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SOME FIXED POINT THEOREMS FOR
A PAIR TYPE OF BOGIN-POPESCU MAPPINGS
IN COMPLETE METRIC SPACES*

LJUBOMIR CIRIC, NARIN PETROT', AND PORNTHIP PROMSINCHAI

ABSTRACT. By using a concept of generalized commuting mappings, we study
a new class pair of mappings. Some fixed point theorems and corresponding
example are considered and discussed on such introduced class. The presented
results in this work are generalizations and improvements of many important
results, in the sense that we are providing more choices of tool implements to
check whether a fixed point of considered mapping exists.

1. INTRODUCTION AND PRELIMINARIES

Let (X, d) be a metric space. If T': X — X is a mapping, then an element z € X
is called a fized point of T if x = Tx. In 1922, Banach [2] considered a class of
mappings, so-called contraction mappings, that is a mapping 7' : X — X such that
we can find a real number k € [0,1) such that

(1.1) d(Tz,Ty) < kd(x,y),

for all z,y € X. He proved that if the metric space (X,d) is a complete and a
considered mapping 7T satisfied the condition (1.1) then 7" must has a unique fixed
point. A such result is well known and called the Banach contraction mapping
principle. Evidently, the Banach contraction mapping principle are very useful and
there exists a huge research on this line, where the contractive condition (1.1) is
replaced by some more relaxed conditions. Ones may see [5, 11, 10] for a good
monograph on this topic.

In 1976, Bogin[4] proved the following generalization of the Banach contraction
mapping principle.

Theorem 1.1 ([4]). Let (X,d) be a nonempty complete metric space and T : X —
X be a mapping satisfying

(12)  d(T2,Ty) < ad(e,y) + bd(x, Tx) + d(y, Ty)] + cld(x, Ty) + d(y, Tx)]
where a > 0,0 > 0,c¢>0 and a+2b+2c=1. Then T has a unique fixed point.

Recently, may be inspired by Theorem 1.2, Popescu[l5] showed the following
result.
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Theorem 1.2 ([15]). Let (X,d) be a nonempty complete metric space and T : X —
X be a mapping satisfies the following condition: for each x,y € X such that

5 (e, Tx) < d(z,)
implies
(1.3) d(Tz,Ty) < ad(z,y) + bld(z, Tx) + d(y, Ty)] + c[d(z, Ty) + d(y, Tx)]
where a > 0,b>0,c>0 and a+2b+2c=1. Then T has a unique fixed point.

Remark 1.3. Obviously, Theorem 1.2 is a generalization of Theorem 1.1. In fact,
in [15], the author also gave an example showing that the class of mappings that
satisfies (1.3) is properly larger than that of condition (1.2).

On the other hand, the Banach contraction mapping principle was extended by
Jungck[7], in 1976, as following.

Theorem 1.4 ([7]). Let (X,d) be a complete metric space. Let S be a continuous
self-map on X and T be any self-map on X that STx =TSz, for allz € X. If S
and T satisfy T(X) C S(X)  and there exists a constant k € [0,1)  such that

d(Tx,Ty) < kd(Sz, Sy),

forallx,y € X. Then S and T have the unique common fized point, that is, there
exists the unique x € X such that Tx =z = Sx.

Notice that the two self mappings S and T such that STz = TSz for all z €
X, is called commuting mappings. Observe that, in a special situation as S is
the identity mapping then Theorem 1.4 is nothing but the Banach contraction
principle. Recently, there are many fixed point theorems which are concerning to
common fixed points of two mappings (or finite family of mappings), and there exist
several concepts which are more general than the commuting class of mappings, see
[1, 3,6, 8,9, 12, 14, 13] for examples.

Motivated by above literatures, we will introduce a new class of mappings. Some
fixed point theorems on such introduced class will be given, by using a concept of
generalized commuting mappings. Moreover, an interesting example will be pro-
vided and discussed. To do this, the following basic concepts are needed.

Definition 1.5. Let (X, d) be a metric space and f,7 : X — X. An element z € X
is called a coincidence point of f and T if fx = Tx. We will denote the set of all
coincidence points of f and T by C(f,T).

