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sums of Banach spaces. We show how to use the notion of intra-convex sets and
a counterpart of Mazur’s lemma to improve the results in [24]. The reader may
compare this approach, closer to the original idea, with its classical translation in
[31]. A brief presentation of Alpha-Theory is given in the Appendix.

2. Nonstandard preliminaries

In this paper we work in the system of nonstandard analysis based on Alpha-
Theory introduced by Benci and Di Nasso in [3]. In this approach, for every set
A, there exists a set ∗A called the hyper-extension (or the star-transform) of A, see
Appendix A.

The most important for our purposes is the following theorem called the transfer
principle.

Theorem 2.1. For every bounded formula σ(x1, . . . , xk) and for any sets a1, . . . , ak,

σ(a1, . . . , ak) ⇐⇒ σ(∗a1, . . . ,
∗ak).

We will use this theorem several times. See, e.g., [4, 14] for more details how to
apply the transfer principle correctly.

Let X be a real Banach space and let ∗X be its hyper-extension endowed with a
function

∗∥ · ∥ : ∗X → ∗R
called an internal norm (or ∗-norm) of ∗X. There is a common practice to omit
“stars” when no confusion can arise and we abbreviate ∗∥ · ∥ to ∥ · ∥. Recall that
an element x ∈ ∗X is bounded if ∥x∥ is bounded in ∗R. It is infinitesimal if ∥x∥ is
infinitesimal in ∗R, see Appendix A. Let gal(∗X) denote the set of bounded elements
and mon(0) the set of infinitesimal elements of ∗X. Notice that gal(∗X) and mon(0)

are vector spaces over R and we may define X̃ as the quotient vector space

gal(∗X)/mon(0).

Let π : gal(∗X) → X̃ denote the quotient linear mapping and define a norm on X̃
by ∥y∥ = st(∥x∥) for all x ∈ gal(∗X), y = π(x), where st(∥x∥) is the standard part

of ∥x∥ in R. The vector space X̃ with the above norm becomes a Banach space
and is called the nonstandard hull of X, see, e.g., [10, 15, 22]. It is clear that X

is isometric to a subspace of X̃ via the mapping z → π(∗z). Virtually, π is an
extension of the standard part mapping st : mon(X) → X and we denote π(x) by
sh(x) or ◦ x. Thus we have sh(x) = mon(st(x)) for every x ∈ mon(X). We refer to

sh : gal(∗X) → X̃

as the shadow mapping. Set ◦A = {◦x : x ∈ A} for any set A ⊂ gal(∗X) and

B̃ = ◦(∗B ∩ gal(∗X)) for any B ⊂ X.
Let R+ denote the set of positive reals. By an ∗N-sequence (xn)n∈ ∗N in Y we

mean a function x : ∗N → Y .

Definition 2.2. An ∗N-sequence (xn)n∈ ∗N in ∗X is said to intra-converge (or ∗-
converge) to a ∈ ∗X if

∀ε ∈ ∗R+ ∃k ∈ ∗N ∀n ∈ ∗N (n ≥ k ⇒ ∥xn − a∥ < ε).
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In a similar way, we can define intra-convergence for the weak topology. Let T
denote the weak topology on a Banach space X.

Definition 2.3. An ∗N-sequence (xn)n∈ ∗N in ∗X is said to weakly intra-converge
(or ∗-weakly converge) to a ∈ ∗X if

∀U ∈ ∗T ∃k ∈ ∗N ∀n ∈ ∗N (a ∈ U ∧ n ≥ k ⇒ xn ∈ U).

Notice that if (xn) is a sequence in X converging (resp., weakly converging) to
x0, then it follows from transfer that its hyper-extension (xn)n∈ ∗N intra-converges
(resp., weakly intra-converges) to ∗x0 in ∗X.

Definition 2.4. We say that a set A ⊂ ∗X is intra-convex (or ∗-convex) if

∀α, β ∈ ∗[0, 1] ∀x, y ∈ A (α+ β = 1 ⇒ αx+ βy ∈ A).

