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On the other hand, in 1953, Mann [9] introduced the following iteration process.
Let C be a nonempty, closed and convex subset of a Banach space E. A mapping
T : C → C is called nonexpansive if ∥Tx − Ty∥ ≤ ∥x− y∥ for all x, y ∈ C. For an
initial guess x1 ∈ C, an iteration process {xn} is defined recursively by

xn+1 = αnxn + (1− αn)Txn, ∀n ∈ N,

where {αn} is a sequence in [0, 1]. In 1967, Halpern [7] also gave an iteration process
as follows: Take x0, x1 ∈ C arbitrarily and define {xn} recursively by

xn+1 = αnx0 + (1− αn)Txn, ∀n ∈ N,

where {αn} is a sequence in [0, 1]. There are many investigations of iterative pro-
cesses for finding fixed points of nonexpansive mappings.

In this paper, motivated by these problems and results, we consider the split
feasibility problem in Banach spaces. Then using the idea of Mann’s iteration, we
first prove a weak convergence theorem for finding a solution of the split feasibility
problem in Banach spaces. Furthermore, using the idea of Halpern’s iteration, we
obtain a strong convergence theorem for finding a solution of the problem in Banach
spaces. It seems that these results are first in Banach spaces.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space with inner product ⟨ · · ⟩ and
norm ∥ · ∥, respectively. For x, y ∈ H and λ ∈ R, we have from [14] that

(2.1) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩;

(2.2) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.

Furthermore we have that for x, y, u, v ∈ H,

(2.3) 2⟨x− y, u− v⟩ = ∥x− v∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − v∥2.

Let C be a nonempty, closed and convex subset of a Hilbert space H. The nearest
point projection of H onto C is denoted by PC , that is, ∥x− PCx∥ ≤ ∥x− y∥ for
all x ∈ H and y ∈ C. Such PC is called the metric projection of H onto C. We
know that the metric projection PC is firmly nonexpansive, i.e.,

(2.4) ∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩

for all x, y ∈ H. Furthermore ⟨x−PCx, y−PCx⟩ ≤ 0 holds for all x ∈ H and y ∈ C;
see [12]. The following result was proved by Takahashi and Toyoda [15].

Lemma 2.1 ([15]). Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let {xn} be a sequence in H. If ∥xn+1 − u∥ ≤ ∥xn − u∥ for all
n ∈ N and u ∈ C, then {PCxn} converges strongly to some z ∈ C, where PC is the
metric projection on H onto C.

Let E be a real Banach space with norm ∥ · ∥ and let E∗ be the dual space of
E. We denote the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩. When {xn} is a sequence
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in E, we denote the strong convergence of {xn} to x ∈ E by xn → x and the weak
convergence by xn ⇀ x. The modulus δ of convexity of E is defined by

δ(ϵ) = inf

{
1− ∥x+ y∥

2
: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
for every ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex if
δ(ϵ) > 0 for every ϵ > 0. It is known that a Banach space E is uniformly convex if
and only if for any two sequences {xn} and {yn} in E such that

lim
n→∞

∥xn∥ = lim
n→∞

∥yn∥ = 1 and lim
n→∞

∥xn + yn∥ = 2,

limn→∞ ∥xn − yn∥ = 0 holds. A uniformly convex Banach space is strictly convex
and reflexive. We also know that a uniformly convex Banach space has the Kadec-
Klee property, i.e., xn ⇀ u and ∥xn∥ → ∥u∥ imply xn → u.

The duality mapping J from E into 2E
∗
is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}

for every x ∈ E. Let U = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be Gâteaux
differentiable if for each x, y ∈ U , the limit

(2.5) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists. In the case, E is called smooth. We know that E is smooth if and only
if J is a single-valued mapping of E into E∗. We also know that E is reflexive if
and only if J is surjective, and E is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is
a single-valued bijection and in this case, the inverse mapping J−1 coincides with
the duality mapping J∗ on E∗. For more details, see [12] and [13]. We know the
following result.

Lemma 2.2 ([12]). Let E be a smooth Banach space and let J be the duality map-
ping on E. Then, ⟨x−y, Jx−Jy⟩ ≥ 0 for all x, y ∈ E. Furthermore, if E is strictly
convex and ⟨x− y, Jx− Jy⟩ = 0, then x = y.

