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ITERATIVE METHODS FOR THE SPLIT FEASIBILITY
PROBLEM IN BANACH SPACES

SAUD M. ALSULAMI AND WATARU TAKAHASHI

ABSTRACT. In this paper, we consider the split feasibility problem in Banach
spaces. Then using the idea of Mann’s iteration, we first prove a weak convergence
theorem for finding a solution of the split feasibility problem in Banach spaces.
Furthermore, using the idea of Halpern’s iteration, we obtain a strong convergence
theorem for finding a solution of the problem in Banach spaces. It seems that
these results are first in Banach spaces.

1. INTRODUCTION

Let H be a real Hilbert space and let C' be a nonempty, closed and convex subset
of H. A mapping U : C — H is called inverse strongly monotone if there exists
k > 0 such that

(x —y,Ux —Uy) > k||Uzx — UyH2, Ve,y € C.

Let Hy and Hs be two real Hilbert spaces. Let D and @ be nonempty, closed
and convex subsets of Hy and Hs, respectively. Let A : Hi — Hy be a bounded
linear operator. Then the split feasibility problem [5] is to find z € H; such that
z € DN A7'Q. Recently, Byrne, Censor, Gibali and Reich [4] considered the
following problem: Given set-valued mappings A; : H; — 2H1, 1 < i < m, and
Bj : Hy — 2H2 1 < j < n, respectively, and bounded linear operators T, : H —
Hy, 1 < j < mn, the split common null point problem [4] is to find a point z € H;
such that
ze (Nt A710) N (N7, T; 1(B;10)),

where Ai_l() and Bj_l() are null point sets of A; and Bj, respectively. Defining
U = A*(I — Pg)A in the split feasibility problem, we have that U : H; — H; is an
inverse strongly monotone operator [1], where A* is the adjoint operator of A and

Py is the metric projection of Ha onto . Furthermore, if D N A~1Q is nonempty,
then z € DN A™1Q is equivalent to

(1.1) z=Pp(I —NA*(I — Pg)A)z,

where A > 0 and Pp is the metric projection of Hy onto D. Using such results
regarding nonlinear operators and fixed points, many authors have studied the split
feasibility peoblem and generalized split feasibility peoblems including the split
common null point problem in Hilbert spaces; see , for instance, [4, 6, 10, 16].
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On the other hand, in 1953, Mann [9] introduced the following iteration process.
Let C be a nonempty, closed and convex subset of a Banach space E. A mapping
T :C — C is called nonexpansive if | Tx — Ty|| < ||z — y|| for all z,y € C. For an
initial guess 1 € C, an iteration process {x,} is defined recursively by

Tnt1 = nZpn + (1 — ap)Tx,, VneN,

where {a,,} is a sequence in [0, 1]. In 1967, Halpern [7] also gave an iteration process
as follows: Take zg,z; € C arbitrarily and define {z,,} recursively by

Tnt1 = anxo+ (1 — ap)Tx,, VneN,

where {a,} is a sequence in [0, 1]. There are many investigations of iterative pro-
cesses for finding fixed points of nonexpansive mappings.

In this paper, motivated by these problems and results, we consider the split
feasibility problem in Banach spaces. Then using the idea of Mann’s iteration, we
first prove a weak convergence theorem for finding a solution of the split feasibility
problem in Banach spaces. Furthermore, using the idea of Halpern’s iteration, we
obtain a strong convergence theorem for finding a solution of the problem in Banach
spaces. It seems that these results are first in Banach spaces.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space with inner product (- -) and

norm || - ||, respectively. For z,y € H and A € R, we have from [14] that
(2.1) lz +yl* < [l + 2(y, = + y);
(2.2) Az + (1= Nyl* = Alz|* + (1 = lyl* = A1 = Nz -yl

Furthermore we have that for x,y,u,v € H,
(2.3) 2(z —y,u—v) = [lz = o|* + |y — ul® = [l = ul® = ||y — o>

Let C be a nonempty, closed and convex subset of a Hilbert space H. The nearest
point projection of H onto C is denoted by Pg, that is, ||x — Pox| < ||z — y|| for
all x € H and y € C. Such Py is called the metric projection of H onto C'. We
know that the metric projection Pg is firmly nonexpansive, i.e.,

(2.4) |Pca — Peyl|” < (Pox — Poy,z — y)

for all ,y € H. Furthermore (z — Pox,y— Pcx) < 0 holds for all z € H and y € C;
see [12]. The following result was proved by Takahashi and Toyoda [15].