Definition 1.6. Let (X,d) be a metric space and f,7 : X — X. Then f and T
are said to be weakly compatible if for each x € C(f,T) we have T'fx = fTx.

Definition 1.7. Let (X, d) be a nonempty metric space and E be a nonempty subset
of X. Let T: E — FE and f : E — X be two mappings such that T'(E) C f(E). For
any fixed z¢ € F, a sequence {z,} = {zg,z1,x2,...} C X such that Tx,, = fa, 1
is called an f-orbit of T at xg.



SOME FIXED POINT THEOREMS FOR A PAIR TYPE OF BOGIN-POPESCU 553

2. MAIN RESULTS

In this section, we start by introducing a new class of mappings, which can be
viewed as a generalization of those mappings that considered in Theorem 1.2.

Definition 2.1. Let (X, d) be a metric space and E be a nonempty subset of X.
A mapping T : E — FE is called f-Bogin-Popsecu type mapping, if there exist a
mapping f : £ — X and real numbers a > 0,b > 0,¢ > 0 which a 4+ 2b 4+ 2¢ = 1,
and for each x,y € X such that

5 d(fe.Tx) < d(fz. fy)
implies

(2.1) d(Tw, Ty) < M{,, (2,y),

where M(J;’b,c)(ac, y) = ad(fx, fy)+bld(fz, Tx)+d(fy, Ty)|+cld(fz, Ty)+d(fy, Tz)].

Remark 2.2. If f = I, the identity map on E, then we see that the condition (2.1)
is reduced to condition (1.3).

Next, we present some coincident point theorems for a subclass of Bogin-Popsecu
type mappings.

Theorem 2.3. Let (X,d) be a nonempty complete metric space and let E be a
nonempty closed subset of X. Let T : E — E be a f-Bogin-Popescu type mapping
such that T(E) C f(E) and f(FE) be a closed subset of X. Then
(a) C(f,T) is a nonempty set.
(b) f(C(f,T)) is a singleton set.
(c) for any xg € E, there exists an f-orbit of T at x¢ and uw € C(f,T) such that
frn, — fu. Moreover,

(22 d(fn, fu) < 7

Wd(fx07fxl)>

— I4a 1+
for alln =1, where h = \/a+2b+cmax{1—_‘;, 1_‘;},

Proof. Firstly, let us prove (b). Suppose that z and w are coincident points of f
and T. We see that

%d(fz,Tz) =0<d(fz fw).
Thus, by (2.1), it follows that
d(fz, fw) =d(Tz,Tw)
<ad(fz, fw)+bld(fz,Tz) + d(fw, Tw)] + c[d(fz, Tw) + d(fw, Tz)]
= ad(fz, fw) +b[d(fz, fz) + d(fw, fw)] + c[d(fz, fw) + d(fw, f2)]
= (a+2c)d(fz, fw).

This implies that fz = fw, and (b) is proved.
Now, we prove (a) and (c). Let xg be an arbitrary element in E. Since T'(E) C
f(E), it follows that there is x1 € E such that Tzo = fz1. Subsequently, since
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Tz € T(E) C f(E), there exists zo € E such that Tx; = frze. Similarly, since
Tzo € T(E) C f(E), there exists x3 € F such that Txy = fxs. By continuing this
process, we obtain a sequence {fx,}o2; and {T'z,} 2 such that

Tzn = frnyr, n>0.
From now on, for the sake of simplicity, we will denote the constructed sequence
{Tan} by {yn}, that is
Yn :=Txn = fruni1, n>0.

Next, we divide proof into four steps.
Step 1 We show {d(yn, Un+1) }o is a nonincreasingness sequence of real numbers.
Let n be a fixed natural number. By above constructive method, we see that

1
5d(foan, Txon) < d(foon, fronsr).
Thus, by (2.1), it follows that

d(Y2ns Yont1) < ad(Y2n—1,Y2n) + b[d(y2n—1,Y2n) + d(Y2n; Y2n+1)]
+ cld(y2n—1, Yon+1) + d(Y2n, Y2n)]
< ad(y2n—1,Y2n) + 0[d(y2n—1,y2n) + d(Y2n, Y2n+1)]
+ cld(y2n—1,y2n) + d(Y2n, Y2n+1)]
= (a+b+c)d(y2n—1,y2n) + (b + c)d(yon, yon+1)-
This implies that

a+b+ec

d(yan, Yant1) < d(Y2n—1,Y2n)

