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2. Asymptotic pointwise contraction types

In this section, motivated by the concept of asymptotic pointwise contraction
(Definition 1.1), we introduce the following types of mappings with weaker assump-
tions.

Definition 2.1. Let (M,d) be a metric space. A mapping T : M → M is said
to be of asymptotic pointwise contraction type (resp. of weak asymptotic pointwise
contraction type) if TN is continuous for some integer N ≥ 1 and there exists a
function α : M → [0, 1) such that, for each x in M ,

lim sup
n→∞

sup
y∈M

{d(Tnx, Tny)− αn(x)d(x,(2.1)

(resp. lim inf
n→∞

sup
y∈M

{d(Tnx, Tny)− αn(x)d(x, y)} ≤ 0),(2.2)

where αn → α pointwise on M .

Taking

rn(x) = sup
y∈M

{d(Tnx, Tny)− αn(x)d(x, y)} ∈ R+ ∪ {∞},

it can be easily seen from (2.1) (resp. (2.2)) that

lim
n→∞

rn(x) = 0(2.3)

(resp. lim inf
n→∞

rn(x) ≤ 0),(2.4)

for all x ∈ M , and

(2.5) d(Tnx, Tny) ≤ αn(x)d(x, y) + rn(x).

It is easy to see that an asymptotic pointwise contraction is of asymptotic pointwise
contraction type; but, the converse is not true:

Example 2.2. Let M = Rn for n > 1, equipped with the Euclidean norm. For
each (x1, x2, . . . , xn), define

T (x1, x2, . . . , xn) = (f(x2), f(x3), . . . , f(xn), 0),

where f : R → R is some discontinuous function with f(0) = 0. We deduce that T
is discontinuous, and then, it would not an asymptotic pointwise contraction. But,
we see that Tnx = 0, ∀x ∈ Rn, and so, T is of asymptotic pointwise contraction
type.

Example 2.3. Let M =
∏

n≥1[0,
1
n ] ⊆ C0(N). For each x = (x1, x2, x3, . . . ) in M ,

define
T (x1, x2, x3, . . . ) = (f(x2), x3, x4, . . . ),

where f : [0, 1] → [0, 1] is a nonexpansive mapping. It is easy to see that T is
a continuous nonlinear mapping from M to M which is of asymptotic pointwise
contraction type. In fact, we notice that for every x = (x1, x2, x3, . . . ) and y =
(y1, y2, y3, . . . ) in M ,

∥Tnx− Tny∥ = ∥(f(xn+1), xn+2, xn+3, . . . )− (f(yn+1), yn+2, yn+3, . . . )∥

≤ sup{|xi − yi| : i ≥ n+ 1} ≤ 1

n+ 1
.
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Hence, for αn(x) → α(x) < 1, we have

sup
y∈M

(∥Tnx− Tny∥ − αn(x)∥x− y∥) ≤ 1

n+ 1
→ 0, as n → ∞.

But, T is not an asymptotic pointwise contraction. Indeed, for any x =
(x1, x2, x3, . . . ) ∈ M and n ∈ N,

∥Tnx− Tny∥ = ∥x− y∥,

for every y = (y1, y2, y3, . . . ) ∈ M for which yi = xi, i = 1, 2, . . . , n+ 1.

We now recall the concept of asymptotic center:
Let E be a Banach space, C a subset of E, and {xn} a bounded sequence in

E. The asymptotic center of {xn} relative to C, denoted AC(xn), is the set of
minimizers in C (if any) of the function f given by

f(x) = lim sup
n→∞

∥xn − x∥;

i.e.,

AC(xn) = {x ∈ C : f(x) = inf
C

f}.

It is known that f : E → R+ is convex, nonexpansive and hence weak lower semi-
continuous. Moreover, if C is weakly compact, then AC(xn) is nonempty (see [3,
Lemma 9.1]).

Parallel to the proof of [7, Theorem 3.1] we employ the technique of asymptotic
centers to prove the following extension of Theorem 1.2.

Theorem 2.4. Let C be a nonempty weakly compact subset of a Banach space E
and let T : C → C be a mapping of weak asymptotic pointwise contraction type.
Then T has a unique fixed point v ∈ C and for each x ∈ C, the sequence of Picard
iterates, {Tnx}, converges in norm to v.

