(3.4)
xn+1, xm+1 ∈ A0, Txn, Txm ∈ B0

d(xn+1, Txn) = d(A,B)
d(xm+1, Txm) = d(A,B)

 ⇒ d(xn+1, xm+1) ≤ d(Txn, Txm).
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Furthermore, for all n,

(3.5) d(xn, Txn) ≤ d(xn, xn+1) + d(xn+1, Txn) = d(xn, xn+1) + d(A,B).

Next we claim that

(3.6) d(Txn, Txn+1) ≤ φ(d(xn, xn+1)) for all n ≥ 0.

Taking into account (3.5) and applying the contractivity condition (3.1) to x = xn
and y = xn+1, we notice that, for all n,

d(Txn, Txn+1) ≤ φ (M(xn, xn+1)− d(A,B))

= φ (max {d(xn, xn+1), d(xn, Txn), d(xn+1, Txn+1)} − d(A,B))(3.7)

Consider the subsets

N1 = { n ∈ N : the maximum in (3.7) is d(xn, xn+1) } ,

N2 = { n ∈ N : the maximum in (3.7) is d(xn, Txn) } ,

N3 = { n ∈ N : the maximum in (3.7) is d(xn+1, Txn+1) } .

Clearly, N1 ∪N2 ∪N3 = N. We distinguish three cases.

• If n ∈ N1, then

d(Txn, Txn+1) ≤ φ (d(xn, xn+1)− d(A,B)) ≤ φ (d(xn, xn+1))

since φ is non-decreasing, so (3.6) holds in this case.
• If n ∈ N2, it follows from (3.5) that M(xn, xn+1)− d(A,B) = d(xn, Txn)−
d(A,B) ≤ d(xn, xn+1), and taking into account that φ is non-decreasing, we
deduce that

d(Txn, Txn+1) ≤ φ (d(xn, Txn)− d(A,B)) ≤ φ (d(xn, xn+1)) ,

which means that (3.6) also holds in this case.
• If n ∈ N3, it also follows from (3.5) that M(xn, xn+1) − d(A,B)
= d(xn+1, Txn+1)−d(A,B) ≤ d(xn+1, xn+2) but, in this case, applying (3.3)
and (3.4),

d(xn+1, xn+2) ≤ d(Txn, Txn+1) ≤ φ (d(xn+1, Txn+1)− d(A,B))

≤ φ (d(xn+1, xn+2)) < d(xn+1, xn+2),

which is false. Therefore, the case n ∈ N3 is impossible.

The previous cases show that (3.6) holds. Combining (3.4) and (3.6), we have
that

d(xn+1, xn+2) ≤ d(Txn, Txn+1) ≤ φ(d(xn, xn+1)) for all n ≥ 0,

and repeating this process, d(xn, xn+1) ≤ φn(d(x0, x1)) for all n ≥ 1. As φ is a
comparison function,

(3.8) {d(xn, xn+1)} → 0.

Next, we show that {xn} is a Cauchy sequence reasoning by contradiction. As-
sume that {xn} is not a Cauchy sequence and we are going to get a contradiction.
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In such a case, there exists ε0 > 0 and two partial subsequences {xm(k)}k∈N and
{xn(k)}k∈N verifying that, for all k ∈ N,

k ≤ m(k) < n(k), d(xm(k), xn(k)) ≥ ε0, d(xm(k), xn(k)−1) < ε0(3.9)

lim
k→∞

d(xm(k), xn(k)) = lim
k→∞

d(xm(k)+1, xn(k)+1) = ε0.(3.10)

By (3.8), there exists n1 ∈ N such that d(xn, xn+1) ≤ ε0/2 for all n ≥ n1. Moreover,
by (3.10), there exists n2 ∈ N such that d(xm(k), xn(k)−1) ≥ ε0/2 for all k ≥ n2.
Letting n0 = max(n1, n2), we have that for all k ≥ n0, as n(k)−1 ≥ m(k) ≥ k ≥ n0,

(3.11) d(xk, xk+1) ≤
ε0
2

≤ d(xm(k), xn(k)−1).

Therefore, for all k ≥ n0,

d(xm(k), Txm(k)) ≤ d(xm(k), xm(k)+1) + d(xm(k)+1, Txm(k))

= d(xm(k), xm(k)+1) + d(A,B)

≤ ε0
2

+ d(A,B) ≤ d(xm(k), xn(k)−1) + d(A,B).(3.12)

We are going to show that

(3.13) d(xm(k)+1, xn(k)) ≤ φ(ε0) for all k ≥ n0.

