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Recently, Ceng, Wang and Yao [9] transformed problem (1.1) into a fixed point
problem in the following way:

Lemma 1.1 (see [9]). (For given x̄, ȳ ∈ C, (x̄, ȳ) is a solution of problem (1.1) if
and only if x̄ is a fixed point of the mapping G : C → C defined by

(1.3) G(x) = PC [PC(x− µ2B2x)− µ1B1PC(x− µ2B2x)], ∀x ∈ C,

where ȳ = PC(x̄− µ2B2x̄).

In particular, if the mappings Bi : C → H is βi-inverse strongly monotone for
i = 1, 2, then the mapping G is nonexpansive provided µi ∈ (0, 2βi) for i = 1, 2.

Let X be a real Banach space whose dual space is denoted by X∗. Let U =
{x ∈ X : ∥x∥ = 1}. A Banach space X is said to be uniformly convex if for each
ϵ ∈ (0, 2], there exists δ > 0 such that for all x, y ∈ U ,

∥x− y∥ ≥ ϵ ⇒ ∥x+ y∥/2 ≤ 1− δ.

It is known that a uniformly convex Banach space is reflexive and strict convex. A
Banach space X is said to be smooth if the limit

lim
t→0

∥x+ ty∥ − ∥x∥
t

,

exists for all x, y ∈ U . It is also said to be uniformly smooth if this limit is attained
uniformly for x, y ∈ U . The norm of X is said to be the Frechet differential if for
each x ∈ U , this limit is attained uniformly for y ∈ U . Also, we define a function
ρ : [0,∞) → [0,∞) called the modulus of smoothness of X as follows:

ρ(τ) = sup
{1

2
(∥x+ y∥+ ∥x− y∥)− 1 : x, y ∈ X, ∥x∥ = 1, ∥y∥ = τ

}
.

It is known that X is uniformly smooth if and only if limτ→0 ρ(τ)/τ = 0. Let q be a
fixed real number with 1 < q ≤ 2. Then a Banach space X is said to be q-uniformly
smooth if there exists a constant c > 0 such that ρ(τ) ≤ cτ q for all τ > 0. As
pointed out in [17], no Banach space is q-uniformly smooth for q > 2.

Let X∗ be the dual of X. The normalized duality mapping J : X → 2X
∗
is

defined by

J(x) = {x∗ ∈ X∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}, ∀x ∈ X,

where ⟨·, ·⟩ denotes the generalized duality pairing. It is an immediate consequence
of the Hahn-Banach theorem that J(x) is nonempty for each x ∈ X. Moreover, it is
known that J is single-valued if and only if X is smooth, whereas if X is uniformly
smooth, then the mapping J is uniformly continuous on bounded subsets of X.
Let C be a nonempty closed convex subset of a real Banach space X. A mapping
T : C → C is called nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C.

We use the notation ⇀ to indicate the weak convergence and the one → to indicate
the strong convergence.

Definition 1.2. Let A : C → X be a mapping of C into X. Then A is said to be
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(i) accretive if for each x, y ∈ C there exists j(x− y) ∈ J(x− y) such that

⟨Ax−Ay, j(x− y)⟩ ≥ 0,

where J is the normalized duality mapping;
(ii) α-strongly accretive if for each x, y ∈ C there exists j(x−y) ∈ J(x−y) such

that
⟨Ax−Ay, j(x− y)⟩ ≥ α∥x− y∥2,

for some α ∈ (0, 1);
(iii) β-inverse-strongly-accretive if for each x, y ∈ C there exists j(x − y) ∈

J(x− y) such that

⟨Ax−Ay, j(x− y)⟩ ≥ β∥Ax−Ay∥2,
for some β > 0;

(iv) λ-strictly pseudocontractive if for each x, y ∈ C there exists j(x − y) ∈
J(x− y) such that

⟨Ax−Ay, j(x− y)⟩ ≤ ∥x− y∥2 − λ∥x− y − (Fx− Fy)∥2

for some λ ∈ (0, 1).

Very recently, Yao, Liou, Kang and Yu [20] studied the following general system
of variational inequalities (GSVI) in a real smooth Banach space X, which involves
finding (x∗, y∗) ∈ C × C such that

(1.4)

{
⟨µ1B1y

∗ + x∗ − y∗, J(x− x∗)⟩ ≥ 0, ∀x ∈ C,
⟨µ2B2x

∗ + y∗ − x∗, J(x− y∗)⟩ ≥ 0, ∀x ∈ C,

where C is a nonempty, closed and convex subset of X, B1, B2 : C → X are two
nonlinear mappings and µ1 and µ2 are two positive constants. Here the set of
solutions of GSVI (1.4) is denoted by GSVI(C,B1, B2). In particular, if X = H, a
real Hilbert space, then GSVI (1.4) reduces to GSVI (1.1) which was considered by
Ceng, Wang and Yao [9].

In [20], Yao, Liou, Kang and Yu constructed two algorithms for solving GSVI
(1.4) in a uniformly convex and 2-uniformly smooth Banach space: one implicit
algorithm and another explicit algorithm. They proved the strong convergence
of the proposed methods [20, Theorems 3.5 and 3.7], by vietue of the following
inequality in a 2-uniformly smooth Banach space X.

Lemma 1.3 (see [18]). Let X be a 2-uniformly smooth Banach space. Then

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, J(x)⟩+ 2∥κy∥2, ∀x, y ∈ X,

where κ is the 2-uniformly smooth constant of X and J is the normalized duality
mapping from X into X∗.

Define the mapping G : C → C as follows

G(x) := ΠC(I − µ1B1)ΠC(I − µ2B2)x, ∀x ∈ C.

The fixed point set of G is denoted by Ω . We remark that in [20, Theorems 3.5 and
3.7], the Banach space X is assumed to be both uniformly convex and 2-uniformly
smooth. According to Lemma 1.3, the 2-uniform smoothness of X guarantees the
nonexpansivity of the mapping I − µiBi for αi-inverse-strongly accretive mapping
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Bi : C → X with 0 ≤ µi ≤ αi
κ2 for i = 1, 2, and hence the composite mapping

G : C → C is nonexpansive where G = ΠC(I − µ1B1)ΠC(I − µ2B2). However,
the uniform convexity of X guarantees that there holds the demiclosedness prin-
ciple for nonexpansive mappings. Naturally, it is interesting to know whether the
uniform convexity and 2-uniformly smoothness of X can be replaced by the weaker
geometrical property of X or not. The main purpose of this paper is to consider
the above mentioned question and to give an affirmative answer. We will propose
implicit and explicit algorithms based on Korpelevich’s extragradient method [11]
and Halpern’s iterative method [15] to find approximate solutions of GSVI (1.4).
Strong convergence results of these two methods will be established under very mild
conditions. We observe that some recent results in this direction have been obtained
in , e.g., [2, 3, 4, 5, 6, 7, 8, 14].