Let C be a nonempty, closed and convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any x ∈ E, there exists a unique element
z ∈ C such that ∥x− z∥ ≤ ∥x− y∥ for all y ∈ C. Putting z = PCx, we call PC the
metric projection of E onto C.

Lemma 2.3 ([12]). Let E be a smooth, strictly convex and reflexive Banach space.
Let C be a nonempty, closed and convex subset of E and let x1 ∈ E and z ∈ C.
Then, the following conditions are equivalent:

(1) z = PCx1;
(2) ⟨z − y, J(x1 − z)⟩ ≥ 0, ∀y ∈ C.

We also know the following lemmas:

Lemma 2.4 ([2], [17]). Let {sn} be a sequence of nonnegative real numbers, let {αn}
be a sequence of [0, 1] with

∑∞
n=1 αn = ∞, let {βn} be a sequence of nonnegative
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real numbers with
∑∞

n=1 βn < ∞, and let {γn} be a sequence of real numbers with
lim supn→∞ γn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αnγn + βn

for all n = 1, 2, . . . . Then limn→∞ sn = 0.

Lemma 2.5 ([8]). Let {Γn} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {Γni} of {Γn} which satisfies
Γni < Γni+1 for all i ∈ N. Define the sequence {τ(n)}n≥n0 of integers as follows:

τ(n) = max{k ≤ n : Γk < Γk+1},
where n0 ∈ N such that {k ≤ n0 : Γk < Γk+1} ̸= ∅. Then, the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ · · · and τ(n) → ∞;
(ii) Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1, ∀n ≥ n0.

3. Weak convergence theorem

In this section, we prove a weak convergence theorem of Mann’s type iteration
for the split feasibility problem in Banach spaces.

Theorem 3.1. Let H be a Hilbert space and let F be a strictly convex, reflexive
and smooth Banach space. Let JF be the duality mapping on F . Let C and D be
nonempty, closed and convex subsets of H and F , respectively. Let PC and PD be
the metric projections of H onto C and F onto D, respectively. Let A : H → F be
a bounded linear operator such that A ̸= 0 and let A∗ be the adjoint operator of A.
Suppose that C ∩A−1D ̸= ∅. For any x1 = x ∈ H, define

xn+1 = βnxn + (1− βn)PC

(
I − rA∗JF (A− PDA)

)
xn, ∀n ∈ N,

where {βn} ⊂ [0, 1] and r ∈ (0,∞) satisfy the following:

0 < a ≤ βn ≤ b < 1 and 0 < r∥A∥2 < 2

for some a, b ∈ R. Then xn ⇀ z0 ∈ C ∩A−1D, where z0 = limn→∞ PC∩A−1Dxn.

Proof. Let z ∈ C ∩ A−1D. Then we have that z = PCz and Az − PDAz = 0. Put
yn = PC

(
xn − rA∗JF (Axn − PDAxn)

)
for all n ∈ N. Since PC is nonexpansive, we

have that

∥yn−z∥2 =
∥∥PC

(
xn − rA∗JF (Axn − PDAxn)

)
− PCz

∥∥2
≤ ∥xn − rA∗JF (Axn − PDAxn)− z∥2

= ∥xn − z − rA∗JF (Axn − PDAxn)∥2

= ∥xn − z∥2 − 2⟨xn − z, rA∗JF (Axn − PDAxn)⟩
+ ∥rA∗JF (Axn − PDAxn)∥2

≤ ∥xn − z∥2 − 2r⟨Axn −Az, JF (Axn − PDAxn)⟩
+ r2∥A∥2∥JF (Axn − PDAxn)∥2(3.1)

= ∥xn − z∥2 − 2r⟨Axn − PDAxn + PDAxn −Az, JF (Axn − PDAxn)⟩
+ r2∥A∥2∥Axn − PDAxn∥2
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= ∥xn − z∥2 − 2r∥Axn − PDAxn∥2

− 2r⟨PDAxn −Az, JF (Axn − PDAxn)⟩+ r2∥A∥2∥Axn − PDAxn∥2

≤ ∥xn − z∥2 − 2r∥Axn − PDAxn∥2 + r2∥A∥2∥Axn − PDAxn∥2

= ∥xn − z∥2 + r(r∥A∥2 − 2)∥Axn − PDAxn∥2.