Lemma 2.1 ([15]). Let H be a Hilbert space and let C' be a nonempty, closed and
convex subset of H. Let {x,} be a sequence in H. If ||xp+1 — u|| < ||zn — ul| for all
n €N and u € C, then {Pcx,} converges strongly to some z € C, where Pc is the
metric projection on H onto C.

Let E be a real Banach space with norm || - || and let E* be the dual space of
E. We denote the value of y* € E* at © € E by (z,y*). When {z,} is a sequence
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in E, we denote the strong convergence of {z,,} to x € F by z,, — x and the weak
convergence by x, — x. The modulus § of convexity of F is defined by

f, ety
o0 =int {1 2 <1l < 1o - 2 6

for every € with 0 < ¢ < 2. A Banach space F is said to be uniformly convex if
d(e) > 0 for every € > 0. It is known that a Banach space E is uniformly convex if
and only if for any two sequences {z,} and {y,} in E such that

lim ||z,]| = lim |ly,|| =1and lim |z, + y,| = 2
n—oo n—oo n—oo
lim,, o0 |2y, — Yn|| = 0 holds. A uniformly convex Banach space is strictly convex

and reflexive. We also know that a uniformly convex Banach space has the Kadec-
Klee property, i.e., x, — u and ||z,| — ||u|| imply x, — u.
The duality mapping J from E into 2F" is defined by

Jr={a" € E*: (z,2") = |l2||* = ||=*[|*}

for every x € E. Let U = {x € E : ||z]| = 1}. The norm of F is said to be Gateaux
differentiable if for each z,y € U, the limit

e

(2.5) t—0 t

exists. In the case, E is called smooth. We know that E is smooth if and only
if J is a single-valued mapping of E into E*. We also know that FE is reflexive if
and only if J is surjective, and F is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is
a single-valued bijection and in this case, the inverse mapping J~! coincides with
the duality mapping J, on E*. For more details, see [12] and [13]. We know the
following result.

Lemma 2.2 ([12]). Let E be a smooth Banach space and let J be the duality map-
ping on E. Then, (x —y, Jx—Jy) > 0 for all z,y € E. Furthermore, if E is strictly
convex and (x —y,Jx — Jy) =0, then z = y.

Let C be a nonempty, closed and convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any « € E, there exists a unique element
z € C such that ||z — z|| < ||z — y| for all y € C. Putting z = Pox, we call Po the
metric projection of E onto C.

Lemma 2.3 ([12]). Let E be a smooth, strictly convex and reflexive Banach space.
Let C be a nonempty, closed and convex subset of E and let x+1 € E and z € C.
Then, the following conditions are equivalent:

(1) z = Poxy;

(2) (z—y,J(z1—2)) >0, VyeC.

We also know the following lemmas:

Lemma 2.4 ([2], [17]). Let {s,} be a sequence of nonnegative real numbers, let {ca,}
be a sequence of (0,1] with Y 7 o = 00, let {B,} be a sequence of nonnegative
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real numbers with Y7 | 3, < 0o, and let {v,} be a sequence of real numbers with
lim sup,,_,oo 7n < 0. Suppose that

Snt1 < (1 - an)sn + apyn + ﬁn

foralln=1,2,.... Then lim,_,c s, = 0.

