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cell stage with a maturity level zero at time t, b is the division rate of cells with
all maturation level, and τ is the time duration of the cell division process. More
precisely, the model (1.1) can be transformed from the structured model of Grabosh
and Heijmans [2]
(1.4)

∂

∂t
p(t, x) + ψ(E(t))

∂

∂x
(g(x)p(t, x)) = b(x)p(t, x)− ψ(E(t))a(x)p(t, x)− µP p(t, x),

d

dt
Z(t) = −µZZ(t) + ψ(E(t))

∫ +∞

0
a(x)p(t, x)dx,

under some conditions including some boundary conditions, where p(t, x) is the den-
sity of the precursor cells at time t and maturation x (x is the level of maturation),
E(t) is the number of proteins acting between the red blood cell compartment Z(t)

and the precursor cell stage P (t) (=
∫ +∞
0 p(t, x)dx) at time t, ψ(E(t)) is a decreasing

function in E, a(x), b(x) and g(x) are real functions.
The second one is the following nonlinear system,

(1.5){
N ′(t) = −[µN + rN + q(M(t))]h(N(t)) + 2(1− rP )e

−µP τq(M(t− τ))h(N(t− τ)),

M ′(t) = −µMM(t) + rNh(N(t)) + 2rP e
−µP τq(M(t− τ))h(N(t− τ)),

where µM is a positive constant, µN , µP , rN , rP and τ are nonnegative constants,
q(·) and h(·) are given functions as in the model (1.1). This model originates from
a transport system with three cell compartments also, where N(t) and M(t) are
the total number of nonproliferating cells and maturing cells at time t respectively,
µN , µP and µM are the lost rates of nonproliferating cells, proliferating cells and
maturing cells respectively, rN and rP are the rates of nonproliferating cells and
proliferating cells differentiating in mature cells respectively, q is the rate of non-
proliferating cells becoming proliferating cells, and τ is the time duration of the
cell division process. Actually, the model (1.5) can be transformed from the partial
differential equation
(1.6)

∂

∂t
n(t, x) +

∂

∂x
n(t, x) = −

(
µN + rN + q

(∫ +∞

0
m(t, x)dx

))
n(t, x),

∂

∂t
m(t, x) +

∂

∂x
m(t, x) = −µMm(t, x),

∂

∂t
p(t, x) +

∂

∂x
p(t, x) = −µP p(t, x)

under some boundary conditions, where n(t, x), m(t, x) and p(t, x) are the cell
population densities of nonproliferating, proliferating and maturing cells at time t
and age x respectively.

For the special case of

h(x) = x, x ≥ 0,

the model (1.1) with

d(t) is independent of t, that is, d(t) ≡ d (d is a constant),
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and

q(x) = c
θn

θn + xn
for c, θ > 0 and n ∈ N,

was studied in [5] in terms of the characteristic equations and Rouches theorem.
Moreover, for the special case of h(x) = x (x ≥ 0), the model (1.5) was studied
in [1] in terms of the characteristic equations and Lyapunov functions respectively.
From [2, 5], we see that a decreased number of red blood cells leads to a decreased
amount hemoglobin, thus to a decrease in the arterial oxygen tension. Then, the
proteins cause an increased influx of red blood cells into the blood. Moreover, it is
known that the increased influx flow could also be led also by a sudden release of
nearly mature precursor cells, a higher division rate of stem cells, an increased flow
from the stem cell compartment to the precursor cell compartment, or a sudden
change of the number of nonproliferating cells. Therefore, the models (1.1) (the
rate d(t) is dependent on t) and (1.5) with nonlinear h(·) would be more suitable
for describing the cell population. As one can see, under our setting, we not only
allow h(x) = x, but also allow

h(x) =
√
x2 + µ−√

µ, or h(x) = k| sinx|; x ≥ 0,

or h(x) =
µx

k + xν
, or h(x) =

µ| sinx|
k + xν

; x ≥ 0,

(µ > 0, k > 0, and ν > 1 are constants). Furthermore, h could be other nonlinear
functions with (1.3).

The rest of this paper is organized as follows. Section 2 is devoted to the study
of behaviors of the solutions of the mathematical model (1.1). In Section 3, we
investigate behaviors of the mathematical model (1.5). Finally, an application with
simulation is presented to illustrate the criterion in Section 4.