From 0 < r∥A∥2 < 2 we have that ∥yn − z∥ ≤ ∥xn − z∥ for all n ∈ N and hence

∥xn+1 − z∥ = ∥βnxn + (1− βn)yn − z∥
≤ βn ∥xn − z∥+ (1− βn) ∥yn − z∥
≤ βn ∥xn − z∥+ (1− βn) ∥xn − z∥
≤ ∥xn − z∥ .

Then limn→∞ ∥xn − z∥ exists. Thus {xn}, {Axn} and {yn} are bounded. Using the
equality (2.2), we have that for n ∈ N and z ∈ C ∩A−1D

∥xn+1 − z∥2 = ∥βnxn + (1− βn)yn − z∥2

= βn ∥xn − z∥2 + (1− βn) ∥yn − z∥2 − βn(1− βn) ∥xn − yn∥2

≤ βn ∥xn − z∥2 + (1− βn) ∥xn − z∥2

+ (1− βn)r(r∥A∥2 − 2)∥Axn − PDAxn∥2 − βn(1− βn) ∥xn − yn∥2

= ∥xn − z∥2 + (1− βn)r(r∥A∥2 − 2)∥Axn − PDAxn∥2

− βn(1− βn) ∥xn − yn∥2 .

Therefore, we have that βn(1− βn) ∥xn − yn∥2 ≤ ∥xn − z∥2 − ∥xn+1 − z∥2 and

(1− βn)r(2− r∥A∥2)∥Axn − PDAxn∥2 ≤ ∥xn − z∥2 − ∥xn+1 − z∥2 .

Thus we have from 0 < a ≤ βn ≤ b < 1 that

(3.2) lim
n→∞

∥xn − yn∥2 = 0 and lim
n→∞

∥Axn − PDAxn∥2 = 0.

Since {xn} is bounded, there exists a subsequence {xni} of {xn} converging weakly
to w. From (3.2) we have that {yni} converges weakly to w. Since yn ∈ C, we have
w ∈ C. Since A is bounded and linear, we also have that {Axni} converges weakly
to Aw. Using this and limn→∞ ∥Axn − PDAxn∥ = 0, we have that PDAxni ⇀ Aw.
Since PD is the metric projection of F onto D, we have from [3] and [14] that
⟨PDAxn − PDAw, JF (Axn − PDAxn)⟩ ≥ 0 and

⟨PDAw − PDAxn, JF (Aw − PDAw)⟩ ≥ 0

and hence

⟨PDAxn − PDAw, JF (Axn − PDAxn)− JF (Aw − PDAw)⟩ ≥ 0.

Since PDAxni ⇀ Aw and ∥JF (Axn − PDAxn)∥ → 0, we have that

−∥Aw − PDAw∥2 = ⟨Aw − PDAw,−JF (Aw − PDAw)⟩ ≥ 0

and hence Aw = PDAw. This implies that w ∈ C ∩ A−1D. We next show that if
xni ⇀ x∗ and xnj ⇀ y∗, then x∗ = y∗. We know x∗, y∗ ∈ C ∩ A−1D and hence
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limn→∞ ∥xn − x∗∥ and limn→∞ ∥xn − y∗∥ exist. Suppose x∗ ̸= y∗. Since H satisfies
Opial’s condition, we have that

lim
n→∞

∥xn−x∗∥ = lim
i→∞

∥xni − x∗∥ < lim
i→∞

∥xni − y∗∥

= lim
n→∞

∥xn − y∗∥ = lim
j→∞

∥xnj − y∗∥

< lim
j→∞

∥xnj − x∗∥ = lim
n→∞

∥xn − x∗∥.

This is a contradiction. Then we have x∗ = y∗. Therefore, xn ⇀ x∗ ∈ C ∩ A−1D.
Moreover, since for any z ∈ C ∩A−1D

∥xn+1 − z∥ ≤ ∥xn − z∥ , ∀n ∈ N,
we have from Lemma 2.1 that PC∩A−1Dxn → z0 for some z0 ∈ C ∩ A−1D. The
property of metric projection implies that

⟨x∗ − PC∩A−1Dxn, xn − PC∩A−1Dxn⟩ ≤ 0.

