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(d) T is demiclosed if xn
w.
⇀ x,Txn → y =⇒ Tx = y.

(e) T is asymptotically regular at x ∈ H if (I − T )Tnx → 0.
(f) The set of fixed points of T is FixT := {x ∈ H : Tx = x}.

We collect facts concerning the interplay between these properties.

Fact 1.2 (Nonexpansive properties). The following hold.

(a) If T is firmly nonexpansive then T is nonexpansive.
(b) If λ ∈ [0, 1] and T is λ-averaged then T is nonexpansive.
(c) T is firmly nonexpansive if and only if T is 1/2-averaged.
(d) If T is nonexpansive then I − T is demiclosed.
(e) If λ ∈]0, 1[ and T is λ-averaged then, for any z ∈ H,

lim
n→∞

∥Tn+1z − Tnz∥ =
1

k
lim
n→∞

∥Tn+kz − Tnz∥ = lim
n→∞

1

n
∥Tnz∥,

for all k ≥ 1. In particular, if (Tnz)∞n=1 is bounded, then T is asymptotically
regular at x.

Proof. For (a)–(d) see, for example, [5, Ch. 4]. For (e), see [1, Th. 2.1]. �

The following theorem will be useful is establishing convergence of our algorithms.

Theorem 1.3 (Weak convergence of iterates). Let λ ∈]0, 1[. Suppose (Ti)
m
i=1 is a

family of λ-averaged mappings from H to H such that Fix(Tm . . . T1) ̸= ∅. For any
x0 ∈ H define

xn+1 := (Tm . . . T1)xn.

Then xn − (Tm . . . T1)xn → 0 and there exists points y1 ∈ Fix(Tm . . . T1), y2 ∈
Fix(T1Tm . . . T2), . . . , ym ∈ Fix(Tm−1 . . . T1Tm) such that

xn
w.
⇀ y1 = Tmym,

T1xn
w.
⇀ y2 = T1y1,

T2T1xn
w.
⇀ y3 = T2y2,

...

Tm−2 . . . T1xn
w.
⇀ ym−1 = Tm−2ym−2,

Tm−1Tm−2 . . . T1xn
w.
⇀ ym = Tm−1ym−1.

Proof. This is a special case of [5, Th. 5.22]. �

1.2. The Method of Cyclic Projections. The (nearest point) projection onto a
set C (if it exists) is the mapping PC : H → C defined by

PCx := argmin
c∈C

∥c− x∥.

It is well known that if C is closed and convex, PC is well defined (i.e., nearest
points exist uniquely for all x ∈ H) (see, for example, [4, Prop. 2.1.2]). It has the
variational characterization

PCx = c ⇐⇒ c ∈ C and ⟨x− PCx,C − PCx⟩ ≤ 0 for all c ∈ C.
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For any y0 ∈ H, the method of cyclic projections can be described in terms of the
iteration scheme

y11 := PC1y0, yi+1
n := PCi+1y

i
n, y1n+1 := yN+1

n .

We refer to the sequences (y1n)
∞
n=1, (y

2
n)

∞
n=1, . . . , (y

N
n )∞n=1 as the cyclic projection se-

quences.
Define

Qi := PCiPCi−1 . . . PC1PCN
. . . PCi+1 .

Note that, for each i, the sequence (yin)
∞
n=1 is given by

yin+1 = Qiy
i
n.

Suppose that each FixQi is nonempty and let q1 ∈ FixQ1. Define the sequence
(qi)Ni=1 by

qi+1 := PCi+1q
i ∈ FixQi+1.

Define (di)Ni=1, the sequence of difference vectors, by di := qi+1−qi. It can be shown
that the difference vectors are well-defined (i.e., they are independent of the choice
of q1). For further details see [4].

Recall the following dichotomy theorem.

Theorem 1.4 (Cyclic projections dichotomy). Exactly one of the following alter-
natives hold.

(a) Each FixQi is empty. Then ∥yin∥ → +∞, for all i.
(b) Each FixQi is nonempty. Then, for each i, (yin)

∞
n=1 weakly converges to a point

yi such that yi+1 = PCi+1y
i, and the sequence (yi+1

n − yin)
∞
n=1 converges in norm

to di.