Lemma 2.5 ([8]). Let {I,} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {I,,} of {I,} which satisfies
I, < Iy41 for alli € N. Define the sequence {T(n)}n>n, of integers as follows:

T(n) =max{k <n: Iy <k},
where ng € N such that {k <ng: Iy < Ix11} # 0. Then, the following hold:
(i) 7(no) < 1(no+1) <--- and 7(n) — oo;
(11) F‘r(n) < Ff(n)Jrl and Iy, < F‘r(n)+17 Vn > ng.
3. WEAK CONVERGENCE THEOREM

In this section, we prove a weak convergence theorem of Mann’s type iteration
for the split feasibility problem in Banach spaces.

Theorem 3.1. Let H be a Hilbert space and let F' be a strictly convez, reflexive
and smooth Banach space. Let Jp be the duality mapping on F. Let C and D be
nonempty, closed and convex subsets of H and F', respectively. Let Po and Pp be
the metric projections of H onto C and F onto D, respectively. Let A: H — F be
a bounded linear operator such that A # 0 and let A* be the adjoint operator of A.
Suppose that C N A™YD # (. For any x1 = « € H, define

Tpt1 = Bnn + (1 — Bn)PC(I —rA*Jp(A— PDA))a:n, Vn € N,
where {Bn} C [0,1] and r € (0,00) satisfy the following:
0<a<pB,<b<1 and 0<r|A> <2
for some a,b € R. Then z, — zg € C N A™LD, where zg = lim,, 00 Pena-1pTn.

Proof. Let z € CN A™'D. Then we have that z = Pgz and Az — PpAz = 0. Put
yn = Po (a:n —rA*Jp(Ax, — PDAZEn)) for all n € N. Since Pg is nonexpansive, we
have that

|lyn—21% = || Po(2n — rA* Jp(Az, — PpAzy,)) — Poz||’

< @n — rA*Jp(Azy, — PpAxy,) — 2|

= ||z, — z — rA*Jp(Ax, — PpAx,)|?

= ||zp — zH2 —2(xp — 2, rA" Jp(Axy,, — PpAzy))
+ ||rA* Jp(Ax, — PpAz,)|?

< ||zp — 2||* = 2r(Az, — Az, Jp(Az, — PpAz,))

(3.1) + r2||A||2|| Jp(Azy, — PpAzy,)|?

= ||lzp — 2||* = 2r(Az, — PpAx, + PpAx, — Az, Jp(Ax, — PpAx,))

+ 72| Al Az, — Pp Az, |?
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= ||zn — 2||* — 2r|| Az, — PpAx,|?
— 2r(PpAx, — Az, Jp(Ax, — PpAzy,)) + 12| A||%|| Az, — Pp Az,
< ||z — 2| = 2r|| Az, — PpAz, | + 7| A||?|| Az, — Pp Az,
= [lan — 2[|* +r(r| Al* — 2)|| Az, — PpAan||®.
From 0 < r||A||* < 2 we have that ||y, — 2| < ||z, — 2| for all n € N and hence
[#n41 = 2l = [|Bnan + (1 = Bn)yn — 2|
< B llzn — 2l 4+ (1 = Ba) [lyn — 2|l
< B llzn — 2l + (1 = Bp) [|2n — 2|
< llzn — 2|

Then lim,,_, ||zn — 2|| exists. Thus {z,}, {Az,} and {y,} are bounded. Using the
equality (2.2), we have that forn € Nand z € CNA™1D