Therefore, we have

∥x∗ − z0∥2 = ⟨x∗ − z0, x
∗ − z0⟩ ≤ 0.

This means that x∗ = z0, i.e., xn ⇀ z0. �

4. Strong convergence theorem

In this section, we prove a strong convergence theorem of Halpern’s type iteration
for the split feasibility problem in Banach spaces.

Theorem 4.1. Let H be a Hilbert space and let F be a strictly convex, reflexive
and smooth Banach space. Let JF be the duality mapping on F . Let C and D be
nonempty, closed and convex subsets of H and F , respectively. Let PC and PD be
the metric projections of H onto C and F onto D, respectively. Let A : H → F be
a bounded linear operator such that A ̸= 0 and let A∗ be the adjoint operator of A.
Suppose that C ∩ A−1D ̸= ∅. Let {un} be a sequence in H such that un → u. Let
x1 = x ∈ H and let {xn} ⊂ H be a sequence generated by

xn+1 = βnxn + (1− βn)(αnun + (1− αn)PC(I − rA∗JF (I − PD)A)xn)

for all n ∈ N, where r ∈ (0,∞), {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) satisfy

0 < r∥A∥2 < 2, lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞ and 0 < a ≤ βn ≤ b < 1

where a, b ∈ R. Then {xn} converges strongly to a point z0 ∈ C ∩ A−1D, for some
z0 = PC∩A−1Du.

Proof. Put zn = PC(I − rA∗JF (I −PD)A)xn for all n ∈ N. Let z ∈ C ∩A−1D. We
have that z = PCz and Az − PDAz = 0. As in the proof of Theorem 3.1, we have
that

∥zn − z∥2 = ∥PC(I − rA∗JF (I − PD)A)xn − PCz∥2

≤ ∥xn − rA∗JF (I − PD)Axn − z∥2
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≤ ∥xn − z∥2 − 2r∥Axn − PDAxn∥2 − 2r⟨PDAxn −Az, JF (I − PD)Axn⟩(4.1)

+ (r)2∥A∥2 ∥(I − PD)Axn∥2

≤ ∥xn − z∥2 − 2r∥Axn − PDAxn∥2 + (r)2∥A∥2 ∥(I − PD)Axn∥2

= ∥xn − z∥2 + r(r ∥A∥2 − 2) ∥(I − PD)Axn∥2 .

From 0 < r∥A∥2 < 2 we have that ∥zn − z∥ ≤ ∥xn − z∥ for all n ∈ N. Put
yn = αnun + (1− αn)PC(xn − rA∗JF (I − PD)Axn). We have that

∥yn − z∥ = ∥αn(un − z) + (1− αn)(zn − z)∥
≤ αn∥un − z∥+ (1− αn)∥zn − z∥
≤ αn ∥un − z∥+ (1− αn) ∥xn − z∥ .

Using this, we get that

∥xn+1 − z∥ = ∥βn(xn − z) + (1− βn)(yn − z)∥
≤ βn ∥xn − z∥+ (1− βn) ∥yn − z∥
≤ βn ∥xn − z∥+ (1− βn)(αn ∥un − z∥+ (1− αn) ∥xn − z∥)
= (1− αn(1− βn))∥xn − z∥+ αn(1− βn)∥un − z∥.

Since {un} is bounded, there exists M > 0 such that supn∈N ∥un−z∥ ≤ M . Putting
K = max{∥x1 − z∥,M}, we have that ∥xn − z∥ ≤ K for all n ∈ N. In fact, it is
obvious that ∥x1 − z∥ ≤ K. Suppose that ∥xk − z∥ ≤ K for some k ∈ N. Then we
have that

∥xk+1 − z∥ ≤ (1− αk(1− βk))∥xk − z∥+ αk(1− βk)∥uk − z∥
≤ (1− αk(1− βk))K + αk(1− βk)K = K.

By induction, we obtain that ∥xn − z∥ ≤ K for all n ∈ N. Then {xn} is bounded.
Furthermore, {Axn}, {zn} and {yn} are bounded. Take z0 = PC∩A−1Du. Since
zn = PC(I − rA∗JF (I − PD)A)xn, from the definition of {xn} we have that

xn+1 − xn = βnxn + (1− βn){αnun + (1− αn)zn} − xn

and hence

xn+1 − xn−(1− βn)αnun

= βnxn + (1− βn)(1− αn)zn − xn

= (1− βn){(1− αn)zn − xn}
= (1− βn){zn − xn − αnzn}.