Proof. See [4, Th. 5.2.1]. �

1.3. The Cyclic Douglas–Rachford Method. The (metric) reflection with re-
spect to a set C is the mapping RC : H → H given by

RC := 2PC − I,

where I denotes the identity mapping. If C is closed and convex, RC is well defined.
It has the variational characterization (see, for example, [8, Fac. 2.1])

RCx = r ⇐⇒ 1

2
(r + x) ∈ C and ⟨x− r, c− r⟩ ≤ 1

2
∥x− r∥2 for all c ∈ C.

The Douglas–Rachford operator is the mapping TC1,C2 : H → H given by

TC1,C2 :=
I +RC2RC1

2
.

The cyclic Douglas–Rachford operator is the mapping T[C1,C2,...,CN ] : H → H
given by

T[C1,C2,...,CN ] :=

N∏
i=1

TCi,Ci+1 ,

where TN,N+1 := TN,1.
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Where there is no ambiguity, we write Ti,i+1 to mean TCi,Ci+1 , and σi to mean
the cyclic permutation of C1, C2, . . . , CN beginning with Ci. Under this notation

T[σ1] := T[C1,C2,...,CN−1,CN ], T[σ2] := T[C2,C3,...,CN ,C1], etc.

For convenience, we define σ0 := σN and σN+1 := σ1.
For any x0 ∈ H, the cyclic Douglas–Rachford method can be described in terms

of the iteration scheme

(1.3) x11 := x0, xi+1
n := Ti,i+1x

i
n, x1n+1 := xN+1

n .

We refer to the sequences (x1n)
∞
n=1, (x

2
n)

∞
n=1, . . . , (x

N
n )∞n=1 as the cyclic Douglas–

Rachford sequences.
Note that, for each i, the sequence (xin)

∞
n=1 is given by

(1.4) xin+1 := T[σi]x
i
n.

Remark 1.5. If z ∈ Ci then Ti,i+1z = PCi+1z. Hence, if x0 = y0 ∈ C1, the cyclic
projection and cyclic Douglas–Rachford sequences coincide. That is, for each i,

yin = xin, for n = 1, 2, 3, . . . .

If x0 ̸= y0 and x0 ̸∈ C1, it is entirely possible for the cyclic projection and cyclic
Douglas–Rachford sequences to be distinct. For an example, see [8, Rem. 3.3].

Remark 1.6 (Alternating reflections). The classical Douglas-Rachford method,
which applies to two sets problems, performs iterations by repeated application of
a Douglas-Rachford operator, i.e. xn+1 := T1,2(xn) for all n or xn+1 := T2,1(xn)
for all n. Thus, in the two sets case, the cyclic Douglas–Rachford method may be
thought of as a traditional Douglas-Rachford algorithm in which the set chosen to
be reflected on first is alternated.

2. A dichotomy theorem

We require a suite of seven preparatory lemmas.

Lemma 2.1. For each index i,

(a) Ti,i+1 is 1/2-averaged, and hence firmly nonexpansive.
(b) T[σi] is (1− 2−N )-averaged.

Proof. (a) Since convex reflections are nonexpansive, it immediately follows that
Ti,i+1 is 1/2-averaged. (b) Suppose that T is 1/2-averaged and Q is (1 − 2−k)-
averaged for some nonnegative integer k. We may write

T =
1

2
I +

1

2
R, and Q =

1

2k
I +

(
1− 1

2k

)
S,

for nonexpansive mappings R and S. Observe

TQ =
1

2
Q+

1

2
RQ =

1

2k+1
I +

2k − 1

2k+1
S +

2k

2k+1
RQ

=
1

2k+1
I +

2k+1 − 1

2k+1

(
2k − 1

2k+1 − 1
S +

2k

2k+1 − 1
RQ

)
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=
1

2k+1
I +

(
1− 1

2k+1

)(
2k − 1

2k+1 − 1
S +

2k

2k+1 − 1
RQ

)
.

Since S and RQ are nonexpansive, so is their convex combination, and hence TQ
is (1− 2k+1)-averaged. The equivalence now follows. �

The follow lemma shows that the cyclic Douglas–Rachford method has similar
asymptotic behaviour to the method of cyclic projections. To exploit the nonex-
pansive properties of T[σi] and Ti,i+1, we will sometimes choose y0 := PC1x0.

Lemma 2.2. For any x0 ∈ H, choose y0 := PC1x0. As n → ∞,

(xin − xi+1
n )− (yin − yi+1

n ) → 0,

for any index i.