2. On the mathematical model (1.1)

Theorem 2.1. For any positive initial data, the unique solution (S(t), P (t), Z(t))
of (1.1) is positive.

Proof. Since the initial data is positive, we have

(2.1) S(t) > 0, P (t) > 0, Z(t) > 0, for all t ∈ [−τ, 0].
Our strategy next is as follows.

(1) We prove that it is impossible that neither S(t) nor P (t) is positive.
(2) We prove that it is impossible that P (t) is positive but not S(t).
(3) We prove that it is impossible that S(t) is positive but not P (t).
(4) We prove that Z(t) is positive.

Firstly, let’s prove (1).
If this is not true, i.e., if neither S(t) nor P (t) is positive, then

tS := min{t ∈ [0,+∞); S(t) = 0} > 0, and tS < +∞,

tP := min{t ∈ [0,+∞); P (t) = 0} > 0, and tP < +∞.

So,

(2.2) S(t) > 0 (∀ t ∈ [0, tS)), S(tS) = 0,
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(2.3) S′(tS) = lim
t→tS−

S(t)− S(tS)

t− tS
≤ 0,

and

P (t) > 0 (∀ t ∈ [0, tP )), P (tP ) = 0, and P ′(tP ) ≤ 0.

Case 1: tS ≤ tP .
In this case, we have

P (t) > 0 (∀ t ∈ [0, tS)).

Hence, in view of (1.1), (2.1) and (2.2), we obtain

S′(tS) = 2(1− d(tS − τ))q(P (tS − τ))h(S(tS − τ))e−µSτ − d(tS)q(P (tS))h(S(tS)),

= 2(1− d(tS − τ))q(P (tS − τ))h(S(tS − τ))e−µSτ

> 0,(2.4)

This contradicts (2.3).

Case 2: tP < tS .
In this case,

S(t) > 0 (∀ t ∈ [0, tP ]).

Therefore, by (1.1) and (1.3), we see that
(2.5)
P ′(tP ) = d(t)q(P (tP ))h(S(tP ))+(b−µP−kZ(tP ))P (tP ) = d(t)q(P (tP ))h(S(tP )) > 0,

which contradicts that P ′(tP ) ≤ 0.
Consequently, we know that (1) is true.

Now, let’s prove (2).
If this is false, i.e., if N(t) is positive but not S(t), then 0 < tS < +∞ and (2.3)

is true. Moreover, by the positivity of P (t), we get (2.4) from (1.1), (2.1) and (2.2),
which contradicts (2.3). Hence, (2) is true.

Next, let’s prove (3).
If this does not hold, i.e., if S(t) is positive but not P (t). Then, then 0 < tP < +∞

and P ′(tP ) ≤ 0. Thus, it follows from the positivity of S(t), (1.1) and (1.3) that
(2.5), which contradicts that P ′(tP ) ≤ 0. Therefore, (3) holds.

In conclusion, both S(t) and P (t) are positive.
Finally, in view of (1.1) and the positivity of P (t), we obtain

Z(t) = Z(0)e−µzt+k
∫ t
0 P (s)ds > 0, t ≥ 0.

This means that (4) holds. �
Theorem 2.2. Let (S(t), P (t), Z(t)) be a solution of (1.1) for a positive initial
data, and b < µp. Then

(1) limt→+∞ S(t) = 0 implies that

lim
t→+∞

P (t) = 0, lim
t→+∞

Z(t) = 0;
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(2) the boundedness of S(t) for t ≥ 0 implies that P (t) and Z(t) are bounded
for t ≥ 0.

Proof. It follows from Theorem 2.1 that

(2.6) S(t) > 0, P (t) > 0, Z(t) > 0, for t ≥ 0.

We divide the case of b < µp into two cases: b < µp with b−µp+µZ ≥ 0 and b < µp
with b− µp + µZ < 0.