|41 = 2% = [1Bazn + (1 = Ba)yn — 2|
= Bn llzn — Z”Q + (1= Bn) llyn — ZH2 — Bn(1 = Bp) |zn — ynH2
< Bnllzn — 2”2 + (1= Bn) [lzn — ZH2
+ (1= Bu)r(rl| Al* = 2)l| Az — PpAwn||? = Bu(l = Ba) lzn — yul®
= [l — 2[” + (1 = Ba)r(r| AlI* = 2)|| Az — PpAxn|?
= Bn(1 = Bn) llzn — ynH2 :
Therefore, we have that 8,(1 — ) ||[2n — ynll> < |20 — 2||* = |01 — 2||* and
(1= Bu)r(2 = T AI2) [ Az — PpAzal2 < 0 — 21 — [2ns1 — 2]
Thus we have from 0 < a < 8, < b < 1 that
(3.2) lim ||z, — y,||* =0 and lim ||Az, — PpAz,||* = 0.
n—oo n—oo
Since {x,} is bounded, there exists a subsequence {z,,} of {z,} converging weakly
to w. From (3.2) we have that {y,, } converges weakly to w. Since y,, € C, we have
w € C. Since A is bounded and linear, we also have that {Az,,} converges weakly
to Aw. Using this and lim,, o ||Azy, — PpAx,|| = 0, we have that PpAx,, — Aw.

Since Pp is the metric projection of F' onto D, we have from [3] and [14] that
(PpAxy, — PpAw, Jp(Az, — PpAxy)) > 0 and

(PpAw — Pp Az, Jp(Aw — PpAw)) >0
and hence
(PpAx,, — PpAw, Jp(Az, — PpAx,) — Jp(Aw — PpAw)) > 0.
Since PpAxy,, = Aw and ||Jp(Ax, — PpAxy,)|| — 0, we have that
—||Aw — PpAw||* = (Aw — PpAw, —Jp(Aw — PpAw)) > 0

and hence Aw = PpAw. This implies that w € C N A~'D. We next show that if
Tp, — ¥ and xp; — y*, then z* = y*. We know z*,y* € C'N A7'D and hence
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lim,, o0 ||z, — *|| and lim,—, ||, — y*|| exist. Suppose x* # y*. Since H satisfies
Opial’s condition, we have that

lim ||z,—2"| = lim ||z, — 2| < lim ||z, —y"|
n—o0 1—00 1—>00
= lim [z, —y"|| = lim |[lzn; —y"|
n—oo J—00
< lim ||z, — 2% = lim |z, — 2™
J—00 n—oo

This is a contradiction. Then we have z* = y*. Therefore, z, — 2* € CN A~ D.
Moreover, since for any z € C N A~1D

|nsr — 2l < lan— 2], ¥neN,
we have from Lemma 2.1 that Prns-1pTn — 2o for some zg € C N A~'D. The
property of metric projection implies that

<£C* — PC'ﬂA_leﬂan - PC’QA—len> S 0.

Therefore, we have

|z* — 20|* = (z* — 20, 2" — 20) < 0.
This means that x* = zg, i.e., z, — 2p. O

4. STRONG CONVERGENCE THEOREM

In this section, we prove a strong convergence theorem of Halpern’s type iteration
for the split feasibility problem in Banach spaces.

Theorem 4.1. Let H be a Hilbert space and let F be a strictly conver, reflexive
and smooth Banach space. Let Jp be the duality mapping on F. Let C and D be
nonempty, closed and convexr subsets of H and F', respectively. Let Po and Pp be
the metric projections of H onto C' and F onto D, respectively. Let A : H — F be
a bounded linear operator such that A # 0 and let A* be the adjoint operator of A.
Suppose that C N A™'D # 0. Let {u,} be a sequence in H such that w, — u. Let
x1 =x € H and let {x,} C H be a sequence generated by
Tnt1 = Bnxn + (1 = Bn)(anuy + (1 — an)Po(I — rA*Jp(I — Pp)A)x,,)
for all n € N, where r € (0,00), {an} C (0,1) and {Br} C (0,1) satisfy

0<r|A|? <2, lim a,=0,
n—oo
o
Zan:oo and 0<a<p,<b<1
n=1

where a,b € R. Then {x,} converges strongly to a point zo € C N A™1D, for some
zZ0 = PCﬂAleu'