Thus we have that

⟨xn+1−xn − (1− βn)αnun, xn − z0⟩
= (1− βn)⟨zn − xn, xn − z0⟩ − (1− βn)⟨αnzn, xn − z0⟩(4.2)

= −(1− βn)⟨xn − zn, xn − z0⟩ − (1− βn)αn⟨zn, xn − z0⟩.
From (2.3) and (4.1), we have that

2⟨xn−zn, xn − z0⟩
= ∥xn − z0∥2 + ∥zn − xn∥2 − ∥zn − z0∥2(4.3)
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≥ ∥xn − z0∥2 + ∥zn − xn∥2 − ∥xn − z0∥2

= ∥zn − xn∥2.
From (4.2) and (4.3), we have that

2⟨xn+1−xn, xn − z0⟩
= 2(1− βn)αn⟨un, xn − z0⟩
− 2(1− βn)⟨xn − zn, xn − z0⟩ − 2(1− βn)αn⟨zn, xn − z0⟩(4.4)

≤ 2(1− βn)αn⟨un, xn − z0⟩
− (1− βn)∥zn − xn∥2 − 2(1− βn)αn⟨zn, xn − z0⟩.

Furthermore, using (2.3) and (4.4), we have that

∥xn+1 − z0∥2 − ∥xn − xn+1∥2 − ∥xn − z0∥2

≤ 2(1− βn)αn⟨un, xn − z0⟩
− (1− βn)∥zn − xn∥2 − 2(1− βn)αn⟨zn, xn − z0⟩.

Setting Γn = ∥xn − z0∥2, we have that

Γn+1 − Γn−∥xn − xn+1∥2

≤ 2(1− βn)αn⟨un, xn − z0⟩(4.5)

− (1− βn)∥zn − xn∥2 − 2(1− βn)αn⟨zn, xn − z0⟩.
Noting that

∥xn+1 − xn∥ = ∥βnxn + (1− βn){αnun + (1− αn)zn} − xn∥
= ∥(1− βn)αn(un − zn) + (1− βn)(zn − xn)∥(4.6)

≤ (1− βn)
(
∥zn − xn∥+ αn∥un − zn∥

)
,

we have that

∥xn+1 − xn∥2 ≤ (1− βn)
2
(
∥zn − xn∥+ αn∥un − zn∥

)2
= (1− βn)

2∥zn − xn∥2(4.7)

+ (1− βn)
2
(
2αn∥zn − xn∥∥un − zn∥+ α2

n∥un − zn∥2
)
.

Thus we have from (4.5) and (4.7) that

Γn+1 − Γn ≤ ∥xn − xn+1∥2 + 2(1− βn)αn⟨un, xn − z0⟩
− (1− βn)∥zn − xn∥2 − 2(1− βn)αn⟨zn, xn − z0⟩

≤ (1− βn)
2∥zn − xn∥2

+ (1− βn)
2
(
2αn∥zn − xn∥∥un − zn∥+ α2

n∥un − zn∥2
)

+ 2(1− βn)αn⟨un, xn − z0⟩ − (1− βn)∥zn − xn∥2

− 2(1− βn)αn⟨zn, xn − z0⟩
and hence

Γn+1−Γn + βn(1− βn)∥zn − xn∥2

≤ (1− βn)
2
(
2αn∥zn − xn∥∥un − zn∥+ α2

n∥un − zn∥2
)

(4.8)
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+ 2(1− βn)αn⟨un, xn − z0⟩ − 2(1− βn)αn⟨zn, xn − z0⟩.

We will divide the proof into two cases.
Case 1: Suppose that there exists a natural number N such that Γn+1 ≤ Γn for

all n ≥ N . In this case, limn→∞ Γn exists and then limn→∞(Γn+1 − Γn) = 0. Using
limn→∞ αn = 0 and 0 < a ≤ βn ≤ b < 1, we have from (4.8) that

(4.9) lim
n→∞

∥zn − xn∥ = 0.

From (4.6) we have that

(4.10) lim
n→∞

∥xn+1 − xn∥ = 0.