Case 1: b < µp with b− µp + µZ ≥ 0.
By (1.1), we have(

e(µP−b)t(P (t) + Z(t))
)′

= e(µP−b)t(P ′(t) + Z ′(t))

+(µP − b)e(µP−b)t(P (t) + Z(t))

= d(t)q(P (t))h(S(t))e(µP−b)t

+(b− µP )P (t)e
(µP−b)t − µZZ(t)e

(µP−b)t

+(µP − b)e(µP−b)t(P (t) + Z(t))

= d(t)q(P (t))h(S(t))e(µP−b)t

−(b− µP + µZ)Z(t)e
(µP−b)t, t ≥ 0.

Since b−µp +µZ ≥ 0, q(·) is a continuous, positive and decreasing function, we see
by (2.6) and (1.3) that for t ≥ 0,

P (t) + Z(t) ≤ (P (0) + Z(0))e(b−µP )t + e(b−µP )t

∫ t

0
d(s)q(P (s))h(S(s))e(µP−b)sds

≤ (P (0) + Z(0))e(b−µP )t + Lq(P (0))e(b−µP )t

∫ t

0
S(s)e(µP−b)sds

≤ (P (0) + Z(0))e(b−µP )t + Lq(P (0))e(b−µP )t

∫ t
3

0
S(s)e(µP−b)sds

+Lq(P (0))e(b−µP )t

∫ t

t
3

S(s)e(µP−b)sds.(2.7)

Clearly, limt→+∞ S(t) = 0 implies that S(t) is bounded, that is, there is a constant
C > 0 such that

(2.8) S(t) ≤ C (∀ t ≥ 0).

Therefore, if b < µp, then by (2.7) and the Mean Value Theorem, we know that
there is a ξ ∈ [ t3 , t] such that,

P (t) + Z(t) ≤ (P (0) + Z(0))e(b−µP )t + CLq(P (0))e(b−µP )t e
(µP−b)t

3 − 1

µP − b

+Lq(P (0))e(b−µP )tS(ξ)

∫ t

t
3

e(µP−b)sds
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≤ (P (0) + Z(0))e(b−µP )t + CLq(P (0))
e

2(b−µP )t

3 − e(b−µP )t

µP − b

+Lq(P (0))S(ξ)
1− e

2(b−µP )t

3

µP − b
,(2.9)

which goes to 0 as t→ +∞ since limt→+∞ S(t) = 0. Hence, by (2.6) we get

lim
t→+∞

(P (t) + Z(t)) = 0.

Consequently,

lim
t→+∞

P (t) = 0, lim
t→+∞

Z(t) = 0.

Case 2: b < µp with b− µp + µZ < 0.
By (1.1), we have(

eµZt(P (t) + Z(t))
)′

= eµZt(P ′(t) + Z ′(t)) + µZe
µZt(P (t) + Z(t))

= d(t)q(P (t))h(S(t))eµZt + (b− µP )P (t)e
µZt

−µZZ(t)eµZt + µZe
µZt(P (t) + Z(t))

= d(t)q(P (t))h(S(t))eµZt

+(b− µP + µZ)P (t)e
(µP−b)t, t ≥ 0.

So,

P (t) + Z(t) ≤ (P (0) + Z(0))eµZt + e−µZt

∫ t

0
d(s)q(P (s))h(S(s))eµZsds

≤ (P (0) + Z(0))e−µZt + Lq(P (0))e−µZt

∫ t

0
S(s)eµZsds

≤ (P (0) + Z(0))e−µZt + Lq(P (0))e−µZt

∫ t
3

0
S(s)eµZsds

+Lq(P (0))e−µZt

∫ t

t
3

S(s)eµZsds.(2.10)

By the similar arguments as those in Case 1 above, we obtain

lim
t→+∞

P (t) = 0, lim
t→+∞

Z(t) = 0.

Consequently, (1) is true.
Moreover, if (2.8) holds, then by (2.7) (or (2.9)) and (2.10) we see that P (t)+Z(t)

is bounded for t ≥ 0, so does P (t) and Z(t) respectively due to (2.6). Thus, (2) is
also true. �

Theorem 2.3. Assume that d(t) ≡ d. Then

(1) (0, 0, 0) is a steady state (equilibrium) of (1.1).

(2) If b < µp and d ̸=
(
1 + 1

2e
µSτ

)−1
, then (0, 0, 0) is the only steady state of

(1.1).
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(3) If b > µp and d ̸=
(
1 + 1

2e
µSτ

)−1
, then (1.1) has only one non-trivial steady

state (0, µz

k ,
b−µP

k ).