2. Preliminaries

The following lemmas will be used in the sequel. Lemma 2.1 can be found in [19]
and Lemma 2.2 is an immediate consequence of the subdifferential inequality of the
function 1

2∥ · ∥
2.

Lemma 2.1. Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1− αn)sn + αnβn + γn, ∀n ≥ 0,

where {αn}, {βn} and {γn} satisfy the conditions:

(i) {αn} ⊂ [0, 1],
∑∞

n=0 αn = ∞;
(ii) lim supn→∞ βn ≤ 0;
(iii) γn ≥ 0 (∀n ≥ 0),

∑∞
n=0 γn < ∞.

Then lim supn→∞ sn = 0.

Lemma 2.2. In a smooth Banach space X, there holds the inequality

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, J(x+ y)⟩, ∀x, y ∈ X.

Recall that a gauge is a continuous strictly increasing function φ : [0,∞) → [0,∞)
such that φ(0) = 0 and φ(t) → ∞ as t → ∞. Associated to a gauge φ is the duality
map Jφ : X → 2X

∗
defined by

Jφ(x) = {x∗ ∈ X∗ : ⟨x, x∗⟩ = ∥x∥φ(∥x∥) and ∥x∗∥ = φ(∥x∥)}, ∀x ∈ X.

Following Browder [1], we say that a Banach space X has a weakly continuous
duality map if there exists a gauge φ for which the duality map Jφ is single-valued
and weak-to-weak∗ sequentially continuous (i.e., if {xn} is a sequence in X weakly
convergent to a point x, then the sequence Jφ(xn) converges weak

∗ly to Jφ(x)). It
is known that lp has a weakly continuous duality map for all 1 < p < ∞. Set

Φ(t) =

∫ t

0
φ(s)ds, ∀t ≥ 0.

Then
Jφ(x) = ∂Φ(∥x∥), ∀x ∈ X,

where ∂ denotes the subdifferential in the sense of convex analysis. The first part of
the following lemma is an immediate consequence of the subdifferential inequality,
and the proof of the second part can be found in [12].
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Lemma 2.3. Assume that X has a weakly continuous duality map Jφ with gauge
φ.

(i) For all x, y ∈ X, there holds the inequality

Φ(∥x+ y∥) ≤ Φ(∥x∥) + ⟨y, Jφ(x+ y)⟩.
(ii) Assume a sequence {xn} in X is weakly convergent to a point x. Then there

holds the identity

lim sup
n→∞

Φ(∥xn − y∥) = lim sup
n→∞

Φ(∥xn − x∥) + Φ(∥y − x∥), ∀y ∈ X.

Let D be a subset of C and let Π be a mapping of C into D. Then Π is said to
be sunny if

Π [Π (x) + t(x−Π (x))] = Π (x),

whenever Π (x) + t(x − Π (x)) ∈ C for x ∈ C and t ≥ 0. A mapping Π of C into
itself is called a retraction if Π 2 = Π . If a mapping Π of C into itself is a retraction,
then Π (z) = z for every z ∈ R(Π ) where R(Π ) is the range of Π . A subset D of
C is called a sunny nonexpansive retract of C if there exists a sunny nonexpansive
retraction from C onto D. The following lemma concerns the sunny nonexpansive
retraction.

Lemma 2.4 ([16]). Let C be a nonempty closed convex subset of a real smooth
Banach space X, D be a nonempty subset of C and Π be a retraction from C onto
D. Then Π is sunny and nonexpansive if and only if

⟨x−Π (x), J(y −Π (x))⟩ ≤ 0,

for all x ∈ C and y ∈ D.

It is well known that if X = H a Hilbert space, then a sunny nonexpansive
retraction ΠC is coincident with the metric projection from X onto C; that is,
ΠC = PC . Let C be a nonempty closed convex subset of a uniformly convex and
uniformly smooth Banach space X and let T : C → C be a nonexpansive mapping
with the fixed point set Fix(T ) ̸= ∅. Then the set Fix(T ) is a sunny nonexpansive
retract of C.

3. Implicit Iterative Schemes

In this section, we introduce our implicit iterative schemes and show the strong
convergence theorems. First, we give several useful lemmas. Lemmas 3.1 and 3.2
can be showed easily and therefore the proofs will be omitted.

Lemma 3.1. Let C be a nonempty closed convex subset of a smooth Banach space
X and let the mapping Bi : C → X be λi-strictly pseudocontractive and αi-strongly
accretive with αi + λi ≥ 1 for i = 1, 2. Then, for µi ∈ (0, 1] we have

∥(I − µiBi)x− (I − µiBi)y∥ ≤
{√1− αi

λi
+ (1− µi)

(
1+

1

λi

)}
∥x− y∥, ∀x, y ∈ C,

for i = 1, 2. In particular, if 1 − λi
1+λi

(
1 −

√
1−αi
λi

)
≤ µi ≤ 1, then I − µiBi is

nonexpansive for i = 1, 2.
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Lemma 3.2. Let C be a nonempty closed convex subset of a smooth Banach space
X. Let ΠC be a sunny nonexpansive retraction from X onto C and let the mapping
Bi : C → X be λi-strictly pseudocontractive and αi-strongly accretive with αi+λi ≥
1 for i = 1, 2. Let G : C → C be the mapping defined by

G(x) = ΠC [ΠC(x− µ2B2x)− µ1B1ΠC(x− µ2B2x)], ∀x ∈ C.

If 1− λi
1+λi

(
1−

√
1−αi
λi

)
≤ µi ≤ 1, then G : C → C is nonexpansive.

Lemma 3.3. Let C be a nonempty closed convex subset of a smooth Banach space
X. Let ΠC be a sunny nonexpansive retraction from X onto C and let the mapping
Bi : C → X be λi-strictly pseudocontractive and αi-strongly accretive for i = 1, 2.
For given x∗, y∗ ∈ C, (x∗, y∗) is a solution of GSVI (1.4) if and only if x∗ =
ΠC(y

∗ − µ1B1y
∗) where y∗ = ΠC(x

∗ − µ2B2x
∗).