We also have that

∥yn − zn∥ = ∥αnun + (1− αn)zn − zn∥(4.11)

= αn∥un − zn∥ → 0.

Furthermore, from ∥yn − xn∥ ≤ ∥yn − zn∥+ ∥zn − xn∥, we have that

(4.12) lim
n→∞

∥yn − xn∥ = 0.

We show that lim supn→∞⟨u − z0, yn − z0⟩ ≤ 0, where z0 = PC∩A−1Du. Put
l = lim supn→∞⟨u − z0, yn − z0⟩. Then without loss of generality, there exists
a subsequence {yni} of {yn} such that l = limi→∞⟨u − z0, yni − z0⟩ and {yni}
converges weakly to some point w ∈ H. From ∥xn − yn∥ → 0, {xni} converges
weakly to w ∈ H. Since ∥zn − xn∥ → 0, we also have that {zni} converges weakly
to w ∈ H. From {zn} ⊂ C, we have that w ∈ C. On the other hand, from (4.1) we
have that

r(2− r ∥A∥2) ∥(I − PD)Axn∥2 ≤ ∥xn − z∥2 − ∥zn − z∥2

= (∥xn − z∥ − ∥zn − z∥)(∥xn − z∥+ ∥zn − z∥)(4.13)

≤ ∥xn − zn∥ (∥xn − z∥+ ∥zn − z∥).

Then we get from ∥xn − zn∥ → 0 that

(4.14) lim
n→∞

∥Axn − PDAxn∥ = 0.

Since {xni} converges weakly to w ∈ H and A is bounded and linear, we also have
that {Axni} converges weakly to Aw. Using this and limn→∞ ∥Axn−PDAxn∥ = 0,
we have that PDAxni ⇀ Aw. Since PD is the metric projection of F onto D, as in
the proof of Theorem 3.1, we have that

⟨PDAxn − PDAw, JF (Axn − PDAxn)− JF (Aw − PDAw)⟩ ≥ 0.

Since PDAxni ⇀ Aw and ∥JF (Axn − PDAxn)∥ → 0, we have that

−∥Aw − PDAw∥2 = ⟨Aw − PDAw,−JF (Aw − PDAw)⟩ ≥ 0

and hence Aw = PDAw. This implies that w ∈ C ∩ A−1D. Since {yni} converges
weakly to w ∈ C ∩A−1D, we have that

l = lim
i→∞

⟨u− z0, yni − z0⟩ = ⟨u− z0, w − z0⟩ ≤ 0.
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Since yn− z0 = αn(un− z0)+ (1−αn)(PC(xn− rA∗JF (I −PD)Axn)− z0), we have
from (2.1) that

∥yn − z0∥2 ≤ (1− αn)
2∥PC(xn − rA∗JF (I − PD)Axn)− z0∥2

+ 2αn⟨un − z0, yn − z0⟩.

From (4.1), we have

∥yn − z0∥2 ≤ (1− αn)
2 ∥xn − z0∥2 + 2αn⟨un − z0, yn − z0⟩.

This implies that

∥xn+1−z0∥2 ≤ βn ∥xn − z0∥2 + (1− βn) ∥yn − z0∥2

≤ βn ∥xn − z0∥2

+ (1− βn)
(
(1− αn)

2 ∥xn − z0∥2 + 2αn⟨un − z0, yn − z0⟩
)

=
(
βn + (1− βn)(1− αn)

2
)
∥xn − z0∥2 + 2(1− βn)αn⟨un − z0, yn − z0⟩

≤ (βn + (1− βn)(1− αn)) ∥xn − z0∥2 + 2(1− βn)αn⟨un − z0, yn − z0⟩

= (1− (1− βn)αn) ∥xn − z0∥2 + 2(1− βn)αn⟨un − z0, yn − z0⟩

= (1− (1− βn)αn) ∥xn − z0∥2

+ 2(1− βn)αn(⟨un − u, yn − z0⟩+ ⟨u− z0, yn − z0⟩).

Since
∑∞

n=1(1− βn)αn = ∞, by Lemma 2.4 we obtain that xn → z0.
Case 2: Suppose that there exists a subsequence {Γni} of the sequence {Γn} such

that Γni < Γni+1 for all i ∈ N. In this case, we define τ : N → N by

τ(n) = max{k ≤ n : Γk < Γk+1}.