Proof. Recall that a steady state (equilibrium) of (1.1), is a stationary solution
(S∗, P ∗, Z∗), that is, (S∗, P ∗, Z∗), satisfies

dq(P ∗)h(S∗) = (µP − b+ kZ∗)P ∗,(2.11)

µZZ
∗ = kZ∗P ∗,(2.12)

2(1− d)q(P ∗)h(S∗)e−µSτ = dq(P ∗)h(S∗).(2.13)

Clearly, (0, 0, 0) is a steady state of (1.1). So (1) is true.
From (2.13), we see that

[2(1− d)e−µSτ − d]h(S∗) = 0.

This means that S∗ = 0 if d ̸=
(
1 + 1

2e
µSτ

)−1
. Therefore, if

b < µP and d ̸=
(
1 +

1

2
eµSτ

)−1

,

then by (2.11), we get P ∗ = 0. Moreover, we know that Z∗ = 0 from (2.12). So (2)
holds.

Furthermore, if

d ̸=
(
1 +

1

2
eµSτ

)−1

and b > µP ,

then by (2.11) and (2.12), we see that (3) is true. �
Theorem 2.4. Let b < µP and(

1 +
1

2
eµSτ

)−1

< d(t), t ≥ 0.

Then for any positive initial data, the solution (S(t), P (t), Z(t)) of (1.1) tends to
(0,0,0).

Proof. In view of Theorem 2.1, (2.6) holds.
Set

W (t) = S(t) + 2e−µSτ

∫ t

t−τ
(1− d(s))q(P (s))h(S(s))ds, t ≥ τ.

Then
W (t) > 0, t ≥ τ,

and by (1.1),

W ′(t) = S′(t)− 2(1− d(t− τ))e−µSτq(P (t− τ))h(S(t− τ))

+2(1− d(t))e−µSτq(P (t))h(S(t))

= [2(1− d(t))e−µSτ − d(t)]q(P (t))h(S(t)).(2.14)

Since (
1 +

1

2
eµSτ

)−1

< d(t) < 1, t ≥ 0,
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we have

2(1− d(t))e−µSτ − d(t) < 0, t ≥ 0.

This, together with (2.14), (2.6), (1.3) and the properties of the function q, implies
that

W ′(t) < 0, t ≥ τ.

This means that W (t) is strictly decreasing. Hence, W (t) is bounded on [τ,+∞).
So S(t) is bounded for t ≥ 0. By (2) of Theorem 2.2, we know that P (t) and Z(t)
are bounded for t ≥ 0. Therefore, we see by (1.1) that P ′(t) and S′(t) are bounded
on for t ≥ 0. This means that P (t) and S(t) are uniformly Lipschitz continuous on
[0,+∞). Consequently,

• W ′(t) is uniformly continuous on [τ,+∞).

• lim
t→+∞

W (t) = inf
t≥τ

W (t).

By virtue of the well-known Barbalat’s Lemma, we have

lim
t→+∞

W ′(t) = 0.

This, together with (2.14), the boundedness of P (t) and (1.3), shows that

lim
t→+∞

S(t) = 0.

Thus, by (1) of Theorem 2.2,

lim
t→+∞

P (t) = 0, lim
t→+∞

Z(t) = 0.

�

The following result is a direct consequence of Theorem 2.4

Corollary 2.5. Let b < µP and d(t) ≡ d with(
1 +

1

2
eµSτ

)−1

< d.

Then the steady state for (1.1) is global asymptotically stable.

3. On the mathematical model (1.5)

Theorem 3.1. For any positive initial data, the unique solution (M(t), N(t)) of
(1.5) is positive.

Proof. It is directly conclusion of a similar argument as that of proving that S(t) is
positive in Theorem 2.1. �

Theorem 3.2. Let (M(t), N(t)) be a solution of (1.5) for a positive initial data.

(1) If N(t) is bounded, then M(t) is bounded.
(2) If limt→+∞N(t) = 0, then limt→+∞M(t) = 0.



NONLINEAR MODELS FROM CELL POPULATIONS 633

Proof. In view of Theorem 3.1,

(3.1) M(t) > 0, N(t) > 0, for t ≥ 0.