Proof. Put 2, = Po(I —rA*Jp(I — Pp)A)z, foralln € N. Let z € CNA~!D. We
have that z = Poz and Az — PpAz = 0. As in the proof of Theorem 3.1, we have
that

|2n — 2||? = |Pc(I — rA*Jp(I — Pp)A)x, — Poz|?
< Nan — rA*Jp(I — Pp) Az, — 2|2
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(4.1) < |zn - 2||* - 2r|| Az, — PpAz,||* — 2r(PpAx, — Az, Jp(I — Pp)Az,)
+ (r)?| A7 (I = Pp) Az, |®
< Yl — 2112 = 20| Az — PpAzall? + (12 A2 (1 = Pp) Az
= |ln = z[* + r(r [|Al]* = 2) (I = Pp)Az,|*.
From 0 < r||A4]|> < 2 we have that ||z, — z|| < ||z, — 2| for all n € N. Put
Yn = apun + (1 — ay)Po(zy, — 7A*Jp(I — Pp)Ax,). We have that
lyn — 2l = llom(un — 2) + (1 — an)(zn — 2)||
< apllun — 2| + (1 — an)[zn — 2|
< apllup — 2| + (1 — o) lzn — 2] -
Using this, we get that
[2n41 =zl = 1Bn(2n — 2) + (L = Bn)(yn — 2)|
< Bullan — 2| + (1 = Bn) [lyn — 2|l
< Bnllzn — 2l + (1 = Bu)(an |lun — 2[| + (1 — an) |25 — 2|))
= (1 —an(l = Bu))llzn — 2|l + an(1 = Bn)un — 2||.

Since {uy,} is bounded, there exists M > 0 such that sup,,¢y ||un — 2| < M. Putting
K = max{||z1 — z||, M}, we have that ||z, — z|| < K for all n € N. In fact, it is
obvious that ||z1 — z|| < K. Suppose that ||z — z|| < K for some k € N. Then we
have that

k41— 2]l < (1= (1 = Be))llwr — 2] + ar(l = Br)llue — 2|
< (L= o(l = Br)) K + (1 — ) K = K.

By induction, we obtain that ||z, — z|| < K for all n € N. Then {z,} is bounded.
Furthermore, {Az,}, {z,} and {y,} are bounded. Take zy = Pgns-1pu. Since
zn, = Po(I —rA*Jp(I — Pp)A)x,, from the definition of {x,} we have that

Tntl — T = Py + (1 = Bp){anun + (1 — an)zn} — zp
and hence
Tnt1 — Tn—(1 — Bn)anun
= Bnn + (1 — Bn)(1 — an)zn — oy
= (1= B ){(1 —an)zn — 20}
= (1= Bp){zn — n — anzn}.
Thus we have that
(Tnp1—2n — (1 = Bp)antn, Tn — 20)
(4.2) = (1= Bn){zn — Tn,Tn — 20) — (1 = Bn){@n2n, Tn — 20)
= —(1 = Bp){Tn — 2n, T — 20) — (1 = Br)an{zn, Tn — 20)-
From (2.3) and (4.1), we have that
2(xp—2p, Tn, — 20)