Proof. Fix an x ∈ C and define a function f by

f(u) = lim sup
n→∞

∥Tnx− u∥, u ∈ C.

Note that f satisfies the property

(2.6) f(Tmu) ≤ αm(u)f(u) + rm(u), u ∈ C, m ≥ 1.

Indeed, by (2.5), we have

f(Tmu) = lim sup
n→∞

∥Tnx− Tmu∥ = lim sup
n→∞

∥Tm+nx− Tmu∥

≤ lim sup
n→∞

αm(u)∥Tnx− u∥+ rm(u) = αm(u)f(u) + rm(u).

Since C is weakly compact, AC(T
nx) is a nonempty subset of C. So, we may take a

u ∈ AC(T
nx). Since T is of weak asymptotic pointwise contraction type, by (2.4),

we have lim infm→∞ rm(u) ≤ 0. Thus, for a subsequence {rmk
(u)} of {rm(u)}, we

have

(2.7) lim
k→∞

rmk
(u) ≤ 0.
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On the other hand, since C is weakly compact, there exists a subsequence of {Tmku}
converging weakly to some w in C. Without loss of generality, we may assume
Tmku ⇀ w. Now, by (2.6), (2.7) and the weak lower semicontinuity of f , we obtain

f(w) ≤ lim inf
k→∞

f(Tmku) ≤ lim inf
k→∞

[αmk
(u)f(u) + rmk

(u)] = α(u)f(u).

But, since w ∈ C and u ∈ AC(T
nx), we get

f(u) ≤ f(w) ≤ α(u)f(u).

Hence f(u) = 0. This implies that Tnx → u, in norm. From this and the continuity
of TN , for some N ≥ 1, it follows that

TNu = TN ( lim
n→∞

Tnx) = lim
n→∞

Tn+Nx = u;

namely, u is a fixed point of TN . Now, repeating the above proof for u instead of x,
we deduce that Tnu converges, in norm, to a member of C. But, T kNu = u, for all
k ≥ 1. Hence, Tnu → u, in norm. We show that Tu = u; for this purpose, consider
an arbitrary ϵ > 0. Then, there exists a K0 > 0 such that ∥Tnu − u∥ < ϵ, for all
n > K0. So, by choosing a natural number k > K0/N , we obtain

∥Tu− u∥ = ∥T (T kNu)− u∥ = ∥T kN+1u− u∥ < ϵ.

Since the choice of ϵ > 0 is arbitrary, we get Tu = u.
It is easy to verify that T can have only one fixed point. Indeed, if v ∈ C is also

a fixed point of T . Then, by (2.5), we have

∥u− v∥ = ∥Tnu− Tnv∥ ≤ αn(u)∥u− v∥+ rn(u), ∀n ≥ 1.

Taking liminf in the above inequality, it follows that

∥u− v∥ ≤ α(u)∥u− v∥.

Since α(u) < 1, we immediately get u = v. �

Next, we present a similar result for the class of mappings of asymptotic point-
wise contraction type in a more general setting. In fact, we can replace the weak
compactness by a weaker condition. In what follows, we will apply the notation

ωw({xn}) = {y ∈ E : y = w − lim
k

xnk
, for some nk → ∞},

for a sequence {xn} of a Banach space E.

Theorem 2.5. Let C be an arbitrary subset of a Banach space E, T : C → C a
mapping of asymptotic pointwise contraction type and D a nonempty weakly compact
subset of C such that, for all x ∈ D, ωw({Tnx}) ∩D ̸= ∅. Assume also that some
orbit of T is bounded. Then T has a unique fixed point v ∈ C and for each x ∈ C,
the sequence of Picard iterates, {Tnx}, converges in norm to v.

Proof. Because an orbit of T is bounded and T is of asymptotic pointwise contrac-
tion type, it easily follows that, for every x ∈ C, {Tnx} is bounded. Now, fix an
x ∈ C and define a function f by

f(u) = lim sup
n→∞

∥Tnx− u∥, u ∈ D.
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Like that in proof of Theorem 2.4, we can show that f satisfies the property

(2.8) f(Tmu) ≤ αm(u)f(u) + rm(u), u ∈ D, m ≥ 1.