Proof. We can rewrite GSVI (1.4) as

(3.1)

{
⟨x∗ − (y∗ − µ1B1y

∗), J(x− x∗)⟩ ≥ 0, ∀x ∈ C,
⟨y∗ − (x∗ − µ2B2x

∗), J(x− y∗)⟩ ≥ 0, ∀x ∈ C.

The conclusion then follows from Lemma 2.4. �

Remark 3.4. By Lemma 3.3, we observe that

x∗ = ΠC [ΠC(x
∗ − µ2B2x

∗)− µ1B1ΠC(x
∗ − µ2B2x

∗)],

which implies that x∗ is a fixed point of the mapping G. The set of fixed points of
the mapping G will be denoted by Ω.

Now, in order to solve GSVI (1.4), we first introduce an implicit algorithm. Let
C be a nonempty closed convex subset of a smooth Banach space X. Let ΠC be a
sunny nonexpansive retraction from X onto C. Let the mapping Bi : C → X be
λi-strictly pseudocontractive and αi-strongly accretive with αi+λi ≥ 1 for i = 1, 2.

In what follows, we assume that 1 − λi
1+λi

(
1 −

√
1−αi
λi

)
≤ µi ≤ 1 for i = 1, 2. Let

F : C → X be α-strongly accretive and λ-strictly pseudocontractive with α+λ ≥ 1.
Now, take t ∈ (0, 1). For given θt ∈ [0, 1), we define a mapping Tt : C → C by

(3.2) Ttx = tu+ (1− t)ΠC(I − θtF )ΠC(I − µ1B1)ΠC(I − µ2B2)x, ∀x ∈ C,

where u ∈ C is a fixed element.
Define another mapping St

(3.3)
Stx = ΠC(I − θtF )ΠC(I − µ1B1)ΠC(I − µ2B2)x

= ΠC [(1− θt)I + θt(I − F )]ΠC(I − µ1B1)ΠC(I − µ2B2)x, ∀x ∈ C.

Then Tt is rewritten as

(3.4) Ttx = tu+ (1− t)Stx, ∀x ∈ C.

Let us show that St : C → C is nonexpansive. As a matter of fact, utilizing the
arguments similar to those in Lemma 3.1, we can derive

∥(I − F )x− (I − F )y∥ ≤
√

1− α

λ
∥x− y∥, ∀x, y ∈ C.
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Since α+ λ ≥ 1, we get 1−α
λ ≤ 1. It is clear that I − F is nonexpansive and hence

I−θtF = (1−θt)I+θt(I−F ) is nonexpansive. So, ΠC(I−θtF ) is nonexpansive. We
note that by Lemma 3.1, ΠC(I−µiBi) is nonexpansive for i = 1, 2. Thus, it follows
from (3.3) that St : C → C is nonexpansive. This together with (3.4), implies that
Tt : C → C is a contraction. Therefore, the Banach contraction principle guarantees
that Tt has a unique fixed point in C, which we denote by xt; that is,

(3.5) xt = tu+(1− t)Stxt = tu+(1− t)ΠC(I−θtF )ΠC(I−µ1B1)ΠC(I−µ2B2)xt.

We now state and prove our first result.

Theorem 3.5. Let C be a nonempty closed convex subset of a reflexive Banach
space X which has a weakly continuous duality map Jφ with gauge φ. Let Bi :
C → X be λi-strictly pseudocontractive and αi-strongly accretive with αi + λi ≥ 1

for i = 1, 2. Assume that 1 − λi
1+λi

(
1 −

√
1−αi
λi

)
≤ µi ≤ 1 for i = 1, 2. Let

F : C → X be α-strongly accretive and λ-strictly pseudocontractive with α+ λ ≥ 1.
Fix u ∈ X and t ∈ (0, 1). Let xt ∈ C be the unique solution in C to Eq. (3.5),
where θt ∈ [0, 1), ∀t ∈ (0, 1) and limt→0+ θt/t = 0. Then Ω ̸= ∅ if and only if

(3.6) lim sup
t→0+

∥xt∥ < ∞,

and in this case, {xt} converges as t → 0+ strongly to an element of Ω.

Proof. If Ω ̸= ∅, we can take p ∈ Ω to derive from (3.5) that, for t ∈ (0, 1),

∥xt − p∥ ≤ t∥u− p∥+ (1− t)∥Stxt − p∥
≤ t∥u− p∥+ (1− t)(∥Stxt − Stp∥+ ∥Stp− p∥)
= t∥u− p∥+ (1− t)(∥Stxt − Stp∥+ ∥ΠC(I − θtF )p−ΠCp∥)
≤ t∥u− p∥+ (1− t)∥xt − p∥+ θt∥F (p)∥,

which implies that

(3.7) ∥xt − p∥ ≤ ∥u− p∥+ θt
t
∥F (p)∥.

Because limt→0+ θt/t = 0, we get from (3.7) that

(3.8) lim sup
t→0+

∥xt∥ ≤ ∥p∥+ ∥u− p∥ < ∞

and hence (3.6) holds.
Conversely, assume (3.6); that is, {xt} remains bounded when t → 0+; hence

F (G(xt)) is bounded, where G is defined as in Lemma 3.2. Because, in terms of
(3.5)

(3.9) xt −G(xt) =
t

1− t
(u− xt) + Stxt −G(xt),

we obtain

∥xt −G(xt)∥ ≤ t
1−t∥u− xt∥+ ∥Stxt −G(xt)∥

= t
1−t∥u− xt∥+ ∥ΠC(G(xt)− θtF (G(xt)))−ΠCG(xt)∥

≤ t
1−t∥u− xt∥+ θt∥F (G(xt))∥,

which hence yields

(3.10) lim
t→0+

∥xt −G(xt)∥ = 0.
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Now assume tn → 0+. Because X is reflexive and {xtn} is bounded, we may
assume that xtn ⇀ z for some z ∈ C. Because Jφ is weakly continuous, we have by
Lemma 2.3,

lim sup
n→∞

Φ(∥xtn − x∥) = lim sup
n→∞

Φ(∥xtn − z∥) + Φ(∥x− z∥), ∀x ∈ X.