(4.3) = Ha:n_20||2+ ||Zn_an2_ HZn—ZOH2



592 SAUD M. ALSULAMI AND W. TAKAHASHI

> [lzn = 20l* + lz0 — 2ol = 2 — 20|
= [lzn — anQ
From (4.2) and (4.3), we have that
2Tpt1—Tn, T, — 20)
=2(1 = Bn)an(un, Ty, — 20)
(4.4) —2(1 = Bp){(xn — 2n, Tn — 20) — 2(1 = Bp)an(zn, Tn — 20)
< 2(1 = Bp)an(un, xn — 20)
— (1= Bu)llzn — an2 —2(1 = Bn)an(zn, Tn — 20)-
Furthermore, using (2.3) and (4.4), we have that
|41 — ZOHQ — ln — xn—i—lHQ — [J@n — ZOH2
< 2(1 = Bp)an(un, xn — 20)
— (1= Bu)llzn — wnuz —2(1 = Bn)an(zn, Tn — 20)-
Setting I}, = ||z, — 20||?, we have that
Loy — D= ||zn — xn-&-lHQ
(4.5) < 2(1 = Bp)an(un, n — 20)
— (1= Bu)llzn — wnH2 = 2(1 = Bn)an{zn, Tn — 20)-
Noting that
[Zn+1 — Tnll = [1Bn@n + (1 = Bu){anun + (1 — an)zn} — 24|
(4.6) = [[(1 = Bn)an(un — 2zn) + (1 = Br)(2n — zn) |
<(@1- /Bn)(Hzn — T || + anllun — Zn”)a
we have that
s = zall < (1= 80)* (20 = 2all + nlln — zu)*
(4.7) =(1- 5n)z”zn - $nH2
+(1- ﬂn)2(2anuzn — alllun = zall + af flun — Znuz)-
Thus we have from (4.5) and (4.7) that
Dpi1 — Iy < ||zn — 2pa1 || 4 2(1 = Bn) o (tn, Tr — 20)
— (1= Ba)llzn = zall® = 2(1 = Ba)an(zn, Tn — 20)
< (1= B0)*llzn — al?
+ (1= 571)2(20%”271 — apllun = zall + af flun — Zn||2)
+2(1 = Bp)an (tn, xn — 20) — (1 = Bp)|l2n — an2
—2(1 = Bn)an{zn, Tn — 20)
and hence
Lop1—Tn + Bn(1 = Bn) |20 — anQ
(4.8) <(1- 571)2(20‘71”271 — Zn|[[un — 20l + 0‘121”“71 - ZnH2)
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+ 2(1 = Bn)an(un, Ty — 20) — 2(1 — Bn)an{zn, Tn — 20)-

We will divide the proof into two cases.

Case 1: Suppose that there exists a natural number N such that I,41 < I3, for
all n > N. In this case, lim,,_, I}, exists and then lim, oo (/741 — I%) = 0. Using
lim, oo @y =0 and 0 < a < B, < b < 1, we have from (4.8) that

(4.9) nh—>Holo |zn — zn|| = 0.
From (4.6) we have that
(4.10) lim ||zp4+1 — 2n|| = 0.
n—oo

We also have that
(4.11) [yn = znll = llomun + (1 — an)zn — 20|

= ap||un — 2| — 0.
Furthermore, from [y, — znll < [yn — 2l + [[2n — @n||, we have that
(4.12) lim ||y, — z,|| = 0.

n—oo

We show that limsup,, ,.(u — 20,yn — 20) < 0, where 290 = Pgna-1pu. Put

[ = limsup,_,..{(u — 20,Yn — 20). Then without loss of generality, there exists
a subsequence {yn,} of {yn} such that | = lim; oo(u — 20,yn, — 20) and {yn,}
converges weakly to some point w € H. From ||z, — yn|| — 0, {zn,} converges
weakly to w € H. Since ||z, — 2| = 0, we also have that {z,,} converges weakly

tow € H. From {z,} C C, we have that w € C. On the other hand, from (4.1) we
have that

r(2 =7 |AIP) I(I = Pp)Azy||* < ||z — 2]* = [|2n — 2|7
(4.13) = (lzn = 2[l = llzn — 2D (lzn — 2]l + [[2n — =[])
< lzn = 2znll (l2n — 2l + [l2n = 2[)-
Then we get from ||z, — z,|| — 0 that
(4.14) lim ||Az, — PpAx,| = 0.
n—oo
Since {zp,} converges weakly to w € H and A is bounded and linear, we also have
that {Az,,} converges weakly to Aw. Using this and lim,,_, ||Az,, — PpAzy| =0,

we have that PpAx,, — Aw. Since Pp is the metric projection of F' onto D, as in
the proof of Theorem 3.1, we have that