Since D is weakly compact, AD(T
nx) is a nonempty subset of D. So, we may take

a u ∈ AD(T
nx) ⊂ D. By the assumption, we have ωw({Tnu}) ∩D ̸= ∅. So, there

exists a subsequence {Tnku} of {Tnu} converging weakly to some w in D. Note
that, by (2.3), limn→∞ rn(u) = 0. So, by (2.8) and the weak lower semicontinuity
of f , we obtain

f(w) ≤ lim inf
k→∞

f(Tnku) ≤ lim inf
k→∞

[αnk
(u)f(u) + rnk

(u)] ≤ α(u)f(u).

But, since w ∈ D and u ∈ AD(T
nx), we get

f(u) ≤ f(w) ≤ α(u)f(u).

Hence f(u) = 0. This implies that Tnx → u, in norm. Because TN is continuous,
for some N ≥ 1, it follows that TNu = u. Now, by (2.5), we obtain

∥u− Tu∥ = ∥T kNu− T kN+1u∥ ≤ αkN (u)∥u− Tu∥+ rkN (u), ∀k ∈ N.

So, by (2.3), it follows that ∥u− Tu∥ ≤ α(u)∥u− Tu∥. Hence, Tu = u. The rest of
the proof is the same as that in Theorem 2.4. �

Corollary 2.6. Let C be a nonempty weakly compact subset of a Banach space E
and let T : C → C be an asymptotic pointwise contraction. Then T has a unique
fixed point v ∈ C and for each x ∈ C, the sequence of Picard iterates, {Tnx},
converges in norm to v.

Corollary 2.7. Let C be an arbitrary subset of a Banach space E and T : C → C
a mapping of asymptotic pointwise contraction type. Assume that, for some v ∈ C
and some subsequence {Tnkv} of {Tnv}, w − limk→∞ Tnkv = v. Assume also that
some orbit of T is bounded. Then, v is a unique fixed point for T and, for each
x ∈ C, the sequence of Picard iterates, {Tnx}, converges in norm to v.

Proof. Taking D = {v}, it is easy to see from the assumption that ωw({Tnv})∩D ̸=
∅. Now, applying Theorem 2.5, the desired result follows. �

3. Mappings under conditions on orbits in normed spaces

In this section, we present some fixed point results in the context of normed
spaces. We begin with the following lemma.

Lemma 3.1. let C be a subset of a normed space E, v ∈ C, {nk} a strictly increas-
ing sequence of natural numbers and T : C → C a mapping for which

(a) lim supn→∞ supy∈OT (v)(∥Tnv−Tny∥−αn∥v−y∥) ≤ 0, where αn → α ∈ [0, 1);

(b) w − limk→∞ Tnk+lv = v, for each integer l ≥ 0.

Then, limk→∞ Tnk+lv = v, for each integer l ≥ 0. Moreover, if, for some integer
N ≥ 1, TN is continuous at v, then Tv = v.

Proof. Taking

rn = sup
y∈OT (v)

(∥Tnv − Tny∥ − αn∥v − y∥),
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we get, by (a),

(3.1) lim sup
n→∞

rn ≤ 0.

Now, for y ∈ OT (v), we have

(3.2) ∥Tnv − Tny∥ ≤ αn∥v − y∥+ rn.

On the other hand, (b) implies that

(3.3) w − lim
k→∞

Tnk+2l+nhv = v,

for all h ≥ 1 and l ≥ 0. So, by (3.2), (3.3) and the weak lower semicontinuity of the
norm, we have

∥Tnh+lv − v∥ ≤ lim inf
k→∞

∥Tnh+lv − Tnk+2l+nhv∥

≤ αnh+l lim inf
k→∞

∥v − Tnk+lv∥+ rnh+l.

Taking the limit superior as h → ∞ and using (3.1), we obtain

lim sup
h→∞

∥v − Tnh+lv∥ ≤ α lim inf
k→∞

∥v − Tnk+lv∥.

Since α < 1, it follows that

lim
k→∞

∥v − Tnk+lv∥ = 0;

that is,
lim
k→∞

Tnk+lv = v, ∀l ≥ 0.