Proof. By Remark 1.5, the method cyclic projection sequence starting at y0 can be
consider as cyclic Douglas–Rachford sequence. Since T[σ1] is nonexpansive,

∥x1n+1 − y1n+1∥ ≤ ∥x1n − y1n∥ =⇒ lim
n→∞

∥x1n − y1n∥ exists.

Since Ti,i+1 is firmly nonexpansive, for each i,

∥x1n − y1n∥2 − ∥x1n+1 − y1n+1∥2 =
N∑
i=1

(
∥xin − yin∥2 − ∥xi+1

n − yi+1
n ∥2

)
≥

N∑
i=1

∥(xin − xi+1
n )− (yin − yi+1

n )∥2.

The result follows by taking the limit as n → ∞. �

Lemma 2.3. The sequence (xjn)∞n=1 is bounded if and only if FixT[σj ] is nonempty.

Proof. Suppose (xjn)∞n=1 is bounded. Then there exists a subsequence (xjnk)
∞
k=1

weakly convergent to some point z. By Fact 1.2(e), (I − T[σj ])xnk
→ 0. Since

(I − T[σj ]) is demiclosed, (I − T[σj ])z = 0 =⇒ z ∈ FixT[σj ].
Conversely, if z ∈ FixT[σj ] nonexpansivity implies

∥z − xjn∥ ≤ ∥z − xj1∥ =⇒ ∥xjn∥ ≤ ∥z∥+ ∥z − xj1∥.
This completes the proof. �

Lemma 2.4. The following four properties are equivalent.

(a) The sequence (xjn)∞n=1 is bounded, for some index j.
(b) The sequences (x1n)

∞
n=1, (x

2
n)

∞
n=1, . . . , (x

N
n )∞n=1 are bounded.

(c) The sequence (yjn)∞n=1 is bounded, for some index j.
(d) The sequences (y1n)

∞
n=1, (y

2
n)

∞
n=1, . . . , (y

N
n )∞n=1 are bounded.

Furthermore, if (xjn)∞n=1 is unbounded then ∥xjn∥ → +∞.

Proof. Fix an index j. For any x0 ∈ H, choose y0 := PC1x0. Since T[σj ] is nonex-
pansive,

∥xjn − yjn∥ ≤ ∥xjn−1 − yjn−1∥ ≤ · · · ≤ ∥xj1 − yj1∥.
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By the triangle inequality

∥xjn∥ ≤ ∥xj1 − yj1∥+ ∥yjn∥ and ∥yjn∥ ≤ ∥xjn∥+ ∥xj1 − yj1∥.

Thus (xjn)∞n=1 is bounded if and only if (yjn)∞n=1 is bounded. By Theorem 1.4, (yjn)∞n=1

is bounded if and only if (y1n)
∞
n=1, (y

2
n)

∞
n=1, . . . , (y

N
n )∞n=1, and if (yjn)∞n=1 is unbounded

then ∥xjx∥ → +∞. The result follows by combining these two statements. �
We observe

xi+1
n := Ti,i+1x

i
n =

xin +RCi+1RCix
i
n

2

=
xin + 2PCi+1RCix

i
n −RCix

i
n

2

=
2xin + 2PCi+1RCix

i
n − 2PCix

i
n

2

= xin + PCi+1RCix
i
n − PCix

i
n.

=⇒ PCi+1RCix
i
n = xi+1

n − xin + PCix
i
n(2.1)

Lemma 2.5. For all i and for all n,

(2.2) ∥xi+1
n − PCi+1x

i+1
n ∥2 ≤ ⟨xi+1

n − PCi+1x
i+1
n , xin − PCix

i
n⟩.

In particular, for all i and all n,

(2.3) ∥xi+1
n − PCi+1x

i+1
n ∥ ≤ ∥xin − PCix

i
n∥.

Proof. By (2.1) and the variational characterization of convex projections,

∥xi+1
n − PCi+1x

i+1
n ∥2 − ⟨xi+1

n − PCi+1x
i+1
n , xin − PCix

i
n⟩

= ⟨xi+1
n − PCi+1x

i+1
n , (xi+1

n − xin + PCix
i
n)− PCi+1x

i+1
n ⟩

= ⟨xi+1
n − PCi+1x

i+1
n , PCi+1RCix

i
n − PCi+1x

i+1
n ⟩

≤ 0.