For A ⊂ ∗X, define

convint(A) =
∪

n∈ ∗N

{
n∑
i=0

λixi : λi ∈ ∗[0, 1], xi ∈ A, 0 ≤ i ≤ n,
n∑
i=0

λi = 1

}
.

The following lemma is a simple application of the transfer principle and Mazur’s
lemma.

Lemma 2.5. Assume that an internal ∗N-sequence (xn)n∈ ∗N in ∗X intra-converges
weakly to a. Then ◦a ∈ ◦ convint({xn : n ∈ ∗N}).

Proof. Let (xn)n∈ ∗N be an internal ∗N-sequence in ∗X intra-converging weakly
to a ∈ ∗X. It follows from the transfer of Mazur’s lemma that for every

ε ∈ ∗R+ there exists k ∈ ∗N and λ0, . . . , λk ∈ ∗[0, 1] with
∑k

i=0 λi = 1 such

that
∥∥∥∑k

i=0 λixi − a
∥∥∥ ≤ ε. Fix a positive ε ≃ 0. Then there exists y ∈

convint({xn : n ∈ ∗N}) such that ∥y − a∥ ≃ 0. Hence

◦a ∈ ◦ convint({xn : n ∈ ∗N}).

�
A routine application of the transfer principle shows that if A is internal and

∗-relatively compact (i.e., for every internal ∗N-sequence (xn)n∈ ∗N of elements in A,
there exists an internal intra-convergent ∗N-subsequence (xnk)k∈ ∗N), then convint(A)
is ∗-relatively compact, too. We will use this fact together with Lemma 2.5 in Sec-
tion 4.

3. Nonstandard Picard Iteration

Let (M,ρ) be a metric space. An internal mapping T : ∗M → ∗M is said to be
an intra-contraction if there exists k ∈ ∗(0, 1) such that

∗ρ(Tx, Ty) ≤ k ∗ρ(x, y)

for all x, y ∈ ∗M.
Let T : ∗M → ∗M be an intra-contraction and fix x0 ∈ ∗M . Set xn+1 = Txn for

each n ∈ ∗N. Since T is internal, we obtain the ∗N-sequence (Tnx0)n∈ ∗N by internal
induction.
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The following theorem is an internal version of the Banach’s Contraction Princi-
ple. We leave its proof to the reader.

Theorem 3.1. Let (M,ρ) be a complete metric space and T : ∗M → ∗M an intra-
contraction. Then T has a unique fixed point in ∗M and for each x0 ∈ ∗M the
∗N-sequence (Tnx0)n∈ ∗N intra-converges to this fixed point.

Now let C be a nonempty bounded closed and convex subset of a Banach space
X and T : C → C a nonexpansive mapping, i.e.,

∥Tx− Ty∥ ≤ ∥x− y∥

for all x, y ∈ C. It is well known that unlike in the case of contractions, the Picard
iteration (Tnx0)n∈N, x0 ∈ C, may fail to converge. In the last few decades, iterative
methods for finding fixed points of nonexpansive mappings have been studied ex-
tensively. It is worth pointing out two types of such methods. The Mann iteration
is defined by the recursive scheme

xn+1 = (1 − αn)xn + αnTxn, n ∈ N,

where x0 ∈ C and αn ∈ [0, 1]. The Halpern iteration is defined by

xn+1 = αnu+ (1 − αn)Txn, n ∈ N,

where x0, u ∈ C and αn ∈ [0, 1], n ∈ N. Unlike Mann’s iteration, a sequence gen-
erated by Halpern’s scheme is strongly convergent provided the underlying Banach
space is smooth enough and (αn) satisfies some mild conditions. However, in gen-
eral, the problem of the convergence of Halpern’s iteration is still open even in the
case of uniformly convex spaces. For a deeper discussion of this topic we refer the
reader to [33] and the references given there.