If TN is also continuous,

TN (v) = TN ( lim
k→∞

Tnkv) = lim
k→∞

Tnk+Nv = v;

namely, v is a fixed point of TN . We will show that Tv = v. Notice that T kN (v) = v,
(∀k ≥ 1). Thus,

∥v − Tv∥ = ∥T kN (v)− T kN (Tv)∥, ∀k ≥ 1,

which implies, by (3.1) and (3.2), that

∥v − Tv∥ = lim sup
k→∞

∥T kN (v)− T kN (Tv)∥ ≤ α∥v − Tv∥.

Hence, Tv = v. �
Theorem 3.2. Let C be a nonempty subset of a normed space E and T : C → C be
a mapping of asymptotic pointwise contraction type. Assume that for some v ∈ C
and some subsequence {Tnkv} of {Tnv} we have w − limk→∞ Tnk+lv = v, for each
integer l ≥ 0. Then, v is a unique fixed point for T and, for each x ∈ C, the
sequence of Picard iterates, {Tnx}, converges in norm to v.

Proof. It follows from Lemma 3.1 that limk→∞ Tnk+lv = v, for each integer l ≥ 0.
Because T is of asymptotic pointwise contraction type,

∥Tmv − Tnk+mv∥ ≤ αm(v)∥v − Tnkv∥+ rm(v)

= αm(v) lim
h→∞

∥Tnh+nkv − Tnkv∥+ rm(v)
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= αm(v) lim
h→∞

∥Tnk−m(Tmv)− Tnk−m(Tm+nhv)∥+ rm(v)

≤ αm(v)αnk−m(Tmv) lim
h→∞

∥Tmv − Tm+nhv∥

+rnk−m(Tmv) + rm(v),

= αm(v)αnk−m(Tmv)∥Tmv − v∥+ rnk−m(Tmv) + rm(v),

for all m ∈ N and nk > m. Taking the limit as k → ∞, we obtain

∥Tmv − v∥ ≤ αm(v)α(Tmv)∥Tmv − v∥+ rm(v)

≤ αm(v)∥Tmv − v∥+ rm(v), ∀m ∈ N.
That is,

(1− αm(v))∥Tmv − v∥ ≤ rm(v), ∀m ∈ N.
Since αm(v) → α(v) < 1 and rm(v) → 0, we get ∥Tmv − v∥ → 0, as m → ∞.

Because T is of asymptotic pointwise contraction type, we have, for each x ∈ C,

∥Tnv − Tn+mx∥ ≤ αn(v)∥v − Tmx∥+ rn(v).

From this and Tnv → v, we obtain

lim sup
n→∞

∥v − Tnx∥ = lim sup
n→∞

∥v − Tn+mx∥ = lim sup
n→∞

∥Tnv − Tn+mx∥

≤ α(v)∥v − Tmx∥.
Consequently,

lim sup
n→∞

∥v − Tnx∥ ≤ α(v) lim inf
m→∞

∥v − Tmx∥,

which implies that
lim sup
n→∞

∥v − Tnx∥ = 0.

This, concludes the desired result. �
Finally, we state a result for noncontinuous mappings. It is worth mentioning

that existence results for fixed point of noncontinuous contractive mappings of as-
ymptotic types are rather rare.

In the following, we make the convention sup∅ = −∞.

Theorem 3.3. let C be a subset of a normed space E, v ∈ C, {nk} a strictly
increasing sequence of natural numbers and T : C → C a mapping for which

(a) ∀x ∈ O(v), lim supn→∞ sup(∥Tnx−Tny∥−∥x−y∥ : y ∈ O(x), y ̸= x) < 0;
(b) w − limk→∞ Tnk+lv = v, for each integer l ≥ 0.

Then, Tv = v.

Proof. Note that (b) implies

w − limk→∞T (Tnk+lv) = w − limk→∞Tnk+lv = v.

So, if we show that for some l ∈ {0, 1, 2, . . . }, {Tnk+lv} has a constant subsequence,
then we have proved that Tv = v. Suppose, for contradiction, that {Tnk+lv} does
not have any constant subsequence, for every l in {0, 1, 2, . . . }; i.e., for each l in
{0, 1, 2, . . . } and z ∈ C, there exists a natural number M(l, z) such that

(3.4) Tnk+lv ̸= z, ∀k ≥ M(l, z).
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By (a), there exists a natural number N0 such that

(3.5) sup
y∈O(v),y ̸=v

(∥TN0v − TN0y∥ − ∥v − y∥) < 0.