—1-b-—c

= d(y2n—1> y2n)-
That is,
(2.3) d(yon, Yan+1) < d(Y2n—1,Y2n)

Similarly, since

1/2d(frons1, Toong1) < d(frons1, Trons1) = d(fronyi1, frony2),
we know, by (2.1), that

d(Yon+1, Yont2) < ad(yan, Yoant1) + b[d(Y2n, Yant1) + d(y2n+1, Yant2)]
+ c[d(Y2n, Yon+2) + d(Y2nt1, Y2n+1)]
< ad(yan, Yon+1) + 0[d(Y2n, Y2n+1) + d(Y2n+1, Y2n+2)]
+ c[d(Y2ns Yon+1) + d(Y2nt1, Y2n+2)]
= (a + b+ c)d(y2n, Y2n+1) + (b + )d(Y2n+1, Y2n+2)-
Thus,

a+b+c
d(y2n+1, Yon+2) < 75— d(Yon, Y2nt1) = d(Y2n, Y2n+1)-

This means,

(2.4) d(Yan+1, Yon+2) < d(Y2n, Y2n+1)
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Therefore, by (2.3) and (2.4), we conclude that

d(yn+17yn) < d(yna yn—1)7 for all n > 0.
This proves Step 1.

Step 2 We show that there exists a nonnegative real number m < 2 such that

(2.5) d(Yn+1,Yn+3) < md(Yn, Yn+1), for all n > 0.
To do this, let us consider the following two possible cases.
Case (i) : Suppose that d(Tzy, Trnt2) > d(Txn, TTpi1).
It follows that
1/2d<T$n7 Txn+1) < d(T.Z'n, Txn+2) = d(fxn+17 fxn-l—?))-

Subsequently, by (2.1) and the nonincreasingness of {d(y,, yn+1)}, we have

A(Yn+1,Yn+3) < ad(Yn, Yn+2) + b[d(Yns Yn+1) + d(Yn+2, Yn+3)]
+ cld(Yn> Yn+3) + A(Yn+2, Yn+1)]
< ald(yn, Yn+1) + d(Yn+1, Yn+2)]
+ 0[d(Yns Yn+1) + d(Yn+2, Yn+3)]
+ cld(Yns Yn+1) + d(Yn+1,Yn+3) + d(Yn+2, Yn+1)]
= (a+b+c)d(Yn: Yn+1) + (@ + )d(Yn+1, Yn+2)
+ 0d(Yn+2: Yn+3) + cd(Yn+1, Yn+3)-
< (2a + 2b + 2¢)d(Yn, Yn+1) + cd(Yn+1, Yn+3)-
This implies,

a+2b+2c+a 1+a

T W yns1) = T dUn, Ynt1)-

Setting my := (1 +a)/(1 — ¢) , we see that m; < 2 and

A(Ynt1,Yn+3) <

Ad(Yn+1, yn+3) < mld(ym yn+1)-

Case (ii): Suppose that d(Tzp, Txpi2) < d(Txp, Txpyi1).
It follows that
1/2d(Txyp, Txpni1) < d(Txp, Txpi1) = d(fops1, frnie).
Thus, by (2.1), we have
A(Yn+1,Yn+2) = d(Txnp1, TTn2)
< ad(frni1, frnt2) + 0[d(frni1, Tons1) + d(frni2, Toni2)]
+ cld(frnt1, Tony2) + d(fonio, Topg1)]
=ad(Txp, Txni1) + 0ld(Txn, Txnt1) + d(Txns1, TTni2)]
+cld(Txpn, Trpt2) + d(Txps1, TTpi1)]
< ad(Tzy, Txni1) + b[d(Txn, Txns1) + d(Txns1, TTni2)]
+cd(Txp, Trpi1)
= ad(Yn, Yn+1) + b[d(Yn, Yn+1) + d(Ynt1, Yn+2)] + cd(Yn, Ynt1)-
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This implies,
d(yn+la yn+2) < (a +b+ C)d(?/n, yn—i-l) + bd(yn—i-la yn+2)-

Hence,

a+b+c
(2.6) d(Yn+1, Yn+2) < 5

Meanwhile, by the nonincreasingness of {d(yn, yn+1)}, we observe that

d(yrw yn—i—l).