New possibilities arises if we consider infinitesimal perturbations of nonexpansive
mappings. Let T : C → C be a nonexpansive mapping. By the transfer principle,
we obtain an (intra-nonexpansive) mapping ∗T : ∗C → ∗C and we can define a

nonexpansive mapping T̃ : C̃ → C̃ in the nonstandard hull of a Banach space X

by putting T̃ (◦x) = ◦(∗Tx) for x ∈ ∗C. We may regard C as a subset of C̃ via the

mapping x→ ◦(∗x) and T̃ as an extension of T .
Let u ∈ ∗C. Fix a positive infinitesimal ε and define

Sx = (1 − ε)∗Tx+ εu, x ∈ ∗C.

It is not difficult to check that S : ∗C → ∗C is an intra-contraction and we can
consider for a fixed x0 ∈ ∗C a nonstandard Picard iteration

(3.1) xn+1 = Snx0, n ∈ ∗N.

It follows from Theorem 3.1 that the ∗N-sequence (Snx0)n∈ ∗N intra-converges to a

point z0 ∈ ∗C. Notice that ◦z0 ∈ C̃ is a fixed point of T̃ since

∥∗Tz0 − z0∥ ≤ ε ≃ 0.

Denote by PC : X̃ → C a metric projection onto C:

PCx =

{
y ∈ C : ∥x− y∥ = inf

z∈C
∥x− z∥

}
.
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It is well known that in uniformly convex spaces PCx is a singleton for every x ∈ X̃.
Furthermore∥∥∥T̃PC ◦z0 − ◦z0

∥∥∥ =
∥∥∥T̃PC ◦z0 − T̃ ◦z0

∥∥∥ ≤ ∥PC ◦z0 − ◦z0∥ = inf
z∈C

∥ ◦z0 − z∥ .

But T̃PC
◦z0 ∈ C and hence T̃PC

◦z0 = PC
◦z0, i.e., PC

◦z0 is a fixed point of T . In
this way, we obtain the following theorem.

Theorem 3.2. Let C be a nonempty bounded closed and convex subset of a uni-
formly convex Banach space X and T : C → C a nonexpansive mapping. Then
the nonstandard Picard iteration given by (3.1) intra-converges to a point z0 ∈ ∗C.
Furthermore, PC

◦z0 is a fixed point of T.

A natural question arises whether the projection PC is at all necessary, i.e.,
whether ◦z0 ∈ C if u, x0 ∈ C. An affirmative answer to this question should result
in the study of Halpern’s iteration.

4. Fixed points of direct sums

Recall that a Banach space X is said to have the fixed point property (FPP) if
every nonexpansive self-mapping defined on a nonempty bounded closed and convex
set C ⊂ X has a fixed point. A Banach space X is said to have the weak fixed point
property (WFPP) if the additional assumption is added that C is weakly compact.

The problem of whether FPP or WFPP is preserved under direct sum of Banach
spaces is an old one. In 1968, L. P. Belluce, W. A. Kirk and E. F. Steiner [2]
proved that the direct sum of two Banach spaces with normal structure, endowed
with the “maximum” norm, also has normal structure. Since then, the preservation
of normal structure and conditions which guarantee normal structure have been
studied extensively and the problem is now quite well understood (see [9] for a
survey). But the situation is much more difficult if at least one of these spaces lacks
weak normal structure. We note here the results of S. Dhompongsa, A. Kaewcharoen
and A. Kaewkhao [8], and M. Kato and T. Tamura (see [19, 20]).

Recently, a few general fixed point theorems in direct sums were proved in [31,
32] (see also [24, 30]). Although their proofs were formulated in standard terms,
the original ideas came from nonstandard analysis. In this section we present the
original proof of the main result in [31] which is, in our opinion, more insightful
than its classical translation.

Let us first recall terminology concerning direct sums. A norm ∥·∥ on R2 is said
to be monotone if

∥(x1, y1)∥ ≤ ∥(x2, y2)∥ whenever 0 ≤ x1 ≤ x2, 0 ≤ y1 ≤ y2.

A norm ∥·∥ is said to be strictly monotone if

∥(x1, y1)∥ < ∥(x2, y2)∥ whenever 0 ≤ x1 ≤ x2, 0 ≤ y1 < y2

or 0 ≤ x1 < x2, 0 ≤ y1 ≤ y2.