Applying (3.4), (3.12) and the contractivity condition (3.1) to x = xm(k) and y =
xn(k)−1, for all k ≥ n0,

d(xm(k)+1, xn(k)) ≤ d(Txm(k), Txn(k)−1) ≤ φ
(
M(xm(k), xn(k)−1)− d(A,B)

)
= φ

(
max

{
d(xm(k), xn(k)−1), d(xm(k), Txm(k)),

d(xn(k)−1, Txn(k)−1)
}
− d(A,B)

)
.(3.14)

Consider the subsets

N ′
1 =

{
k ≥ n0 : the maximum in (3.14) is d(xm(k), xn(k)−1)

}
,

N ′
2 =

{
k ≥ n0 : the maximum in (3.14) is d(xm(k), Txm(k))

}
,

N ′
3 =

{
k ≥ n0 : the maximum in (3.14) is d(xn(k)−1, Txn(k)−1)

}
.

Clearly N ′
1 ∪N ′

2 ∪N ′
3 = N.

• If k ∈ N ′
1, it follows from (3.9) that

d(xm(k)+1, xn(k)) ≤ φ
(
d(xm(k), xn(k)−1)− d(A,B)

)
≤ φ

(
d(xm(k), xn(k)−1)

)
≤ φ(ε),

so (3.13) holds.
• If k ∈ N ′

2, then by (3.2) and (3.11),

M(xm(k), xn(k)−1)− d(A,B) = d(xm(k), Txm(k))− d(A,B)

≤ d(xm(k), xm(k)+1) + d(xm(k)+1, Txm(k))− d(A,B)

= d(xm(k), xm(k)+1) ≤ ε0/2,

which means that

d(xm(k)+1, xn(k)) ≤ φ
(
M(xm(k), xn(k)−1)− d(A,B)

)
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≤ φ(ε0/2) ≤ φ(ε0),

so (3.13) also holds.
• If k ∈ N ′

3, then

M(xm(k), xn(k)−1)− d(A,B) = d(xn(k)−1, Txn(k)−1)− d(A,B)

≤ d(xn(k)−1, xn(k)) + d(xn(k), Txn(k)−1)− d(A,B)

= d(xn(k)−1, xn(k)) ≤ ε0/2,

and the same reasoning yields to (3.13).

In any case, (3.13) holds. But, in this case, taking limit as k → ∞ in (3.13)
and using (3.10), we deduce that ε0 ≤ φ(ε0) < ε0, which is impossible. This
contradiction shows us that {xn} is a Cauchy sequence. Since (X, d) is complete,
there exists x ∈ X such that {xn} → x. Furthermore, x ∈ A because A is closed
and xn ∈ A0 ⊆ A for all n. Applying the continuity of T and taking limit in (3.2),
we conclude that d(x, Tx) = d(A,B), that is, x is a best proximity point of T .

Uniqueness. Assume that x, y ∈ A are two best proximity points of T , that is,
d(x, Tx) = d(y, Ty) = d(A,B), and we are going to show that x = y. In such a
case, using that weak P -property,

(3.15)
x, y ∈ A0, Tx, Ty ∈ B0

d(x, Tx) = d(A,B)
d(y, Ty) = d(A,B)

 ⇒ d(x, y) ≤ d(Tx, Ty).

Notice that d(x, Tx) = d(A,B) ≤ d(x, y) + d(A,B). Applying (2.1) and the con-
tractivity condition (3.1) to x and y, we have that

d(x, y) ≤ d(Tx, Ty) ≤ φ (M(x, y)− d(A,B))

= φ (max {d(x, y), d(x, Tx), d(y, Ty)} − d(A,B))

= φ (max {d(x, y), d(A,B)} − d(A,B))

= φ (max {d(x, y)− d(A,B), 0}) .

If max {d(x, y)− d(A,B), 0} = 0, then d(x, y) ≤ φ(0) = 0, so x = y. And if
max {d(x, y)− d(A,B), 0} = d(x, y)− d(A,B), then

d(x, y) ≤ φ (d(x, y)− d(A,B)) ≤ φ (d(x, y)) ≤ d(x, y).

The equality φ (d(x, y)) = d(x, y) also yields to d(x, y) = 0, that is, x = y. This
finishes the proof. �
Remark 3.2. Notice that in the previous proof we have showed that, starting
from any x0 ∈ A0, it is possible to consider a sequence {xn} ⊆ A0 verifying that
d(xn+1, Txn) = d(A,B) for all n ≥ 0, and any sequence verifying this property
converges to the unique best proximity point of T .

In the following result, we replace the continuity of T by other hypotheses.