By (1.5), we have(
eµM tM(t)

)′
= eµM trNh(N(t)) + 2rP e

µM t−µP τq(M(t− τ))h(N(t− τ)), t ≥ 0.

Therefore, for t ≥ τ ,

M(t) = e−µM (t−τ)M(τ) + rN

∫ t

τ
eµM (s−t)h(N(s))ds

+2rP e
−µP τ

∫ t

τ
eµM (s−t)q(M(s− τ))h(N(s− τ))ds.(3.2)

Noting that β is decreasing and N(t) is bounded, it is easy to show by (3.2) and
(1.3) that (1) is true.

Next, we prove (2).
Since limt→+∞N(t) = 0, N(t) is bounded. From (1) we know that M(t) is also

bounded. Hence, there is a constant C1 > 0 such that

N(t) ≤ C1, M(t) ≤ C1, (∀ t ≥ 0).

Thus, by (3.2) and (1.3), we obtain, for t ≥ τ ,

M(t) = e−µM t (eµM τM(τ)

+

∫ 2(t+τ)
3

τ
(rNh(N(s)) + 2rP e

−µP τ )eµM (s−τ)q(M(s− τ))h(N(s− τ))ds

)

+e−µM t

∫ t

2(t+τ)
3

(rNh(N(s)) + 2rP e
−µP τ )eµM (s−τ)q(M(s− τ))h(N(s− τ))ds

≤ e−µM t

(
eµM τC1 + [rN + 2rP e

−µP τq(0)]LC1e
µM ( 2t−τ

3
) 2t− τ

3

)

+e−µM t[rN + 2rP e
−µP τq(0)]L

∫ t

2(t+τ)
3

eµM (s−τ)N(s− τ)ds.(3.3)

It is clear that

(3.4) lim
t→+∞

e−µM teµM ( 2t−τ
3

) 2t− τ

3
= lim

t→+∞
e−µM( t+τ

3 ) 2t− τ

3
= 0.

Moreover, by the Mean Value Theorem, we know that there is a ξ ∈ [2(t+τ)
3 , t] such

that

e−µM t

∫ t

2(t+τ)
3

eµM (s−τ)N(s− τ)ds = e−µM tN(ξ − τ)

∫ t

2(t+τ)
3

eµM (s−τ)ds

= N(ξ − τ)
e−µM τ − e−µM( t+τ

3 )

µM
,
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which goes to 0 as t→ +∞ since limt→+∞N(t) = 0. This fact, together with (3.3),
(3.4) and (3.1), implies that

lim
t→+∞

M(t) = 0.

�

Theorem 3.3. Let

(3.5) [2(1− rP )e
−µP τL− 1]q(0) < µN + rN .

Then

(1) (0, 0) is the only steady state of (1.5);
(2) for any positive initial data, the solution (M(t), N(t)) of (1.5) tends to

(0,0).

Proof. The proof of (1) is obvious.
Next, we prove (2).
Let (M(t), N(t)) be a solution of (1.5) for a positive initial datum. Then (3.1)

is true by Theorem 3.1.
Define

U(t) = N(t) + 2(1− rP )e
−µP τ

∫ t

t−τ
q(M(s))h(N(s))ds, t ≥ τ.

Then

(3.6) U(t) > 0, t ≥ τ,

and by (1.5),

U ′(t) = N ′(t) + 2(1− rP )e
−µP τ [q(M(t))h(N(t))− q(M(t− τ))h(N(t− τ))]

= −[µN + rN ]N(t)− q(M(t))N(t) + 2(1− rP )e
−µP τq(M(t))h(N(t)).(3.7)

(i) If 2(1− rP )e
−µP τL− 1 ≥ 0, and (3.5) holds, then by (3.7), (1.3), (3.1), (1.3)

and the properties of β, we obtain

U ′(t) ≤ −[µN + rN ]N(t)− q(M(t))N(t) + 2(1− rP )e
−µP τLq(M(t))N(t)

= −[µN + rN ]N(t) + [2(1− rP )e
−µP τL− 1]q(M(t))N(t)

≤ −[µN + rN ]N(t) + [2(1− rP )e
−µP τL− 1]q(0)N(t)