It is easy to see that ℓ2p-norms, 1 ≤ p < ∞, are strictly monotone. We will assume
that the norm is normalized, i.e.,

∥(1, 0)∥ = · · · = ∥(0, 1)∥ = 1.
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F. F. Bonsall and J. Duncan [5] showed that the set of all monotone and normalized
norms on R2 is in one-to-one correspondence with the set Ψ of all continuous convex
functions on [0, 1] satisfying ψ(0) = ψ(1) = 1 and max{1 − t, t} ≤ ψ(t) ≤ 1 for
0 ≤ t ≤ 1, where the correspondence is given by

(4.1) ψ(t) = ∥(1 − t, t)∥ , 0 ≤ t ≤ 1.

Conversely, for any ψ ∈ Ψ define

∥(x1, x2)∥ψ = (|x1| + |x2|)ψ(|x2| / |x1| + |x2|)
for (x1, x2) ̸= (0, 0) and ∥(0, 0)∥ψ = 0. Then ∥ · ∥ψ is an absolute and normalized
norm which satisfies (4.1). It was proved in [29, Corollary 3] that a norm ∥ · ∥ψ in
R2 is normalized and strictly monotone iff

ψ(t) > ψ∞(t)

for all 0 < t < 1. Let X,Y be Banach spaces and ψ ∈ Ψ. We shall write X⊕ψ Y for
the ψ-direct sum of X,Y with the norm ∥(x, y)∥ψ = ∥(∥x∥, ∥y∥)∥ψ, where (x, y) ∈
X × Y .

A Banach space X is said to have the generalized Gossez-Lami Dozo property
(GGLD, in short) if

lim sup
m→∞

lim sup
n→∞

∥xn − xm∥ > 1

whenever (xn) converges weakly to 0 and limn→∞ ∥xn∥ = 1. It is known that the
GGLD property is weaker than weak uniform normal structure (see, e.g., [28]).

The following lemma was proved in [24, Lemma 4] (see also [11, 28]).

Lemma 4.1. Let X ⊕ψ Y be a ψ-direct sum of Banach spaces X, Y with a strictly
monotone norm. Assume that Y has the GGLD property, the vectors wn = (xn, yn) ∈
X ⊕ψ Y tend weakly to 0 and

lim
n,m→∞,n̸=m

∥wn − wm∥ψ = lim
n→∞

∥wn∥ψ.

Then limn→∞ ∥yn∥ = 0.

We are now in a position to give a nonstandard proof of the following theorem.

Theorem 4.2 ([31]). Let X be a Banach space with WFPP and suppose Y has the
GGLD property. Then X ⊕ψ Y with a strictly monotone norm has WFPP.

Proof. The proof will be divided into 5 steps.

Step 1. We follow the classical arguments in metric fixed point theory. Assume
thatX⊕ψY does not have WFPP. Then, there exist a weakly compact convex subset
C of X ⊕ψ Y and a nonexpansive mapping T : C → C without a fixed point. By
the Kuratowski-Zorn lemma, there exists a convex and weakly compact set K ⊂ C
which is minimal invariant under T and which is not a singleton. Let (wn) =
((x′n, y

′
n)) be an approximate fixed point sequence for T in K, i.e., limn→∞ ∥Twn −

wn∥ψ = 0. Without loss of generality we can assume that diamK = 1, (wn)
converges weakly to (0, 0) ∈ K and the double limit limn,m→∞,n̸=m ∥wn − wm∥ψ
exists. It follows from the Goebel-Karlovitz lemma (see [12, 18]) that

(4.2) lim
n,m→∞,n̸=m

∥wn − wm∥ψ = 1 = lim
n→∞

∥wn − w∥ψ
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for every w ∈ K. Hence limn→∞ ∥y′n∥ = 0 by Lemma 4.1.