Furthermore, we can choose a natural number N such that for every n ≥ N ,

(3.6) sup
y∈O(TN0v),y ̸=TN0v

(∥Tn(TN0v)− Tny∥ − ∥TN0v − y∥) < 0.

Now, we claim that the following inequality holds:

(3.7) lim inf
k→∞

∥Tmv − Tm+nkv∥ ≤ lim inf
k→∞

∥TN0v − Tnk+N0v∥, ∀m > N +N0.

Indeed, we notice that, by (3.4), we have Tnk+N0v ̸= TN0v, for all k ≥ M(N0, T
N0v).

From this and (3.6), it follows that, for every n ≥ N ,

sup
k≥M(N0,TN0v)

(∥Tn(TN0v)− Tn(Tnk+N0v)∥ − ∥TN0v − Tnk+N0v∥) < 0,

i.e.,

∥Tn(TN0v)− Tn(Tnk+N0v)∥ < ∥TN0v − Tnk+N0v∥,
for every n ≥ N and k ≥ M(N0, T

N0v). Hence,

lim inf
k→∞

∥Tn+N0v − Tn+N0+nkv∥ ≤ lim inf
k→∞

∥TN0v − Tnk+N0v∥,

for every n ≥ N , and this is equivalent to (3.7).
In this stage, considering (3.5), take

(3.8) r = sup
y∈O(v),y ̸=v

(∥TN0v − TN0y∥ − ∥v − y∥) < 0,

and choose K0 > M(0, v) such that

(3.9) nk > N +N0, ∀k > K0.

From (3.4), we have Tnkv ̸= v, for all k > K0. So, considering (3.8), we obtain

∥TN0v − Tnk+N0v∥ − ∥v − Tnkv∥ = ∥TN0v − TN0(Tnkv)∥ − ∥v − Tnkv∥ ≤ r,

for every integer k > K0.Thus, for a fixed k > K0, we have, by (b) and the lower
semicontinuity of norm,

∥TN0v − Tnk+N0v∥ ≤ ∥v − Tnkv∥+ r ≤ lim inf
h→∞

∥Tnh+nkv − Tnkv∥+ r

= lim inf
h→∞

∥Tnkv − Tnk+nhv∥+ r

≤ lim inf
h→∞

∥TN0v − TN0+nhv∥+ r,

where, the last inequality follows by combining (3.9) and (3.7). Therefore, we have
obtained the following:

∥TN0v − Tnk+N0v∥ ≤ lim inf
h→∞

∥TN0v − TN0+nhv∥+ r, ∀k > K0.

From this, it follows that

lim sup
k→∞

∥TN0v − Tnk+N0v∥ ≤ lim inf
h→∞

∥TN0v − TN0+nhv∥+ r.
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Equivalently,

0 ≤ lim sup
k→∞

∥TN0v − Tnk+N0v∥ − lim inf
h→∞

∥TN0v − TN0+nhv∥ ≤ r,

a contradiction of (3.8). Therefore, we have proved that Tv = v. �
Example 3.4. Let E = ℓ∞, the space of all bounded real-valued functions defined
on N with supremum norm. Let f : R → R be an arbitrary mapping such that
f( 1n) =

1
n+1 , for all n ∈ N. For each x = (x1, x2, x3, . . . ) in E, define

T (x1, x2, x3, . . . ) = (f(x2), x3, x4, . . . ).

It is worth noticing that, depending on the various choices of the function f , T is
not necessarily continuous. It is easy to verify that, for v = (1, 12 ,

1
3 , . . . ,

1
n , . . . ), the

assertion (a) of Theorem 3.3 (also Lemma 3.1) holds. But, Tv ̸= v. So, applying
Theorem 3.3, we deduce that for any strictly increasing sequence {nk} of natural
numbers, there exists an integer l ≥ 0 such that the assertion w−limk→∞ Tnk+lv = v
doesn’t hold.
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