=
{
[2(1− rP )e

−µP τL− 1]q(0)− [µN + rN ]
}
N(t)

< 0, t ≥ τ.(3.8)

(ii) If 2(1−rP )e−µP τL−1 < 0, then by (3.7), (1.3), (3.1), (1.3) and the properties
of β, we have

U ′(t) ≤ −[µN + rN ]N(t)− q(M(t))N(t) + 2(1− rP )e
−µP τLq(M(t))N(t)

= −[µN + rN ]N(t) + [2(1− rP )e
−µP τL− 1]q(M(t))N(t)

< 0, t ≥ τ.(3.9)

Consequently we see that if (3.5) holds, then

U ′(t) < 0, t ≥ τ.
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Hence, U(t) is strictly decreasing, which means that U(t) is bounded on [τ,+∞).
Thus, N(t) is bounded on [0,+∞). (1) of Theorem 3.2 shows that M(t) is bounded
on [0,+∞). By the same argument as that in the proof Theorem 2.4, we obtain

(3.10) lim
t→+∞

U ′(t) = 0.

Next, by virtue of the idea and similar arguments given in [3], we can prove that

(3.11) lim
t→+∞

N(t) = 0.

For paper’s completeness as well as readers’ convenience, we present the whole proof
as follows.

Suppose (3.11) is false. Then there exists at least an ϵ0 > 0 such that for every
n ∈ N, there is tn > n such that

N(tn) > ϵ0.

The boundedness of N(t) implies that there exists a subsequence {tnk
} of {tn} such

that

tnk
> τ for all k > k0

where k0 is a fixed positive integer, and

lim
k→+∞

N (tnk
) = α ≥ ϵ0 > 0,

where α is a constant.
If 2(1 − rP )e

−µP τL − 1 ≥ 0, and (3.5) holds, then by the property of β, (3.1),
(1.3) and (3.7), we obtain

lim
k→+∞

U ′ (tnk
) ≤ lim

k→+∞

{
[2(1− rP )e

−µP τL− 1]q(0)− [µN + rN ]
}
N((tnk

))

= α
{
[2(1− rP )e

−µP τL− 1]q(0)− [µN + rN ]
}

< 0, t ≥ τ.

which contradicts (3.10).
Moreover, if 2(1− rP )e

−µP τL− 1 < 0, then, by (3.9), we have

lim
k→+∞

U ′ (tnk
) = −µN lim

k→+∞
N (tnk

) = −µNα < 0,

which contradicts with (3.10) also.
Therefore, (3.11) holds. This, together with Theorem 3.1, shows that

lim
t→+∞

M(t) = 0.

�
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4. An application with simulation

Example 4.1. Consider the following nonlinear differential system, which could be
used to model a cell population
(4.1)

N ′(t) = −2

(
1 +

1

1 + 10−12M(t)1.25

)
N(t)

[1 + 4× 10−8N(t)]

+
1.92N(t− 0.05)

[1 + 10−12M(t− 0.05)1.25][1 + 4× 10−8N(t− 0.05)]
, t ≥ 0,

M ′(t) = −M(t)

2
+

0.96N(t)

1 + 4× 10−8N(t)

+
1.92N(t− 0.05)

[1 + 10−12M(t− 0.05)1.25][1 + 4× 10−8N(t− 0.05)]
, t ≥ 0.

Take

µN = 0.52, rN = 0.48, q(M) =
1

1 + 10−12M1.25
,

h(N) =
2N

1 + 4× 10−8N
, rP = 0.5, µP = −20 ln 0.96,

τ = 0.05, µM = 0.5, L = 2.

Then it is easy to see that (3.5) is satisfied for (4.1). Therefore, by virtue of Theorem
3.3, we know that for all positive initial data, the solution (M(t), N(t)) of (4.1)
tends to (0,0). This means that for the model (4.1), the cell population extinct
definitely.

On the other hand, solving the problem (4.1) on [0, 20] with history M(t) = 100,
N(t) = 100 for t ≤ 0, by means of the Matlab package DDE23, we obtain Figure
1 below. This figure illustrates numerically that the conclusion of Theorem 3.3
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time t
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(t

),
 M
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)
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Figure 1

very well, which shows clearly that for the model (4.1), the cell population extinct
definitely.
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