Step 2. Let (wn)n∈ ∗N be a hyper-extension of the sequence (wn)n∈N. Since
(R2, ∥·∥ψ) is a finite dimensional space, the norm ∥·∥ψ is strictly monotone iff it
is uniformly monotone. It follows, using transfer, that for every ε ∈ ∗R+, there
exists δ(ε) ∈ ∗R+ such that if (ā, b̄), (ā, c̄) belong to ∗B(R2,∥·∥ψ) and

∥∥(ā, b̄)
∥∥
ψ
<

∥(ā, c̄)∥ψ + δ(ε), then
∥∥b̄∥∥ < ∥c̄∥+ ε. Fix an unbounded ω ∈ ∗N and put η = 1

ω ≃ 0.
Let

εi = min{ηδ(ηi)/3, ηi+1}, i ∈ ∗N.
By transfer, ∥∗Twn−wn∥ψ and ∥y′n∥ intra-converge to 0 and hence we can fix v0 =
wn0 = (x0, y0) such that ∥∗Tv0−v0∥ψ < ε0 and ∥y0∥ < ε0. For hypernatural numbers
1 ≤ j ≤ ω, write D0

j = {v0} . We shall define an internal ∗N-subsequence (vn)n∈ ∗N

of (wn)n∈ ∗N and an internal family
{
Di
j

}
1≤j≤ω,i∈ ∗N

of ∗-relatively compact subsets

of ∗K by internal induction. Choose v1 = wn1 = (x1, y1), n0 < n1 ∈ ∗N in such a
way that ∥∗Tv1 − v1∥ψ < ε1, ∥y1∥ < ε1 and ∥v1 − v0∥ψ > 1 − ε1 (notice that, by
transfer of (4.2), ∥wn − v0∥ intra-converges to 1). Let us put

D1
1 = convint {v0, v1}

and
D1
j+1 = convint(D

1
j ∪ ∗T (D1

j ))

for 1 ≤ j < ω. By internal induction,
{
D1

1, . . . , D
1
ω

}
is a well-defined internal family

of ∗-relatively compact subsets of ∗K with D1
1 ⊂ · · · ⊂ D1

ω.
Now suppose that we have chosen an internal k-tuple n1 < · · · < nk

(k ∈ ∗Nr{0}, n1 > n0), vi = wni = (xi, yi), 0 ≤ i ≤ k, and internal k-tuple
(
{
Di

1, . . . , D
i
ω

}
)1≤i≤k of subsets of ∗K such that for each i ∈ {1, . . . , k} and j ∈

{1, . . . , ω − 1} :

(i) ∥∗Tvi − vi∥ψ < εi,
(ii) ∥yi∥ < εi,

(iii) ∥vi − v∥ψ > 1 − εi for all v ∈ Di−1
ω ,

(iv) Di
1 = convint(D

i−1
1 ∪ {vi}),

(v) Di
j+1 = convint(D

i
j ∪ ∗T (Di

j)).

Then, there exist (internally chosen) nk+1 > nk, vk+1 = wnk+1
= (xk+1, yk+1)

such that ∥∗Tvk+1− vk+1∥ < εk+1, ∥yk+1∥ < εk+1 and ∥vk+1− v∥ > 1− εk+1 for all
v ∈ Dk

ω (the last inequality follows from the ∗-relative compactness of Dk
ω). Let us

put

Dk+1
1 = convint(D

k
1 ∪ {vk+1})

and
Dk+1
j+1 = convint(D

k+1
j ∪ ∗T (Dk+1

j ))

for 1 ≤ j < ω. Then, by internal induction on j,
{
Dk+1

1 , . . . , Dk+1
ω

}
is a well-

defined internal family of ∗-relatively compact subsets of ∗K. Hence, by internal
induction on i, we obtain an internal sequence (vn)n∈ ∗N and an internal family of

sets
{
Di
j

}
1≤j≤ω,i∈ ∗N

such that (i)-(v) are satisfied for every j ∈ {1, . . . , ω − 1} and

i ∈ ∗Nr{0}.
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Step 3. We claim that for every 1 ≤ j ≤ ω, i ∈ ∗Nr{0} and u ∈ Di+1
j there

exists v ∈ Di
j such that

(4.3) ∥v − u∥ψ + ∥u− vi+1∥ψ ≤ ∥v − vi+1∥ψ + 3(j − 1)εi+1.