Put

f(x) = lim sup
n→∞

Φ(∥xtn − x∥), ∀x ∈ X.

It follows that

f(x) = f(z) + Φ(∥x− z∥), ∀x ∈ X.

From (3.10), we obtain

(3.11)

f(G(z)) = lim sup
n→∞

Φ(∥xtn −G(z)∥)

= lim sup
n→∞

Φ(∥G(xtn)−G(z)∥)

≤ lim sup
n→∞

Φ(∥xtn − z∥) = f(z).

On the other hand, however,

(3.12) f(G(z)) = f(z) + Φ(∥G(z)− z∥).

Combining Eqs. (3.11) and (3.12) yields

Φ(∥G(z)− z∥) ≤ 0.

Hence, G(z) = z and z ∈ Ω ; so Ω is nonempty and we further prove that the entire
net {xt} actually strongly converges. Indeed, what has been shown above is that if
tn → 0+ and sm → 0+ are chosen so that xtn ⇀ z and xsm ⇀ w, then z, w ∈ Ω and
xtn → z and xsm → w. So it remains to show that z = w. Toward this, we observe
that, for t ∈ (0, 1) and p ∈ Ω ,

xt − p = (1− t)(Stxt − Stp) + t(u− p) + (1− t)(Stp− p).

It follows that

⟨xt − p, Jφ(xt − p)⟩ = (1− t)⟨Stxt − Stp, Jφ(xt − p)⟩
+t⟨u− p, Jφ(xt − p)⟩+ (1− t)⟨Stp− p, Jφ(xt − p)⟩.

Because ⟨x, Jφ(x)⟩ = ∥x∥φ(∥x∥) for all x ∈ X, we deduce from the last equation
that

∥xt − p∥φ(∥xt − p∥) ≤ (1− t)∥Stxt − Stp∥∥Jφ(xt − p)∥
+t⟨u− p, Jφ(xt − p)⟩+ (1− t)∥Stp− p∥∥Jφ(xt − p)∥

≤ (1− t)∥xt − p∥φ(∥xt − p∥) + t⟨u− p, Jφ(xt − p)⟩
+(1− t)∥ΠC(I − θtF )p−ΠCp∥φ(∥xt − p∥)

≤ (1− t)∥xt − p∥φ(∥xt − p∥)
+t⟨u− p, Jφ(xt − p)⟩+ θt∥F (p)∥φ(∥xt − p∥).

Therefore,

(3.13) ∥xt − p∥φ(∥xt − p∥) ≤ ⟨u− p, Jφ(xt − p)⟩+ θt
t
∥F (p)∥φ(∥xt − p∥).
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Now taking the limit in (3.13) through tn → 0 and noting that xtn → z and
limt→0+ θt/t = 0, we have

(3.14) ∥z − p∥φ(∥z − p∥) ≤ ⟨u− p, Jφ(z − p)⟩, ∀p ∈ Ω .

In particular,

(3.15) ∥z − w∥φ(∥z − w∥) ≤ ⟨u− w, Jφ(z − w)⟩.
Interchange z and w to attain

(3.16) ∥w − z∥φ(∥w − z∥) ≤ ⟨u− z, Jφ(w − z)⟩.
Adding up (3.15) and (3.16), we obtain

2∥z − w∥φ(∥z − w∥) ≤ ⟨z − w, Jφ(z − w)⟩ = ∥z − w∥φ(∥z − w∥).
Hence ∥z − w∥φ(∥z − w∥) = 0, and we must have z = w. �

We next establish the version of Theorem 3.5 in a uniformly smooth Banach
space.

Theorem 3.6. Let C be a nonempty closed convex subset of a uniformly smooth
Banach space X. Let Bi : C → X be λi-strictly pseudocontractive and αi-strongly

accretive with αi + λi ≥ 1 for i = 1, 2. Assume that 1− λi
1+λi

(
1−

√
1−αi
λi

)
≤ µi ≤ 1

for i = 1, 2. Let F : C → X be α-strongly accretive and λ-strictly pseudocontractive
with α + λ ≥ 1. Fix u ∈ X and t ∈ (0, 1). Let xt ∈ C be the unique solution in C
to Eq. (3.5), where θt ∈ [0, 1), ∀t ∈ (0, 1) and limt→0+ θt/t = 0. Then Ω ̸= ∅ if and
only if (3.6) holds and in this case {xt} converges as t → 0+ strongly to an element
of Ω.

Proof. The necessity of (3.6) follows from (3.8). To see the sufficiency, we first
notice that both (3.9) and (3.10) hold. Let now {tn} be a sequence in (0, 1) such
that tn → 0 as n → ∞. Define a function g on C by

(3.17) g(x) = LIMn
1

2
∥xtn − x∥2, ∀x ∈ C.

(Here LIM denotes a Banach limit on l∞.)
Let K be the set of minimizers of g over C; that is,

K = {x ∈ C : g(x) = min
y∈C

g(y)}.

It is easily known thatK is a closed bounded convex nonempty subset of C. Because
of (3.10), K is also G-invariant (i.e., G(K) ⊂ K). Because a uniformly smooth
Banach space has the fixed point property for nonexpansive mappings, G admits a
fixed point in K. Denote by v such a fixed point of G. Because v is a minimizer of
g over C, it follows that, for x ∈ C,

(3.18)
0 ≤ [g(v + s(x− v))− g(v)]/s

= LIMn
1
2(∥(xtn − v) + s(v − x)∥2 − ∥xtn − v∥2)/s.

Because the duality map J is uniformly continuous over bounded subsets of X, we
can take the limit as s → 0 under the Banach limit LIM to get

LIMn⟨x− v, J(xtn − v)⟩ ≤ 0, ∀x ∈ C.
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In particular,

(3.19) LIMn⟨u− v, J(xtn − v)⟩ ≤ 0.

Because J = Jφ with φ(t) = t for all t ∈ [0,∞), it follows from (3.13) that

(3.20) ∥xt − p∥2 ≤ ⟨u− v, J(xt − p)⟩+ θt
t
∥F (p)∥∥xt − p∥, ∀p ∈ Ω .

In particular,

(3.21) ∥xtn − v∥2 ≤ ⟨u− v, J(xt − v)⟩+ θtn
tn

∥F (v)∥∥xtn − v∥.

Adding (3.21) to (3.19) and noting θtn/tn → 0, we obtain

LIMn∥xtn − v∥ ≤ 0.