AYn+15Yn+3) < d(Ynt1, Ynt2) + dYnt2, Ynt3) < 2d(Yni1, Yns2)-
Using this one together with (2.6), we have

2a 4+ 2b+ 2c 1+a
A(Yn+1,Yn+3) < —5 A0, Yn+1) = 77 AW, Yns1)-

Setting mo = (1 +a)/(1 —b) , we have my < 2 and
A(Yn+1:Yn+3) < m2d(Yn, Ynt1)-

Puting m = max{m,ms}, in view of Cases (i) and (ii), we see that 0 < m < 2
and
d(yn+17yn+3) < md(yn7yn+1)7 for all n > 0.
This proves Step 2.

Step 3 We show that there exists a nonnegative number k£ < 1 such that

(2.7) d(Yns ynr1) < k7T d(yo, 1)
for all n > 0.
Since %d(TwnH, Trpio) < d(Txps1, Trns2) = d(frnte, frnys), it follows by
(2.1) and the nonincreasingness of {d(yn, Yn+1)}, that
d(Yn+2, Yn+3) = A(TTpi2, TTny3)
< ad(frnt2, frnis) +0[d(frni2, Toni2) + d(fTnis, TTnqis)]
+ cld(frpio, Txnts) + d(frpss, Txni2)]
= ad(Yn+1, Yn+2) + b[d(Yn+1, Ynt2) + d(Yn+2, Yn+3)]
+ cld(Yn+1; Yn+3) + A(Yn+2, Yn+2)]
< (a+20)d(Ynt1: Yn+2) + cd(Yn+1, Ynt3)-

Subsequently, in light of (2.5), we obtain
d(yn—I—Qa yn+3) < (a + 2b)d(yn7 yn—H) + mcd(ym yn-‘rl)
(2'8) = (a + 20+ mc)d(yna yn-‘rl)'

Setting k = a + 2b 4+ mec. Note that k& < 1. Now, we will prove (2.7) by considering
the following two cases:
If n is an even natural number and ¢ is a natural number such that n = 2¢. So,

by (2.8), we have

A(Yn, Yn+1) = d(y2t, Yor+1) < kd(y2t—2,y2t—1)
< K2d(yar—a, y21-3)
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< k2d(yo,y1)
(2.9) < k"% d(yo, m1)-

If n is an odd natural number and s is a natural number such that n = 2s + 1.
So, by (2.8) and the nonincreasingness of {d(yn, yn+1)}, we have

A(Yn, Yn+1) = d(Y@2s—1)+2 Y(2s—1)+3) < kd(y25-1, Yas)
= kd(y(2573)+27 9(2373)+3)
< k2 d(y2s—3, Yas—2)

= de(y(2s—5)+27 y(25—5)+3)

(2.10) <
Hence, from (2.9) and (2.10), we obtain (2.7).

Step 4 We show that C(f,T') is a nonempty set, and moreover, the sequence
{yn}22, converges to z, for some z € f(C(f,T)).

Let n be a fixed natural number. For each natural number m such that m > n,
we have

d(ynv ym) < d(yna yn+1) + d(yn—i—la yn+2) + -+ d(ym—l’ ym)

_ (B d(yo,yr) (K" 2d(yo, y1) (k™)' 2d(yo, 1)

- k1/2 k1/2 ot k1/2
1 n n n m—

= Mo ) [(F)'2 4 (V2 4 (5722 4 (T
1 —1-n

= 7o ) () P B2 4 B2 e () )
1 n\1/2 1

@) < e [

Since k € (0,1), we conclude that {y,} is a Cauchy sequence in f(E). Thus, by
the completeness of f(F), we know that there is u € E such that {y,} converges to
f(u) as n — oc.