Fix i ∈ ∗Nr{0}. We shall proceed by internal induction with respect to j. For
j = 1 and u ∈ Di+1

1 = convint (Di
1 ∪ {vi+1}) there exists v ∈ Di

1 such that

∥v − u∥ψ + ∥u− vi+1∥ψ = ∥v − vi+1∥ψ .

Fix 1 ≤ j < η and suppose that for every u ∈ Di+1
j there exists v ∈ Di

j such that

(4.3) is satisfied. Let u ∈ Di+1
j+1 = convint(D

i+1
j ∪ ∗T (Di+1

j )). The inductive step is

obvious if u ∈ Di+1
j so take u ∈ ∗T (Di+1

j ). Then u = ∗T ū for some ū ∈ Di+1
j and,

by assumption, there exists v̄ ∈ Di
j such that

∥v̄ − ū∥ψ + ∥ū− vi+1∥ψ ≤ ∥v̄ − vi+1∥ψ + 3(j − 1)εi+1.

Let v = ∗T v̄ ∈ Di
j+1. Then

∥v − u∥ψ + ∥u− vi+1∥ψ ≤ ∥v̄ − ū∥ψ + ∥ū− vi+1∥ψ + ∥∗Tvi+1 − vi+1∥ψ
≤ ∥v̄ − vi+1∥ψ + (3j − 2)εi+1(4.4)

< ∥v − vi+1∥ψ + (3j − 1)εi+1,

since ∥∗Tvi+1 − vi+1∥ψ < εi+1 and ∥v − vi+1∥ψ > 1 − εi+1 ≥ ∥v̄ − vi+1∥ψ − εi+1.

Now let u =
∑t

s=1 λsus for some us ∈ Di+1
j ∪ ∗T (Di+1

j ), λs ∈ ∗ [0, 1] , 1 ≤ s ≤ t ∈
∗N,

∑t
s=1 λs = 1. Then, by (4.3) and (??), there exist v̄1, . . . , v̄t ∈ Di

j+1 such that

∥v̄s − us∥ψ + ∥us − vi+1∥ψ ≤ ∥v̄s − vi+1∥ψ + (3j − 1)εi+1, 1 ≤ s ≤ t.

Hence∥∥∥∑t

s=1
λsv̄s − u

∥∥∥
ψ

+ ∥u− vi+1∥ψ ≤
∑t

s=1
λs ∥v̄s − vi+1∥ψ + (3j − 1)εi+1

≤ 1 + (3j − 1)εi+1

<
∥∥∥∑t

s=1
λsv̄s − vi+1

∥∥∥
ψ

+ 3jεi+1,

since, by (iii), dist(Di
ω, vi+1) > 1 − εi+1, and the claim is proved.

Step 4. Let 1 ≤ j ≤ ω, i ∈ ∗N and u = (a, b) ∈ Di
j . We claim that ∥b∥ ≃ 0. Fix

i ≥ 2. By Step 3, take v = (x, y) ∈ Di−1
j such that

∥v − u∥ψ + ∥u− vi∥ψ ≤ ∥v − vi∥ψ + 3(j − 1)εi < ∥v − vi∥ψ + 3ωεi.

Hence

∥(∥x− xi∥ , ∥y − b∥ + ∥b− yi∥)∥ψ < ∥(∥x− xi∥ , ∥y − yi∥)∥ψ + 3ωεi

which yields

∥y − b∥ + ∥b− yi∥ < ∥y − yi∥ + ηi

since 3ωεi ≤ δ(ηi). Consequently,

∥b∥ < ∥y∥ + ∥yi∥ +
1

2
ηi.
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Repeating this procedure (i− 1) times we obtain by internal induction an element
(x̄, ȳ) ∈ D1

ω such that

∥b∥ < ∥ȳ∥ + ∥y2∥ +
1

2
η2 + · · · + ∥yi∥ +

1

2
ηi.

Furthermore, it is not difficult to show that ∥ȳ∥ < ωε1 (see [32, Lemma 3.1]). Hence
∥b∥ < ωε1 + (ε2 + · · · + εi) + 1

2(η2 + · · · + ηi) < η + 2η3 + η2 ≃ 0.