Hence there is a subsequence of {xtn}, still denoted {xtn}, converging strongly to
v.

To see that the entire net {xt} actually converges strongly as t → 0, we assume
that there is another sequence {sj} in (0, 1), sj → 0 as j → ∞, such that xsj → z.
Then we have z ∈ Ω . From (3.20) we have

∥xtn − z∥2 ≤ ⟨u− z, J(xtn − z)⟩+ θtn
tn

∥F (z)∥∥xtn − z∥.

Letting n → ∞ yields

(3.22) ∥v − z∥2 ≤ ⟨u− z, J(v − z)⟩.

Similar argument gives us

(3.23) ∥z − v∥2 ≤ ⟨u− v, J(z − v)⟩.

Adding up (3.22) and (3.23) yields

2∥z − v∥2 ≤ ⟨z − v, J(z − v)⟩ = ∥z − v∥2.

Hence z = v, and {xt} must be strongly convergent as t → 0+. �

Theorems 3.5 and 3.6 show that if X either is reflexive and has a weakly contin-
uous duality map or is uniformly smooth, then in the case of Ω ̸= ∅, we can define
a mapping Q : C → Ω by setting

(3.24) Q(u) = s− lim
t→0+

xt,

where xt is the unique solution to the fixed point equation (3.5). The final result of
this section verifies that Q is the sunny nonexpansive retraction from C onto Ω .

Theorem 3.7. Let C be a nonempty closed convex subset of a reflexive Banach
space X. Assume, in addition, X either has a weakly continuous duality map or is
uniformly smooth. Assume Ω ̸= ∅. Then under the conditions of Theorems 3.5 (or
of Theorems 3.6), Q is the sunny nonexpansive retraction from C onto Ω.
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Proof. We first show that Q is indeed a retraction from C onto Ω . As a matter of
fact, assuming p = G(p) implies via (3.5) (where u = p) that

∥xt − p∥ = ∥(1− t)(Stxt − Stp) + (1− t)(Stp− p)∥
≤ (1− t)∥Stxt − Stp∥+ (1− t)∥ΠC(I − θtF )p−ΠCp∥
≤ (1− t)∥xt − p∥+ θt∥F (p)∥,

so we have

∥xt − p∥ ≤ θt
t
∥F (p)∥,

which together with limt→0 θt/t = 0, implies that

∥Q(p)− p∥ = lim
t→0+

∥xt − p∥ = 0.

Hence Q(p) = p for all p ∈ Ω and Q is a retraction onto Ω .
To show that Q is sunny nonexpansive, by [?] (see also [?]), it suffices to show

that

(3.25) ⟨u−Q(u), J(p−Q(u))⟩ ≤ 0, ∀u ∈ C, ∀p ∈ Ω ;

or equivalently,

(3.26) ⟨u−Q(u), Jφ(p−Q(u))⟩ ≤ 0, ∀u ∈ C, ∀p ∈ Ω .

In the case that X has a weakly continuous duality map Jφ, we compute that, for
p ∈ Ω ,

⟨xt −G(xt), Jφ(xt − p)⟩ = ⟨xt − p, Jφ(xt − p)⟩+ ⟨p−G(xt), Jφ(xt − p)⟩
≥ (∥xt − p∥ − ∥p−G(xt)∥)φ(∥xt − p∥)
≥ 0.

Next notice by (3.5)

xt − u = −1− t

t
[xt −G(xt) +G(xt)− Stxt],

to deduce that

(3.27)

⟨xt − u, Jφ(xt − p)⟩ = −1−t
t ⟨xt −G(xt), Jφ(xt − p)⟩

−1−t
t ⟨G(xt)− Stxt, Jφ(xt − p)⟩

≤ 1−t
t ∥G(xt)− Stxt∥φ(∥xt − p∥)

= 1−t
t ∥ΠCG(xt)−ΠC(I − θtF )G(xt)∥φ(∥xt − p∥)

≤ θt
t F (G(xt))∥φ(∥xt − p∥).

Because θt/t → 0 and xt → Q(u) as t → 0+, taking the limit as t → 0+ in (3.27),
we obtain (3.26).

In the case that X is uniformly smooth, by repeating the above argument with
the gauge φ(t) = t for all t ∈ [0,∞), we obtain (3.25). �
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4. Explicit Iterative Schemes

In this section, we introduce our explicit iterative schemes which are the dis-
cretization of the implicit iterative schemes (3.5), and show the strong convergence
theorems.

Algorithm 4.1. Let C be a nonempty closed convex subset of a real smooth Banach
space X. Let ΠC be a sunny nonexpansive retraction from X onto C. Let B1, B2 :
C → X be two nonlinear mappings. Let F : C → X be α-strongly accretive and
λ-strictly pseudocontractive. For arbitrarily given x0 ∈ C, let the sequence {xn} be
generated iteratively by

(4.1) xn+1 = βnu+(1−βn)ΠC(I − γnF )ΠC(I −µ1B1)ΠC(I −µ2B2)xn, ∀n ≥ 0,

where {βn} ⊂ (0, 1), {γn} ⊂ [0, 1), u ∈ C is a fixed element and µ1, µ2 are two
positive numbers.

In particular, if B1 = B2 = A, then (4.1) reduces to the following:

(4.2) xn+1 = βnu+ (1− βn)ΠC(I − γnF )ΠC(I − µ1A)ΠC(I − µ2A)xn, ∀n ≥ 0.

Theorem 4.2. Let C be a nonempty closed convex subset of a reflexive Banach
space X which has a weakly continuous duality map Jφ with gauge φ. Let Bi : C →
X be λi-strictly pseudocontractive and αi-strongly accretive with αi + λi ≥ 1 for

i = 1, 2. Assume that 1− λi
1+λi

(
1−

√
1−αi
λi

)
≤ µi ≤ 1 for i = 1, 2. Let F : C → X

be α-strongly accretive and λ-strictly pseudocontractive with α + λ ≥ 1. Let Ω ̸= ∅
and assume that

(i) βn → 0 and
∑∞

n=0 βn = ∞;
(ii) limn→∞ γn/βn = 0;
(iii)

∑∞
n=1 |βn − βn−1| < ∞ or limn→∞ βn−1/βn = 1;

(iv)
∑∞

n=1 |γn − γn−1| < ∞ or limn→∞ |γn − γn−1|/βn = 0.
Then the sequence {xn} generated by scheme (4.1) converges strongly to an
element of Ω.