(PDAaj‘n — PDAU), JF(A.%‘n — PDA:L‘n) — JF(Aw — PDAw)> > 0.
Since PpAx,, = Aw and ||Jp(Az, — PpAx,)|| — 0, we have that
—||Aw — PpAw||* = (Aw — PpAw, —Jp(Aw — PpAw)) > 0

and hence Aw = PpAw. This implies that w € C N A1 D. Since {y,,} converges
weakly to w € C' N A™'D, we have that

I = lim (u — 20, Yn, — 20) = (u — 20, w — z0) < 0.
1—00
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Since y,, — 20 = an(uyn — 20) + (1 — o) (Po(xp, — 7 A*Jp(I — Pp)Axy,) — 2p), we have
from (2.1) that

lyn = 20l1* < (1 = an)?| Po(an — rA*Jp(I = Pp)Azy) — 20|
+ 20 (U, — 20, Yn — 20)-
From (4.1), we have
lyn = 20l* < (1 = @n)? ||z — 20[|* + 200 (un — 20, yn — 20)-
This implies that
n41=20l* < Ba lzn = 20l + (1 = Ba) g — 20I*
< B ll#n = 20/
+(1—58n) ((1 — an)? ||2n — 20|24 200 (tn — 20, Yn — zo>)
= (Bn + (1= Ba)(1 = an)?) 2 = 201> + 2(1 = Bp)an(un — 20,yn — 20)
< (B + (1= Bo)(1 = an)) llzn — 20l” + 2(1 = Bu)n (un — 20, Yn — 20)
= (1= (1= Ba)an) lzn — 20l|* + 2(1 = Bn)an (un — 20, Yn — 20)
= (1= (1—=8p)an)llzn — ZO”2
+2(1 = Bn)an((un — u, yn — 20) + (v — 20, Yn — 20))-

Since Y7 (1 — B,)ay, = 00, by Lemma 2.4 we obtain that x, — zo.
Case 2: Suppose that there exists a subsequence {I},, } of the sequence {I},} such
that I}, < I}, 41 for all ¢ € N. In this case, we define 7 : N = N by

T(n) =max{k <n: Ik <1}

Then we have from Lemma 2.5 that I’ (,,) < I';()41. Thus we have from (4.8) that
for all n € N,

Brny A=Bram)Zr(n) — TrmylI”
< (1 = Br(m)*20 )l 22 (m) — Tr () () = 2o () |
(4.15) + (1= Br(m) 2 (o [tr(n) = 22y I
+2(1 = Br(n)) Q7 (n) (Ur(n)s Tr(n) — 20)
—2(1 = Br(n))Qr(n) (Zr(n)> Tr(n) — 20)-
Using lim,, o0 @y =0 and 0 < a < 3, < b < 1, we have from (4.15) that

(4.16) lim |27,y — T || = 0.

n—oo

As in the proof of Case 1 we have that

(4.17) i {27y 41 = 27| = 0
and
(4.18) lim |[y;n) — 2r(m) |l = 0.

n—oo
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Since HyT(n) - xT(n)” < ||yT(n) - ZT(TZ)” + ||Z7'(n) - $7’(n)||7 we have that
For 20 = Pona-1pu, let us show that limsup,,_, {20 — %, Yr(n) — 20) > 0. Put

[ = limsup(20 — U, Yr(n) — 20)-
n— o0

Without loss of generality, there exists a subsequence {y-(,,)} of {Y-(n)} such that
I = 1im; 00 (20 = U, Yr(n,) — 20) and {Yr(n,)} converges weakly to some point w € H.
From (yr(n) — Trm)ll = 0, {Zr(n,)} converges weakly to w € H. Furthermore,
since [|2-(n) — Tr(n)l| — 0, we also have that {2.(,,)} converges weakly to w € H.
From {z;(,,)} C C, we have that w € C. As in the proof of Case 1 we have that
w € CNA™'D. Then we have