Step 5. Let Dj =
∪
i∈ ∗ND

i
j for 1 ≤ j ≤ ω. Then we can easily prove that

D1 ⊂ D2 ⊂ · · · ⊂ Dω and ∗T (Dj) ⊂ Dj+1 for 1 ≤ j < ω. Moreover, a sequence
(vn)n∈ ∗N intra-converges to (0, 0) and hence, by Lemma 2.5, ◦(0, 0) ∈ ◦D1. Let

D = cl(
∪

j∈N\{0}
◦Dj).

Notice that D is closed and convex subset of K̃ which is invariant under T̃ . More-
over, ◦(0, 0) ∈ D and consequently the set M = D ∩ {◦(∗x) : x ∈ K} is nonempty,

closed, convex and T̃ -invariant. It follows from Step 4 that M ⊂ {◦(∗x) : x ∈ X} ×
{0} and therefore M is isometric to a subset of X. Since X has WFPP, T̃ has a
fixed point in M , which contradicts our assumption. �

Appendix A. Alpha-Theory

At present there exist several frameworks for nonstandard analysis. In this paper
we use an axiomatic approach introduced in [3] (see also the related system ∗ZFC
[7]). This approach is based on the existence of a new mathematical object α which
can be seen as a new “ideal” number added to N. Our exposition follows [17, Sect.
8.3d] (we do not assume the existence of atoms).

The Alpha-Theory is a theory in the language L′ = {∈, J} of set theory extended
by a new binary relation symbol J . The axioms include all of ZFC minus Regularity,
together with the following five axioms:

J1. J is a function defined on the class of all sequences of arbitrary sets, i.e.,

∀φ(Seq(φ) ⇒ ∃!xJ(φ, x)) ∧ ∀φ∀x(J(φ, x) ⇒ Seq(φ)),

where Seq(φ) means that φ is a sequence, i.e., a function with the domain
N.

Let J(φ) be the unique x which satisfies J(φ, x).

J2. If f is a function defined on a set A and φ,ψ : N → A, then J(φ) = J(ψ)
implies J(f ◦ φ) = J(f ◦ ψ).

J3. J(cm) = m for any natural m, where cm(n) = m for all n ∈ N,
J(id) /∈ N, where id(n) = n for all n ∈ N.

J4. If ϑ(n) = {φ(n), ψ(n)} for all n ∈ N, then J(ϑ) = {J(φ), J(ψ)} .
J5. For any φ, J(φ) = {J(ψ) : ψ(n) ∈ φ(n)} for all n ∈ N.

Let us define ∗x = J(cx) for any set x (where cx(n) = x for all n ∈ N). Put

α = J(id).

By the axiom J3, α /∈ N and, by J5, α ∈ ∗N. It turns out (see [3, Prop. 2.3])
that if f : A → B, then ∗f is a function from ∗A to ∗B and ∗f(J(φ)) = J(f ◦ φ)
for any φ : N → A. Taking φ = id and f = φ we obtain ∗φ(α) = J(φ) for any
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sequence φ. Thus, J-extensions are simply values of the ∗-extended functions at a
“non-standard natural number” α.

A set x is said to be internal if there exists a sequence φ such that x = J(φ).
Equivalently, x is internal if there exists y such that x ∈ ∗y. A set x is external if
it is not internal.

One of the fundamental tools in nonstandard analysis is the transfer principle
which is an application of a famous theorem of  Loś. Recall that a formula σ is
bounded if it is constructed from atomic formulae using connectives and bounded
quantifiers ∀x ∈ y (i.e., ∀x x ∈ y ⇒ . . . ), ∃x ∈ y (i.e., ∃x x ∈ y∧ . . . ). The following
theorem (see [3, Th. 6.2], [17, Cor. 8.3.13]) shows that the transfer principle is
satisfied in Alpha-Theory.

Theorem A.1. For every bounded formula σ(x1, . . . , xk) in the first-order language
L = {∈} and for any sets a1, . . . , ak,

σ(a1, . . . , ak) ⇐⇒ σ(∗a1, . . . ,
∗ak).