Proof. For each n ≥ 0, let Sn be defined by

Snx = ΠC(I − γnF )ΠC(I − µ1B1)ΠC(I − µ2B2)x, ∀x ∈ C.

Then we know that
(i) the scheme (4.1) is rewritten as

(4.3) xn+1 = βnu+ (1− βn)Snxn, ∀n ≥ 0;

(ii) Sn is nonexpansive by the similar argument to that of the nonexpansivity of
St in (3.5);

(iii) Snp = ΠC(I − γnF )p for all p ∈ Ω .
Thus, we deduce that for p ∈ Ω ,
(4.4)
∥xn+1 − p∥ = ∥βn(u− p) + (1− βn)(Snxn − p)∥

≤ βn∥u− p∥+ (1− βn)∥Snxn − p∥
≤ βn∥u− p∥+ (1− βn)(∥Snxn − Snp∥+ ∥Snp− p∥)
= βn∥u− p∥+ (1− βn)(∥Snxn − Snp∥+ ∥ΠC(I − γnF )p−ΠCp∥)
≤ βn∥u− p∥+ (1− βn)∥xn − p∥+ γn∥F (p)∥.
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Because limn→∞ γn/βn = 0, we may assume without loss of generality that γn ≤ βn
for all n ≥ 0. Hence, from (4.4) we get

∥xn+1 − p∥ ≤ βn(∥u− p∥+ ∥F (p)∥) + (1− βn)∥xn − p∥, ∀n ≥ 0.

By induction, we conclude that

(4.5) ∥xn − p∥ ≤ max{∥u− p∥+ ∥F (p)∥, ∥x0 − p∥}, ∀n ≥ 0.

Therefore, {xn} is bounded, so are the sequences {G(xn)} and {F (G(xn))}. Also,
from (4.1), we have

∥xn+1 −G(xn)∥ ≤ βn∥u−G(xn)∥+ (1− βn)∥Snxn −G(xn)∥
= βn∥u−G(xn)∥+ (1− βn)∥ΠC(I − γnF )G(xn)−ΠCG(xn)∥
≤ βn∥u−G(xn)∥+ (1− βn)γn∥F (G(xn))∥
≤ βn∥u−G(xn)∥+ γn∥F (G(xn))∥,

which together with βn → 0 and γn → 0, implies that

(4.6) lim
n→∞

∥xn+1 −G(xn)∥ = 0.

Now we note that

xn+1 − xn = βnu+ (1− βn)Snxn − βn−1u− (1− βn−1)Sn−1xn−1

= (βn − βn−1)(u− Sn−1xn−1) + (1− βn)(Snxn − Sn−1xn−1).

Thus, it follows that

∥xn+1 − xn∥ ≤ (βn − βn−1)∥u− Sn−1xn−1∥+ (1− βn)∥Snxn − Sn−1xn−1∥
≤ (1− βn)[∥Snxn − Snxn−1∥+ ∥Snxn−1 − Sn−1xn−1∥]
+|βn − βn−1|∥u− Sn−1xn−1∥
= (1− βn)[∥Snxn − Snxn−1∥+ ∥ΠC(I − γnF )G(xn−1)

−ΠC(I − γn−1F )G(xn−1)∥]
+|βn − βn−1|∥u− Sn−1xn−1∥

≤ (1− βn)[∥xn − xn−1∥+ |γn − γn−1|∥F (G(xn−1))∥]
+|βn − βn−1|∥u− Sn−1xn−1∥

≤ (1− βn)∥xn − xn−1∥+M(|βn − βn−1|+ |γn − γn−1|),
where supn≥0{∥F (G(xn))∥ + ∥u − Snxn∥} ≤ M for some M > 0. So, utilizing
Lemma 2.1, from conditions (i), (iii) and (iv) we obtain that

lim
n→∞

∥xn+1 − xn∥ = 0,

which together with (4.6), implies that

(4.7) lim
n→∞

∥xn −G(xn)∥ = 0.

Because Ω is the fixed point set of the nonexpansive mapping G, we see from
Theorem 3.7 that there exists a unique sunny nonexpansive retraction Q from C
onto Ω . Let q = Q(u). We then claim that

(4.8) lim sup
n→∞

⟨u− q, Jφ(xn − q)⟩ ≤ 0.

Indeed, take a subsequence {xnk
} of {xn} such that

(4.9) lim sup
n→∞

⟨u− q, Jφ(xn − q)⟩ = lim
k→∞

⟨u− q, Jφ(xnk
− q)⟩.
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Because X is reflexive and {xn} is bounded, we may further assume that xnk
⇀

x̃ ∈ C. Because Jφ is weakly continuous, we have by Lemma 2.3,

lim sup
k→∞

Φ(∥xnk
− x∥) = lim sup

k→∞
Φ(∥xnk

− x̃∥) + Φ(∥x− x̃∥), ∀x ∈ X.

Put

f(x) = lim sup
k→∞

Φ(∥xnk
− x∥), ∀x ∈ X.

It follows that

f(x) = f(x̃) + Φ(∥x− x̃∥), ∀x ∈ X.

From (4.7), we obtain

(4.10)

f(G(x̃)) = lim sup
k→∞

Φ(∥xnk
−G(x̃)∥)

= lim sup
k→∞

Φ(∥G(xnk
)−G(x̃)∥)

≤ lim sup
k→∞

Φ(∥xnk
− x̃∥) = f(x̃).

On the other hand, however,

(4.11) f(G(x̃)) = f(x̃) + Φ(∥G(x̃)− x̃∥).

Combining Eqs. (4.10) and (4.11) yields

Φ(∥G(x̃)− x̃∥) ≤ 0.

Hence, G(x̃) = x̃; i.e., x̃ ∈ Ω . So, from (4.9) and (3.25), we have

lim sup
n→∞

⟨u− q, Jφ(xn − q)⟩ = ⟨u− q, Jφ(x̃− q)⟩ ≤ 0.