Finally, we now show that v € C(T, f). In order to complete the proof of this
one, we first show that

(2'12) d(f%yn) > 1/2d(ynayn+1) or d(fu,yn+1) > 1/2d(yn+1,yn+2)a
for all n > 0. Suppose, on the contrary, that there exists a natural number n such
that
d(fu,yn) < 1/2d(Yn, Ynt+1) and d(fu,ynt1) < 1/2d(Ynt1, Yn+2)-
It would follow that

d(y’rM yn+1) < d(fu7 yn) + d(fua yn+1)
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1
< 5 [d(yna yn-‘rl) =+ d(yn-i-h yn+2)]

S d(yn; yn+1)7

which is a contradiction. Thus, (2.12) is true. Subsequently, by (2.12), we can find
a subsequence {y,, } of {y,} such that

d(fu, ynj) = 1/2d(?/nj7ynj+1)
for all j > 0. Then, by (2.1), we have
d(Tu, Yyn;+1) < ad(fu, yn;) + bld(fu, Tw) + d(yn;, Yn;+1)]
+ cld(fu, ynj+1) + d(yn;, Tu)].
Letting j — oo, we obtain d(Tu, fu) < (b+ ¢)d(Tu, fu). Since b+ ¢ € (0,1), this
implies that d(Tu, fu) = 0. Hence, u € C(T, f) and the proof is complete. O

As special case of Theorem 2.3, we have a result which presented by Popescu in
[15].

Theorem 2.4 ([15]). Let (X, d) be a nonempty complete metric space and T : X —
X be a mapping such that the condition (1.3) is satisfied, then T has a unique fized
point.

Proof. Observe that if T" satisfies the condition (1.3) then it is I-Bogin-Popescu type
mapping, where [ is the identity mapping on X. Subsequently, by Theorem 2.3, we
know that C(I,T) is a singleton set. By using this fact, the required result is easily
obtained. O

Next, we give a theorem of a unique fixed point.

Theorem 2.5. Assume that all conditions of Theorem 2.3 are satisfied. If, in
addition, f and T are weakly compatible then f and T have a unique common fized
point.

Proof. Notice that, since f(C(f,T)) is a singleton set, if the set of common fixed
point of f and T is a nonempty set then it must be a singleton set. This means
that f and T have a unique common fixed point.

Now, we show that f and T have a common fixed point. As proving the Theorem
2.3, we know that there are u € C(T, f) and z € f(F) such that Tu = fu = z.
Thus, since f and T are weakly compatible, it follows that

(2.13) Tz=Tfu= fTu= fz.

Considering this element z, by following the lines of proof proving (2.12), we know
that

d(fz,yn) > 1/2d(Yn, Yn+1) or d(fz,Yns1) > 1/2d(Yn+s1, Ynt2),

for all n > 0. Subsequently, there exists a subsequence {yp, } of {y,} such that
d(fz,yn,) > 1/2d(yn,,, Yn,+1) for every integer k > 0. Then, by (2.1), we have

d(Tz, yny+1) < ad(fz,yn,,) +0ld(f2,T2) + d(Yny s Yny+1)]

+ cld(f 2, Yny+1) + d(Yny,, T2)]
= ad(Tz,yn,) + 0[d(T2,Tz) + d(Yn,,, Ynj+1)]
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+ cld(Tz, yny+1) + d(Yn,, T2)].

Taking k — oo, we obtain d(T'z,z) < (a + 2¢)d(T'z,z). This implies that Tz = z.
Further, by (2.13), we have fz = Tz = z. This means that z is a common fixed
point of T and f, and the proof is complete. O

Now, we provide an example which shows that Theorem 2.5 is a genuine gener-
alization of Theorem 2.4.

Example 2.6. Let X = (—o0,00) with the usual metric and let T : X — X be a
mapping defined by

Then,
(1) T does not satisfy condition (1.3).
(2) T is a f-Bogin-Popescu type mapping, where f: X — X is defined by

=" if x€[0,00),
f.f: x ifl‘E(OO, _TI)U(_Tlao)a
-1 if = F,
anda=1/2,b=c=1/8.
(3) T and f have a unique common fized point.