Then we have from Lemma 2.5 that Γτ(n) ≤ Γτ(n)+1. Thus we have from (4.8) that
for all n ∈ N,

βτ(n)(1−βτ(n))∥zτ(n) − xτ(n)∥2

≤ (1− βτ(n))
22ατ(n)∥zτ(n) − xτ(n)∥∥uτ(n) − zτ(n)∥

+ (1− βτ(n))
2α2

τ(n)∥uτ(n) − zτ(n)∥2(4.15)

+ 2(1− βτ(n))ατ(n)⟨uτ(n), xτ(n) − z0⟩
− 2(1− βτ(n))ατ(n)⟨zτ(n), xτ(n) − z0⟩.

Using limn→∞ αn = 0 and 0 < a ≤ βn ≤ b < 1, we have from (4.15) that

(4.16) lim
n→∞

∥zτ(n) − xτ(n)∥ = 0.

As in the proof of Case 1 we have that

(4.17) lim
n→∞

∥xτ(n)+1 − xτ(n)∥ = 0

and

(4.18) lim
n→∞

∥yτ(n) − zτ(n)∥ = 0.
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Since ∥yτ(n) − xτ(n)∥ ≤ ∥yτ(n) − zτ(n)∥+ ∥zτ(n) − xτ(n)∥, we have that

(4.19) lim
n→∞

∥yτ(n) − xτ(n)∥ = 0.

For z0 = PC∩A−1Du, let us show that lim supn→∞⟨z0 − u, yτ(n) − z0⟩ ≥ 0. Put

l = lim sup
n→∞

⟨z0 − u, yτ(n) − z0⟩.

Without loss of generality, there exists a subsequence {yτ(ni)} of {yτ(n)} such that
l = limi→∞⟨z0 − u, yτ(ni) − z0⟩ and {yτ(ni)} converges weakly to some point w ∈ H.
From ∥yτ(n) − xτ(n)∥ → 0, {xτ(ni)} converges weakly to w ∈ H. Furthermore,
since ∥zτ(n) − xτ(n)∥ → 0, we also have that {zτ(ni)} converges weakly to w ∈ H.
From {zτ(ni)} ⊂ C, we have that w ∈ C. As in the proof of Case 1 we have that

w ∈ C ∩A−1D. Then we have

l = lim
i→∞

⟨z0 − u, yτ(ni) − z0⟩ = ⟨z0 − u,w − z0⟩ ≥ 0.

As in the proof of Case 1, we also have that∥∥yτ(n) − z0
∥∥2 ≤ (1− ατ(n))

2
∥∥xτ(n) − z0

∥∥2 + 2ατ(n)⟨uτ(n) − z0, yτ(n) − z0⟩

and then

∥xτ(n)+1 − z0∥2 ≤ βτ(n)
∥∥xτ(n) − z0

∥∥2 + (1− βτ(n))
∥∥yτ(n) − z0

∥∥2
≤

(
1− (1− βτ(n))ατ(n)

) ∥∥xτ(n) − z0
∥∥2

+ 2(1− βτ(n))ατ(n)⟨uτ(n) − z0, yτ(n) − z0⟩.

From Γτ(n) ≤ Γτ(n)+1, we have that

(1− βτ(n))ατ(n)

∥∥xτ(n) − z0
∥∥2 ≤ 2(1− βτ(n))ατ(n)⟨uτ(n) − z0, yτ(n) − z0⟩.

Since (1− βτ(n))ατ(n) > 0, we have that∥∥xτ(n) − z0
∥∥2 ≤ 2⟨uτ(n) − z0, yτ(n) − z0⟩

= 2⟨uτ(n) − u, yτ(n) − z0⟩+ 2⟨u− z0, yτ(n) − z0⟩.

Thus we have that

lim sup
n→∞

∥∥xτ(n) − z0
∥∥2 ≤ 0

and hence ∥xτ(n) − z0∥ → 0. From (4.17), we have also that xτ(n) − xτ(n)+1 → 0.
Thus ∥xτ(n)+1 − z0∥ → 0 as n → ∞. Using Lemma 2.5 again, we obtain that

∥xn − z0∥ ≤ ∥xτ(n)+1 − z0∥ → 0

as n → ∞. This completes the proof. �
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