That is, (4.8) holds. Finally to prove that xn → q, we apply Lemma 2.3 to get
(4.12)
Φ(∥xn+1 − q∥) = Φ(∥(1− βn)(Snxn − q) + βn(u− q)∥)

= Φ(∥(1− βn)(Snxn − Snq) + βn(u− q) + (1− βn)(Snq − q)∥)
≤ (1− βn)Φ(∥Snxn − Snq∥) + βn⟨u− q, Jφ(xn+1 − q)⟩

+(1− βn)⟨Snq − q, Jφ(xn+1 − q)⟩
≤ (1− βn)Φ(∥xn − q∥) + βn⟨u− q, Jφ(xn+1 − q)⟩

+(1− βn)∥Snq − q∥φ(∥xn+1 − q∥)
= (1− βn)Φ(∥xn − q∥) + βn⟨u− q, Jφ(xn+1 − q)⟩

+(1− βn)∥ΠC(I − γnF )q −ΠCq∥φ(∥xn+1 − q∥)
≤ (1− βn)Φ(∥xn − q∥) + βn⟨u− q, Jφ(xn+1 − q)⟩

+γn∥F (q)∥φ(∥xn+1 − q∥)
= (1− βn)Φ(∥xn − q∥) + βn[⟨u− q, Jφ(xn+1 − q)⟩

+(γn/βn)∥F (q)∥φ(∥xn+1 − q∥)]
≤ (1− βn)Φ(∥xn − q∥) + βn[⟨u− q, Jφ(xn+1 − q)⟩+ (γn/βn)β],

where supn≥0 ∥F (q)∥φ(∥xn − q∥ ≤ β for some β > 0.
By virtue of condition (ii) and (4.8), we apply Lemma 2.1 to (4.12) to conclude

that ∥xn − q∥ → 0 as n → ∞. �
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Remark 4.3. Because for 1 < p < ∞ and p ̸= 2, the space Lp, which is uniformly
smooth, fails to have a weakly continuous duality (see [10], [21]), there is no doubt
that Theorem 4.2 is not applicable to Lp. So it is useful to consider the convergence
of scheme (4.1) in the case where the underlying space X is uniformly smooth.

Theorem 4.4. Let C be a nonempty closed convex subset of a uniformly smooth
Banach space X. Let Bi : C → X be λi-strictly pseudocontractive and αi-strongly

accretive with αi + λi ≥ 1 for i = 1, 2. Assume that 1− λi
1+λi

(
1−

√
1−αi
λi

)
≤ µi ≤ 1

for i = 1, 2. Let F : C → X be α-strongly accretive and λ-strictly pseudocontractive
with α+ λ ≥ 1. Let Ω ̸= ∅ and assume that

(i) βn → 0 and
∑∞

n=0 βn = ∞;
(ii) limn→∞ γn/βn = 0;
(iii) 1

βn
| 1
βn

− 1
βn−1

| ≤ τ, ∀n ≥ 1 for some τ > 0;

(iv) limn→∞
|βn−βn−1|

β2
n

= 0;

(v) limn→∞
|γn−γn−1|

β2
n

= 0.

Then the sequence {xn} generated by scheme (4.1) converges strongly to an
element of Ω.

Proof. For each n ≥ 0, let Sn be defined by

Snx = ΠC(I − γnF )ΠC(I − µ1B1)ΠC(I − µ2B2)x, ∀x ∈ C.

Then we know that
(i) the scheme (4.1) is rewritten as

xn+1 = βnu+ (1− βn)Snxn, ∀n ≥ 0;

(ii) Sn is nonexpansive by the similar argument to that of the nonexpansivity of
St in (3.5);

(iii) Snp = ΠC(I − γnF )p for all p ∈ Ω .
Repeating the same argument as in (4.5), we can deduce that for p ∈ Ω ,

∥xn − p∥ ≤ max{∥u− p∥+ ∥F (p)∥, ∥x0 − p∥}, ∀n ≥ 0.

Therefore, {xn} is bounded, so are the sequences {G(xn)} and {F (G(xn))}. Re-
peating the same arguments as in the proof of Theorem 4.2, we can conclude that

lim
n→∞

∥xn+1 −G(xn)∥ = 0

and
lim
n→∞

∥xn+1 − xn∥ = 0,

which hence yield

(4.13) lim
n→∞

∥xn −G(xn)∥ = 0.

Observe that

∥xn+1 − xn∥ ≤ (βn − βn−1)∥u− Sn−1xn−1∥+ (1− βn)∥Snxn − Sn−1xn−1∥
≤ (1− βn)[∥Snxn − Snxn−1∥+ ∥ΠC(I − γnF )G(xn−1)

−ΠC(I − γn−1F )G(xn−1)∥]
+|βn − βn−1|∥u− Sn−1xn−1∥

≤ (1− βn)∥xn − xn−1∥+M(|βn − βn−1|+ |γn − γn−1|),
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where supn≥0{∥F (G(xn))∥+∥u−Snxn∥} ≤ M for someM > 0. Then it immediately
follows from condition (iii) that

∥xn+1 − xn∥
βn

≤ (1− βn)
∥xn − xn−1∥

βn
+M

|βn − βn−1|+ |γn − γn−1|
βn

= (1− βn)
∥xn − xn−1∥

βn−1
+ (1− βn)∥xn − xn−1∥

( 1

βn
− 1

βn−1

)
+M

|βn − βn−1|+ |γn − γn−1|
βn

≤ (1− βn)
∥xn − xn−1∥

βn−1
+ ∥xn − xn−1∥

∣∣∣ 1
βn

− 1

βn−1

∣∣∣
+M

( |βn − βn−1|
βn

+
|γn − γn−1|

βn

)
= (1− βn)

∥xn − xn−1∥
βn−1

+ βn∥xn − xn−1∥
1

βn

∣∣∣ 1
βn

− 1

βn−1

∣∣∣
+M

( |βn − βn−1|
βn

+
|γn − γn−1|

βn

)
≤ (1− βn)

∥xn − xn−1∥
βn−1

+ βnτ∥xn − xn−1∥

+M
( |βn − βn−1|

βn
+

|γn − γn−1|
βn

)
= (1− βn)

∥xn − xn−1∥
βn−1

+ βn

[
τ∥xn − xn−1∥+M

( |βn − βn−1|
β2
n

+
|γn − γn−1|

β2
n

)]
.

Utilizing Lemma 2.1, from conditions (i), (iv) and (v) we conclude that

lim
n→∞

∥xn+1 − xn∥
βn

= 0.

Because Ω is the fixed point set of the nonexpansive mapping G, we see from
Theorem 3.7 that there exists a unique sunny nonexpansive retraction Q from C
onto Ω . Let q = Q(u). We then claim that

(4.14) lim sup
n→∞

⟨u− q, J(xn − q)⟩ ≤ 0.