Theorem 3.3. Let A and B two closed subsets of a complete metric space (X, d)
such that A0 ̸= 0 and let T : A → B be a mapping such that TA0 ⊆ B0. Suppose
that there exists φ ∈ F verifying that, for all x ∈ A0 and all y ∈ A,

(3.16) rd(x, Tx) ≤ d(x, y) + d(A,B) =⇒ d(Tx, Ty) ≤ φ (M(x, y)− d(A,B)) ,
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where M(x, y) = max {d(x, y), d(x, Tx), d(y, Ty)} and r verifies r < 1 if d(A,B) > 0
and r ≤ 1/2 if d(A,B) = 0. Also assume that

(a′): (A,B) has the P-property.

Then T has a unique best proximity point.

Proof. If r1, r2 ∈ ]−∞, 1/2[ verify r1 ≤ r2 and the result holds for r2, then it is
also valid for r1. Then, it is only necessary to prove it when r > 0. Taking into
account that the P -property implies the weak P -property and following the lines of
the proof of Theorem 3.1, we can deduce that {xn} ⊆ A0 is a convergent sequence,
and there is x ∈ A such that {xn} → x. Using the P -property as in (3.4), we deduce
that, for all n,m ≥ 0,

xn+1, xm+1 ∈ A0, Txn, Txm ∈ B0

d(xn+1, Txn) = d(A,B)
d(xm+1, Txm) = d(A,B)

 ⇒ d(xn+1, xm+1) = d(Txn, Txm).

This means that {Txn} ⊆ B0 ⊆ B is also a Cauchy sequence. Thus, there is z ∈ B
such that {Txn} → z. Taking limit in d(xn+1, Txn) = d(A,B) as n → ∞, we
deduce that

(3.17) d(x, z) = d(A,B).

Next, we distinguish whether z = x or not.
Case 1: z = x. In this case, by (3.17), d(A,B) = 0, so r ≤ 1/2 and xn+1 = Txn

for all n. We are going to show that the set N = {n ∈ N : d(xn, xn+1) ≤ 2d(xn, x)}
is not finite reasoning by contradiction. If N is finite, there exists n0 ∈ N such that
d(xn, xn+1) > 2d(xn, x) for all n ≥ n0. Therefore, for n ≥ n0,

2d(xn, x) < d(xn, xn+1) ≤ d(xn, x) + d(x, xn+1) ⇒ d(xn, x) < d(xn+1, x).

As 0 ≤ d(xn0 , x) < d(xn0+1, x) < d(xn, x) for all n ≥ n0 + 2, we have that ε0 =
d(xn0+1, x) > 0 verifies ε0 < d(xn, x) for all n ≥ n0 + 2, which contradicts the fact
that {xn} → x. This proves that N is not finite. Therefore, there exists a partial
subsequence {xn(k)} of {xn} such that

rd(xn(k), Txn(k)) ≤
1

2
d(xn(k), xn(k)+1) ≤ d(xn(k), x) for all k.

Applying the contractive condition (3.16) to xn(k) ∈ A0 and x ∈ A, we have that,
for all k,

d(xn(k)+1, Tx) = d(Txn(k), Tx) ≤ φ
(
M(xn(k), x)

)
= φ

(
max

{
d(xn(k), x), d(xn(k), Txn(k)), d(x, Tx)

})
= φ

(
max

{
d(xn(k), x), d(xn(k), xn(k)+1), d(x, Tx)

})
.(3.18)

Next we show that Tx = x reasoning by contradiction. Taking into account that
{d(xn(k), x)}k∈N → 0 and {d(xn(k), xn(k)+1)}k∈N → 0, if d(x, Tx) > 0, there exists

k0 ∈ N such that max
{
d(xn(k), x), d(xn(k), xn(k)+1), d(x, Tx)

}
= d(x, Tx) for all

k ≥ k0. Therefore d(xn(k)+1, Tx) ≤ φ (d(x, Tx)) for all k ≥ k0. Letting k → ∞, we
deduce that d(x, Tx) ≤ φ (d(x, Tx)), but this is only possible when d(x, Tx) = 0,
which contradicts Tx ̸= x. As a consequence, x is a fixed point of T , that is, a best
proximity point.
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Case 2: z ̸= x. In this case, we are going to prove that z = Tx. Notice that
d(A,B) = d(x, z) > 0, so r < 1. Indeed, as

lim
n→∞

rd(xn, Txn) = rd(x, z) and

lim
n→∞

(d(xn, x) + d(A,B)) = d(A,B) = d(x, z),

there exists n0 ∈ N such that

rd(xn, Txn) ≤ d(xn, x) + d(A,B) for all n ≥ n0.