This proves (2.2). Equation (2.3) now follows by an application of the Cauchy–
Schwarz inequality. �
Lemma 2.6. For all i and for all m,

(2.4)

m∑
n=2

N∑
i=1

∥(xi+1
n − PCi+1x

i+1
n )− (xin − PCix

i
n)∥2

≤ ⟨x12 − PC1x
1
2, x

N
1 − PCN

xN1 ⟩ − ⟨x1m+1 − PC1x
1
m+1, x

N
m − PCN

xNm⟩,

where ⟨x12−PC1x
1
2, x

N
1 −PCN

xN1 ⟩ and ⟨x1m+1−PC1x
1
m+1, x

N
m−PCN

xNm⟩ are nonneg-
ative. In particular, the double-sum in (2.4) is bounded, and hence, as n → ∞,

(xi+1
n − PCi+1x

i+1
n )− (xin − PCix

i
n) → 0.

Proof. Applying Lemma 2.5,

m∑
n=2

N∑
i=1

∥(xi+1
n − PCi+1x

i+1
n )− (xin − PCix

i
n)∥2
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=
m∑

n=2

N∑
i=1

(
∥xi+1

n − PCi+1x
i+1
n ∥2 − 2⟨xi+1

n − PCi+1x
i+1
n , xin − PCix

i
n⟩

+∥xin − PCix
i
n∥2

)
≤

m∑
n=2

N∑
i=1

(
⟨xin − PCix

i
n, x

i−1
n − PCi−1x

i−1
n ⟩ − ⟨xi+1

n − PCi+1x
i+1
n , xin − PCix

i
n⟩
)
.

= ⟨x12 − PC1x
1
2, x

0
2 − PC0x

0
2⟩ − ⟨xN+1

m − PCN+1
xN+1
m , xNm − PCN

xNm⟩
= ⟨x12 − PC1x

1
2, x

N
1 − PCN

xN1 ⟩ − ⟨x1m+1 − PC1x
1
m+1, x

N
m − PCN

xNm⟩.

The nonnegativity of ⟨x12−PC1x
1
2, x

N
1 −PCN

xN1 ⟩ and ⟨x1m+1−PC1x
1
m+1, x

N
m−PCN

xNm⟩
is a consequence of (2.2). �

We now prove the analogue of Lemma 2.5 which will be applied to the limits (if
they exist) of the cyclic Douglas–Rachford sequences. As before, we may deduce

(2.5) PCi+1RCix
i = xi+1 − xi + PCix

i.

Lemma 2.7. Suppose (xi)Ni=1 are points such that xi+1 = Ti,i+1x
i. Then, for all i,

PCi+1RCix
i − PCi+1x

i+1 = (xi+1 − xi)− (PCi+1x
i+1 − PCix

i) = 0.

Proof. Consider the cyclic Douglas–Rachford sequences for initial point x0 := x1.
Since xi ∈ FixT[σi], for each i, the result follows from (2.5) and Lemma 2.6. �

We are now ready to prove a dichotomy theorem which is the cyclic Douglas–
Rachford method analogue of Theorem 1.4.

Theorem 2.8 (Cyclic Douglas–Rachford dichotomy). The following holds.

(a) For each i,

PCi+1RCix
i
n − PCi+1x

i
n = (xi+1

n − xin)− (PCi+1x
i+1
n − PCix

i
n) → 0.

(b) Exactly one of the following alternatives hold.
(i) Each FixT[σi] is empty. Then ∥xin∥ → +∞, for all i.
(ii) Each FixT[σi] is nonempty. Then, for each i,

xin
w.
⇀ xi ∈ FixT[σi] with xi+1 = Ti,i+1x

i.

Furthermore, for each i,

xi+1
n − xin = PCi+1RCix

i
n − PCix

i
n → di, PCi+1x

i+1
n − PCix

i
n → di,

xi+1 − xi = PCi+1x
i+1 − PCix

i = di, PCi+1RCix
i = PCi+1x

i+1.

Proof. (a) follows by Lemma 2.6. (b) By appealing to Lemmas 2.3 and 2.4, we
establish the two possible alternatives: either FixT[σi] = ∅ and ∥xin∥ → +∞ for all
i, or FixT[σi] ̸= ∅ for all i.

If each FixT[σi] ̸= ∅, Lemma 2.1 together with Theorem 1.3 imply that the

sequence (xin)
∞
n=1 converges weakly to a point xi ∈ FixT[σi] with xi+1 = Ti,i+1x

i.