Indeed, take a subsequence {xnk
} of {xn} such that

(4.15) lim sup
n→∞

⟨u− q, J(xn − q)⟩ = lim
k→∞

⟨u− q, J(xnk
− q)⟩.

Define a function g on C by

(4.16) g(x) = LIMk
1

2
∥xnk

− x∥2, ∀x ∈ C.

(Here LIM denotes a Banach limit on l∞.)
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Let K be the set of minimizers of g over C; that is,

K = {x ∈ C : g(x) = min
y∈C

g(y)}.

It is easily known thatK is a closed bounded convex nonempty subset of C. Because
of (4.13), K is also G-invariant (i.e., G(K) ⊂ K). Because a uniformly smooth
Banach space has the fixed point property for nonexpansive mappings, G admits a
fixed point in K. Denote by v such a fixed point of G. Because v is a minimizer of
g over C, it follows that, for x ∈ C,

(4.17)
0 ≤ [g(v + s(x− v))− g(v)]/s

= LIMk
1
2(∥(xnk

− v) + s(v − x)∥2 − ∥xnk
− v∥2)/s.

Because the duality map J is uniformly continuous over bounded subsets of X, we
can take the limit as s → 0 under the Banach limit LIM to get

LIMk⟨x− v, J(xnk
− v)⟩ ≤ 0, ∀x ∈ C.

In particular,

(4.18) LIMk⟨u− v, J(xnk
− v)⟩ ≤ 0.

On the other hand, observe that for p ∈ Ω ,

xn+1 − p = (1− βn)(Snxn − Snp) + βn(u− p) + (1− βn)(Snp− p).

Then it follows that

∥xn − p∥2 + ⟨xn+1 − xn, J(xn − p)⟩
= ⟨xn − p, J(xn − p)⟩+ ⟨xn+1 − xn, J(xn − p)⟩
= ⟨xn+1 − p, J(xn − p)⟩
= (1− βn)⟨Snxn − Snp, J(xn − p)⟩

+βn⟨u− p, J(xn − p)⟩+ (1− βn)⟨Snp− p, J(xn − p)⟩
≤ (1− βn)∥Snxn − Snp∥∥xn − p∥

+βn⟨u− p, J(xn − p)⟩+ (1− βn)∥Snp− p∥∥xn − p∥
≤ (1− βn)∥xn − p∥2

+βn⟨u− p, J(xn − p)⟩+ (1− βn)∥ΠC(I − γnF )p−ΠCp∥∥xn − p∥
≤ (1− βn)∥xn − p∥2

+βn⟨u− p, J(xn − p)⟩+ γn∥F (p)∥∥xn − p∥,

which hence yields

∥xn − p∥2 ≤ 1
βn

⟨xn − xn+1, J(xn − p)⟩+ ⟨u− p, J(xn − p)⟩
+ γn

βn
∥F (p)∥∥xn − p∥

≤ ∥xn+1−xn∥
βn

∥xn − p∥+ ⟨u− p, J(xn − p)⟩+ γn
βn

∥F (p)∥∥xn − p∥.

In particular,

∥xnk
− v∥2 ≤ ∥xnk+1 − xnk

∥
βnk

∥xnk
− v∥+ ⟨u− v, J(xnk

− v)⟩+ γnk

βnk

∥F (v)∥∥xnk
− v∥.

Because
∥xnk+1−xnk

∥
βnk

→ 0 and
γnk
βnk

→ 0, it follows from (4.18) that

LIMk∥xnk
− v∥ ≤ 0.
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So there exists a subsequence of {xnk
}, still denoted {xnk

}, converging strongly to
v. Consequently, from (4.15) it immediately follows that

lim sup
n→∞

⟨u− q, J(xn − q)⟩ = ⟨u− q, J(v − q)⟩ ≤ 0.

This shows that (4.14) holds. Finally to prove that xn → q, we apply Lemma 2.2
to get
(4.19)

∥xn+1 − q∥2 = ∥(1− βn)(Snxn − q) + βn(u− q)∥2
= ∥(1− βn)(Snxn − Snq) + βn(u− q) + (1− βn)(Snq − q)∥2
≤ (1− βn)∥Snxn − Snq∥2 + 2βn⟨u− q, J(xn+1 − q)⟩

+2(1− βn)⟨Snq − q, J(xn+1 − q)⟩
≤ (1− βn)∥xn − q∥2 + 2βn⟨u− q, J(xn+1 − q)⟩

+2(1− βn)∥Snq − q∥∥xn+1 − q∥
= (1− βn)∥xn − q∥2 + 2βn⟨u− q, J(xn+1 − q)⟩

+2(1− βn)∥ΠC(I − γnF )q −ΠCq∥∥xn+1 − q∥
≤ (1− βn)∥xn − q∥2 + 2βn⟨u− q, J(xn+1 − q)⟩

+2γn∥F (q)∥∥xn+1 − q∥
= (1− βn)∥xn − q∥2 + 2βn[⟨u− q, J(xn+1 − q)⟩

+(γn/βn)∥F (q)∥∥xn+1 − q∥]
≤ (1− βn)∥xn − q∥2 + 2βn[⟨u− q, J(xn+1 − q)⟩+ (γn/βn)β],

where supn≥0 ∥F (q)∥∥xn−q∥ ≤ β for some β > 0. Note that the uniform continuity
of J over bounded subsets of X together with (4.14), leads to

lim sup
n→∞

⟨u− q, J(xn+1 − q)⟩

= lim sup
n→∞

(⟨u− q, J(xn − q)⟩+ ⟨u− q, J(xn+1 − q)− J(xn − q)⟩)

= lim sup
n→∞

⟨u− q, J(xn − q)⟩ ≤ 0.

By virtue of condition (ii), we apply Lemma 2.1 to (4.19) to conclude that ∥xn−q∥ →
0 as n → ∞. �

Remark 4.5. As an example, we consider the following sequences:

(i) for given s ∈ (0, 14 ], {βn} is chosen as

βn =
1

(n+ 1)s
, ∀n ≥ 0;

(ii) for given t ∈ (14 ,
1
3 ], {γn} is chosen as

γn =
1

(n+ 1)t
, ∀n ≥ 0.

Then conditions (i)-(v) of Theorem 4.4 are satisfied.
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