Applying the contractivity condition (3.1), for all n ≥ n0,

d(Txn, Tx) ≤ φ (M(xn, x)− d(A,B))

= φ (max {d(xn, x), d(xn, Txn), d(x, Tx)} − d(A,B)) .(3.19)

Consider the subsets

N ′′
1 = { n ∈ N : the maximum in (3.19) is d(xn, x) } ,

N ′′
2 = { n ∈ N : the maximum in (3.19) is d(xn, Txn) } ,

N ′′
3 = { n ∈ N : the maximum in (3.19) is d(x, Tx) } .

Clearly N ′′
1 ∪N ′′

2 ∪N ′′
3 = N, so both three subsets can not be finite at the same time.

• Suppose that N ′′
1 is not finite. Then there exists a partial subsequence

{xn(k)} of {xn} such that

max
{
d(xn(k), x), d(xn(k), Txn(k)), d(x, Tx)

}
= d(xn(k), x) for all k.

In such a case,

d(Txn(k), Tx) ≤ φ
(
d(xn(k), x)− d(A,B)

)
≤ φ

(
d(xn(k), x)

)
≤ d(xn(k), x),

and letting k → ∞ we deduce that d(z, Tx) = 0, that is, z = Tx.
• If N ′′

2 is not finite, there exists a partial subsequence {xn(k)} of {xn} such
that, for all k,

M(xn(k), x)− d(A,B) = max
{
d(xn(k), x), d(xn(k), Txn(k)), d(x, Tx)

}
− d(A,B)

= d(xn(k), Txn(k))− d(A,B)

≤ d(xn(k), xn(k)+1) + d(xn(k)−1, Txn(k))− d(A,B) = d(xn(k), xn(k)+1),

and also letting k → ∞ in

d(Txn(k), Tx) ≤ φ
(
M(xn(k), x)− d(A,B)

)
≤ M(xn(k), x)− d(A,B) ≤ d(xn(k), xn(k)+1),

we deduce that d(z, Tx) = 0.
• Finally, if N ′′

3 is not finite, there exists a partial subsequence {xn(k)} of {xn}
such that, for all k,

M(xn(k), x)− d(A,B)

= max
{
d(xn(k), x), d(xn(k), Txn(k)), d(x, Tx)

}
− d(A,B)

= d(x, Tx)− d(A,B) ≤ d(x, z) + d(z, Tx)− d(A,B)

= d(A,B) + d(z, Tx)− d(A,B) = d(z, Tx).
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Therefore, d(Txn(k), Tx) ≤ φ
(
M(xn(k), x)− d(A,B)

)
≤ φ(d(z, Tx)) for all

k. Letting k → ∞ we conclude that d(z, Tx) ≤ φ(d(z, Tx)) ≤ d(z, Tx), and
the equality φ(d(z, Tx)) = d(z, Tx) holds that d(z, Tx) = 0.

This means that, in any case, d(x, Tx) = d(x, z) = d(A,B), that is, x is a best
proximity point of T . The uniqueness of x can be proved as in Theorem 3.1. �

Taking into account that the pair (X,X) satisfies the P -property, if we put A =
B = X in Theorems 3.1 and 3.3, we obtain the following counterparts in the fixed
point theory.

Corollary 3.4. Let T : X → X be a mapping form a complete metric space (X, d)
into itself and suppose that there exists φ ∈ F and r ∈ R verifying that, for all
x, y ∈ X,

rd(x, Tx) ≤ d(x, y) =⇒ d(Tx, Ty) ≤ φ (M(x, y)) ,

where M(x, y) = max {d(x, y), d(x, Tx), d(y, Ty)}. Also assume that either

(b) T is a continuous mapping and r = 1, or
(b′) r verifies r < 1 if d(A,B) > 0 and r ≤ 1/2 if d(A,B) = 0.

Then T has a unique fixed point.

Next, we particularize Theorems 3.1 and 3.3 to the case in which φ(t) = kt for
all t ≥ 0, where k ∈ [0, 1).

Corollary 3.5. Let A and B two closed subsets of a complete metric space (X, d)
such that A0 ̸= 0 and let T : A → B be a mapping such that TA0 ⊆ B0. Suppose
that there exists k ∈ [0, 1) and r ∈ R verifying that, for all x ∈ A0 and all y ∈ A,

rd(x, Tx) ≤ d(x, y) + d(A,B) =⇒ d(Tx, Ty) ≤ k (M(x, y)− d(A,B)) ,

where M(x, y) = max {d(x, y), d(x, Tx), d(y, Ty)}. Also assume that either

(a) T is continuous, r = 1 and (A,B) has the weak P-property, or
(a′) (A,B) has the P-property and r verifies r < 1 if d(A,B) > 0 and r ≤ 1/2 if

d(A,B) = 0.

Then T has a unique best proximity point.
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