Lemma 2.2 with Theorem 1.4 implies xi+1
n − xin → di, which together with (a)

implies PCi+1x
i+1
n − PCix

i
n → di.
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Lemma 2.7 together with Theorem 1.4 applied to the cyclic Douglas–Rachford
sequences having initial point x1 yields xi+1 − xi = PCi+1x

i+1 − PCix
i = di and

PCi+1RCix
i
n = PCi+1x

i+1
n . �

If
∩N

i=1Ci ̸= ∅, it can be shown that the limits (xi)Ni=1 coincide (see, for example,
[8, Lem. 2.3]). In this case, we obtain [8, Th. 3.1] as a special case of Theorem 2.8.
That is, we have the following corollary.

Corollary 2.9 (Consistent cyclic Douglas–Rachford iterations). Suppose ∩N
i=1Ci ̸=

∅. Then the cyclic Douglas–Rachford sequences weakly converge to a common point
x such that PCi = PCjx for all indices i, j. In particular, PCj ∈ ∩N

i=1Ci for any
index j.

Remark 2.10. The proof of Corollary 2.9 given in [8] for the consistent case is
dependent on the fact that FixT[σ1] = ∩N

i=1 FixTi,i+1 ̸= ∅. Since FixTi,i+1 ̸= ∅ if
and only if Ci ∩ Ci+1 ̸= ∅, in the inconsistent case one can only guaranteed that
FixT[σ1] ⊇ ∩N

i=1 FixTi,i+1 = ∅.

Remark 2.11 (Approximating the difference vectors). In Theorem 2.8, it was
shown that the sequences

(xi+1
n − xin)

∞
n=1, (PCi+1RCix

i
n − PCix

i
n)

∞
n=1, (PCi+1x

i+1
n − PCix

i
n)

∞
n=1,

converge (in norm) to di. The latter two are suitable if one is interested in approx-
imating di using a pair of points from Ci and Ci+1.

Remark 2.12 (Cyclic Douglas–Rachford as a favourable compromise). The be-
haviour of the cyclic Douglas–Rachford scheme is somewhere between that of the
method of alternating projections and the classical Douglas–Rachford scheme. In
this sense, it can be consider a comprise between the two schemes having some of
the desirable properties of both. We elaborate.

Firstly, the cyclic Douglas–Rachford and classical Douglas–Rachford scheme per-
form the reflections with respect to the constraints sets, rather than using just a
projection, as is the case of the method of cyclic projections. This can be seen as
an advantage (at least heuristically). If a point is not contained in a particular con-
straint set, the reflection can potentially yield a strictly feasibility problem, where
as projections produces point on the boundary (see Figure 1).

Figure 1. RCx is strictly feasible, while PCx is on the boundary of C.

On one hand, the cyclic Douglas–Rachford and classical Douglas–Rachford iter-
ations both proceed by applying a two set Douglas–Rachford mapping (i.e. one of
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the form Ti,i+1). In the consistent case, the limit obtained by both these schemes,
once projected onto an appropriate constraint set, produces a solution to a feasibil-
ity problem. On the other, in the inconsistent case, the Douglas–Rachford scheme
iterates are always unbounded. The behaviour described in Theorem 2.8 is much
closer to that of the method of cyclic projections, described in Theorem 1.4.

Thus, if one wishes to diagnose infeasibility one might prefer Douglas-Rachford to
the cyclic variant, but if one desires an estimate even in the infeasible case one would
likely opt for the cyclic variant. The behaviour of the three methods is illustrated
in the two possible two sets cases in Figure 2.

3. The two set case

We now specialize the results of Section 2 for the case of problems having only
two sets. Here the geometry of the problem is both better understood and more
tractable. We introduce the following two sets

E := {e ∈ C1 : d(e, C1) = d(C1, C2)}, F := {f ∈ C2 : d(f, C1) = d(C1, C2)}.
Further, the displacement vector, v, is defined by

v := PC2−C1
(0) = −PC1−C2

(0).

We recall some useful facts.

Fact 3.1 (Properties of E,F and v). The following hold.

(i) If C1 ∩ C2 ̸= ∅ then C1 ∩ C2 = E = F and v = 0.
(ii) E + v = F , and ∥v∥ = d(C1, C2) if and only if C2 − C1 is closed.
(iii) E = FixQ1 = Fix(PC1PC2) and F = FixQ2 = Fix(PC2PC1).
(iv) v = d1 = −d2.

Proof. See, for example, [3, Sec. 1] and [4, Fac. 5.2.2]. �

We are now ready to specialize the conclusions of Theorem 2.8. In particular,
we show that the cyclic Douglas–Rachford scheme can can be used to find best
approximation pairs, provided they exist.