I = lim (20 — U, Yr(n;) — 20) = (20 — u,w — zp) > 0.
71— 00

As in the proof of Case 1, we also have that

HyT(n) - Z0H2 < (1 - aT(n))2 H$T(n) - zOH2 + 2a’r(n) (uT(n) = 20y Y7r(n) — ZO>
and then
|22 (mys1 = 200> < Bremy || Tmy = 20[|” + (1 = Briw) [[9r(m) — 20|
< (1= (1= Brm) ey [y — 20|
+ 2<1 - 6T(n))a'r(n) <u'r(n) — 205 Yr(n) — ZO>'
From I7.(,;) < I’-(n)41, We have that

2
(1 - Bf(n))a‘r(n) HxT(n) - ZOH < 2(1 - B‘r(n))aT(n) <uT(n) = 205 Yr(n) — ZO)'
Since (1 — Br(n))r(n) > 0, we have that

2
HxT(n) - ZOH < 2(“’7‘(11) = 205 Yr(n) — Z0>
= 2(“’7‘(11) — U Yr(n) — Z0> + 2<U = 205 Yr(n) — ZO)'
Thus we have that

lim sup HxT(n) — z0||2 <0
n—o0

and hence |z () — 20l — 0. From (4.17), we have also that z,(,) — Tr(n)41 — 0.
Thus [|27(n)41 — 20/l = 0 as n — oo. Using Lemma 2.5 again, we obtain that

l2n = 20ll < lz7(n)+1 — 20] = 0

as n — oo. This completes the proof. O

REFERENCES

[1] S. M. Alsulami and W. Takahashi, The split common null point problem for mazimal monotone
mappings in Hilbert spaces and applications, J. Nonlinear Convex Anal. 15 (2014), 793-808.

[2] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fized points
of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007),
2350-2360.



596 SAUD M. ALSULAMI AND W. TAKAHASHI

[3] K. Aoyama, F. Kohsaka and W. Takahashi, Three generalizations of firmly nonexpansive map-
pings: Their relations and continuous properties, J. Nonlinear Convex Anal. 10 (2009), 131-
147.

[4] C.Byrne, Y. Censor, A. Gibali and S. Reich, The split common null point problem, J. Nonlinear
Convex Anal. 13 (2012), 759-775.

[5] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product
space, Numer. Algorithms 8 (1994), 221-239.

[6] Y. Censor and A. Segal, The split common fixed-point problem for directed operators, J. Convex
Anal. 16 (2009), 587-600.

[7] B. Halpern, Fized points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961.

[8] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and non-
strictly conver minimization, Set-Valued Anal. 16 (2008), 899-912.

[9] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.

[10] A.Moudafi, The split common fized point problem for demicontractive mappings, Inverse Prob-
lems 26 (2010), 055007, 6 pp.

[11] Z. Opial, Weak covergence of the sequence of successive approzimations for nonexpansive map-
pings, Bull. Amer. Math. Soc. 73 (1967), 591-597.

[12] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.

[13] W. Takahashi, Convex Analysis and Approzimation of Fized Points (Japanese), Yokohama
Publishers, Yokohama, 2000.

[14] W. Takahashi, Introduction to Nonlinear and Conver Analysis, Yokohama Publishers, Yoko-
hama, 2009.

[15] W. Takahashi and M. Toyoda, Weak convergence theorems for nonerpansive mappings and
monotone mappings, J. Optim. Theory Appl. 118 (2003), 417-428.

[16] W. Takahashi, H.-K. Xu and J.-C. Yao, Iterative methods for generalized split feasibility prob-
lems in Hilbert spaces, Set-Valued Var. Anal., to appear.

[17] H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull.
Austral. Math. Soc. 65 (2002), 109-113.

Manuscript received November 11, 2013
revised December 30, 2013

SAUD M. ALSULAMI
Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi
Arabia

E-mail address: alsulami@kau.edu.sa

W. TAKAHASHI
Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung 80702, Taiwan; Depart-
ment of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; and
Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Ookayama,
Meguro-ku, Tokyo 152-8552, Japan

E-mail address: wataru@is.titech.ac.jp; wataru@a0O.itscom.net