The following useful theorem (known as the Internal Definition Principle) is a
rather straightforward consequence of the transfer principle.

Theorem A.2. If σ(x, x1, . . . , xk) is a bounded formula in the first-order language
L = {∈} and b, b1, . . . , bk are internal sets, then {x ∈ b : σ(x, b1, . . . , bk)} is an in-
ternal set.

Another notion which is frequently used in nonstandard analysis is the so-called
countable saturation.

Theorem A.3 (see [3, Th. 4.4]). Let {An : n ∈ N} be a countable family of internal
sets with the finite intersection property. Then the intersection

∩
n∈NAn ̸= ∅.

Let (R,+, ·,≤) be the complete ordered field of real numbers. Then, by transfer,
we obtain an ordered field (∗R,∗ +,∗ ·,∗≤). There is a common practice to omit
“stars” when no confusion can arise. Notice that ∗R = {φ(α) : φ : N → R} and
hence {∗x : x ∈ R} ⊂ ∗R. Although, in general, x ̸= ∗x we do not usually distinguish
between x and ∗x and regard the set of reals as a subset of ∗R. Elements of ∗R are
called hyperreals.

Definition A.4. A hyperreal number x is said to be

(i) bounded if x = O(1), i.e., |x| ≤ c for some c ∈ R,
(ii) infinitesimal if x = o(1), i.e., |x| ≤ ε for every positive ε ∈ R,

(iii) unbounded if 1/x = o(1).

Notice that α > n for every n ∈ N (see [3, Prop. 2.5]) and hence 1/α is an example
of a (nonzero) infinitesimal. We say that x and y are infinitely close, denoted by
x ≃ y, if x − y is infinitesimal. This defines an equivalence relation on ∗R and the
monad (or the halo) of x is the equivalence class

mon(x) = {y ∈ ∗R : x ≃ y} .
We say that x and y are of bounded distance apart, denoted by x ∼ y, if x − y is
bounded. The galaxy of x is the equivalence class

gal(x) = {y ∈ ∗R : x ∼ y}
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(see [14, 23] and references therein). If a hyperreal x is bounded, i.e., x ∈ gal(0),
the unique a ∈ R such that x ≃ a is called the standard part of x and is denoted by
st(x). These notions can be generalized in the following way. Let X be a real Banach
space and let ∗X be its hyper-extension endowed with a function ∗∥ · ∥ : ∗X → ∗R
called an internal norm (or ∗-norm) of ∗X. By transfer, ∗∥ · ∥ is homogeneous over
∗R and satisfies the triangle inequality. As before, we do not distinguish between x
and ∗x, and abbreviate ∗∥ · ∥ to ∥ · ∥. The monad of x ∈ ∗X is the equivalence class
mon(∗X,x) = {y ∈ ∗X : ∥x− y∥ ≃ 0} (mon(x) for brevity) and the galaxy of x is
the equivalence class gal(∗X,x) = {y ∈ ∗X : ∥x− y∥ ∼ 0} . The set gal(∗X, 0) is
called the principal galaxy and denoted by gal(∗X). Let mon(X) =

∪
x∈X mon(x).

Notice that in general mon(X) is a proper subset of gal(∗X). If x ∈ mon(X), the
unique a ∈ X such that ∥x− a∥ ≃ 0 is called the standard part of x and is denoted,
as in a real case, by st(x). We refer to st : mon(X) → X as the standard part
mapping.

It was proved in [3, Th. 6.4], that ZFC is faithfully interpretable in the Alpha-
Theory, i.e., a sentence σ in the language L = {∈} is a theorem of ZFC if and only
if its relativization σWF to the class of well-founded sets is a theorem of the Alpha-
Theory. In other words, the Alpha Theory proves those and only those statements
(∈-statements, to be precise) about well-founded sets which ZFC proves about all
sets.
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[32] A. Wísnicki, The fixed point property in direct sums and modulus R(a,X), Bull. Aust. Math.
Soc. 89 (2014), 79–91.

[33] H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002), 240–
256.

Manuscript received January 5, 2014

revised April 11, 2014

Andrzej Wísnicki
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