Theorem 3.2 (Alternating Douglas–Rachford dichotomy). The following holds.

(a) We have

PC2RC1x
1
n − PC2x

1
n = (x2n − x1n)− (PC2x

2
n − PC1x

1
n) → 0,

PC1RC2x
2
n − PC1x

2
n = (x1n − x2n)− (PC1x

1
n − PC2x

2
n) → 0.

(b) Exactly one of the following alternatives hold.
(i) E,F,FixT[C1,C2],FixT[C2,C1] = ∅. Then ∥x1n∥, ∥x2n∥ → +∞.
(ii) E,F,FixT[C1,C2],FixT[C2,C1] ̸= ∅. Then

x1n
w.
⇀ x1 ∈ FixT[C1,C2], x2n

w.
⇀ x2 ∈ FixT[C2,C1],

with x2 = TC1,C2x
1 and x1 = TC2,C1x

2. Furthermore,

x2n − x1n = PC2RC1x
1
n − PC1x

1
n → v, PC2x

2
n − PC1x

1
n → v,

x1n+1 − x2n = PC1RC2x
2
n − PC2x

2
n → −v, PC1x

1
n+1 − PC2x

2
n → −v,
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Figure 2. Behaviour of the three methods starting with the same
initial point. In (A)–(F), C2 := R× {0}. In (A)–(C), C1 := epi(1 +
1/·)∩ (R+×R+) and E,F are empty. In (D)–(F), C1 := epi(1+(·)2)
and E,F are nonempty.

and x2 − x1 = PC2x
2 − PC1x

1 = v. In particular,

PC1RC2x
2 = PC1x

1 ∈ E, PC2RC1x
1 = PC2x

2 ∈ F.

Proof. Follows from Theorem 2.8 and Fact 3.1. �

Contrast Theorem 3.2 with its analogues for cyclic projections (Theorem 1.4) and
for the classical Douglas–Rachford scheme (Theorem 3.3), which we state below for
completeness.

Theorem 3.3 (Douglas–Rachford method dichotomy). Let C1, C2 ⊆ H be closed
and convex. Let z0 ∈ H and set zn+1 := TC1,C2zn. Then

(a) zn+1 − zn = PC2RC1zn − PC1zn → v and PC2PC1zn − PC1zn → v.
(b) Exactly one of the following alternatives holds.

(i) C1 ∩ C2 ̸= ∅ and (zn)
∞
n=1 converges weakly to a point in

FixTC1,C2 = (C1 ∩ C2) +NC1−C2
(0).

(ii) C1 ∩ C2 = ∅ and ∥zn∥ → +∞.
(c) Exactly one of the following two alternatives holds.

(i) E,F = ∅, ∥PC1zn∥ → +∞ and ∥PC2PC1zn∥ → +∞;
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(ii) E,F ̸= ∅, (PC1zn)
∞
n=1 and (PC2PC1zn)

∞
n=1 are bounded with weak cluster

points in E and F , respectively. Furthermore, the weak cluster points of

((PC1zn, PC2RC1zn))
∞
n=1 and ((PC1zn, PC2PC1zn))

∞
n=1

are best approximation pairs relative to (C1, C2).

Proof. See [6, Th. 3.13]. �

4. Final remarks

We have analysed the behaviour of the cyclic Douglas–Rachford algorithm for
finding a point in the intersection of a finite number of closed convex sets. Whilst
each iteration of the the method is similar to that of the classical Douglas–Rachford
scheme, its behaviour, particularly in the inconsistent case, is closer the that of
the method of cyclic projections. With this in mind, one might consider the cyclic
Douglas–Rachford scheme as a useful comprise between these methods.

Applied to two-set feasibility problems for which best approximation pairs exist,
the cyclic Douglas–Rachford method produces a pair of points which when projected
onto the appropriate sets yields a best approximation pair. This is important for
applications in which consistency of the feasibility problem is not known a priori.

Finally we finish with two open questions:

(1) Can one prove a version of the main result in [2], showing that for cyclic
Douglas-Rachford applied to three sets there is no variational characteriza-
tion of the fixed point sets Fix T[σi] being nonempty?

(2) What can be said about convergence rates for the Douglas-Rachford meth-
ods? Much less seems known than in the case of alternating projections.
Recent linear convergence results for the classical Douglas–Rachford method
applied to affine subspaces can be found in [7].
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