Proof. (1) Let us consider when z = =1, y = 5. We see that
1 1]-1 1 -1 1
—d(x,Tx)==|—+ | <|—+ =
pdle Te) 2‘4+2‘—‘4+2

If T satisfies the condition (1.3), it would follow that there is (a,b,c) € [0,00) X
(0,00) x (0,00) such that

= d(z,y).

G+ 7| = AT T0) < ad(a,y) + @, Ta) 4 A T+ ldo ) + dly T

1 S A ) BN I R T
4Ty Ty 1 "2 2 Tl T T 2 "2
11

This implies that 1 < a + 2b. On the other hand, since a +2b =1 — 2¢ and ¢ > 0,
then a 4+ 2b < 1. These lead to a contradiction, and so (1) is showed.

(2) We have to consider the following essential five cases.
Case 1: Let x,y € A. We have

1|—x vy 1{|l—> = -y Yy - Y -y T
M S A R il —Z s 42 24z
(@Y =3 2+2‘+8H2+4+‘2+4’+ > T4 T2 1

1 lrz vy Y l" ‘x yH

=3l y|+8[4+4+‘4 2l 11 2l
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and
—X
d(Tz, Ty) = _+y‘ = lz—y|.

Case 2: Let x € A,y € B. We have

1|—=z 1||—2z = Y - oy T
0 =315 o 1[5 5 -2 - e e
@Y =313 y‘+8[2+4+y 2l T2 2’+y+2
=sls ol r5li-5+ 58]+ v+l
212 TV Tl 2Tl Tl T T ol
and
-z Yy 1|z
d(Te,Ty) = |2 - Y= 2|2 (
(x,y)‘4 2’22+y
Case 3: Let x € A,y = %. We have
1|—z 1{|—2 =z 1 —x 1
M/ ,:——1————1————‘—1
(1,10®Y) =3 2+'+8[ > " 2’+ 2+2‘+ *
_11 :U‘+l :r:+1+1 T ‘33 1)
2 21 814 2 |2 2 4 ’
and
rz 1 1 T
d(Tz, Ty) = | -2 ———1——)
(T, Ty) 4+2‘ 21772
Case 4: Let x € B,y € A. We have
1 y| 1 x -y Y Yy -y
iy 0 =3 3 =5l G Y bt [
(G.4)@Y) 2x+2+8[$ 1 R I ) R R
_1 Y 1|l—2z vy Y ‘y T
_2‘x+2‘+8[2+4+‘$+4‘+2+§"

and

T 1
aTwTy) =[5+ =5 e+ 5]

Case 5: Let x € B,y = _Tl. We have

1 1 x 1 1
( )(xy) 2!3:—1— !+8[x 5 + + o+ |—x+ |+

2 2 2
:1|x+1y+1[—f—1+’x+1‘+)9+1”
2 8|72 2 2| Tl T

and

z 1 1
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Thus, from all above cases, we see that 1" is a f-Bogin-Popescu type mapping. This
proves (2).

(3) We will show that 0 is the unique common fixed point of f and 7.
If 2 € [0,00). Then Tx = 5* and fr = S*.
We see that
x x
T = = _— = e
r=z=fr& =7 >
< =0.
This means 0 is the unique common fixed point of f and 7" on [0, 1].
If 2 € [—o0, ) U(F,0). Then Tz = £ and fz = z.
Consider
Ter=x= fr & g =
&z =0.

However, since 0 ¢ [—o0, _Tl) U (_Tl, 0), we conclude that f and 7" have no common
fixed point on [—oo, _Tl) U (_Tl, 0).

Ifx = _Tl. It is obvious that x is not a common fixed point of f and T

Hence 0 is the unique common fixed point of 7" and f on X. Il

3. CONCLUSION

In this paper, we introduce a new class of mappings and prove some fixed point
theorems in a complete metric spaces setting. Subsequently, as shown by Remark 2.2
and Example 2.6, our results is a genuine generalization of some important existing
results that have been presented in [4, 15]. Indeed, we would like to point out that
the usefulness of our presented results are providing more choices of tool implements
to check whether a fixed point of considered mapping exists. At this point, we also
desire that the results presented here will be useful for further research works,
because this paper may be extended to many classes of mappings such as weakly
commuting mappings; R-weakly commuting, Cj,-commuting, and many concepts.
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