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Definition 1.1 ([24]). Let (X, d) be a metric space and T : X → X be a mapping.
Then T is said to be an F -contraction if F ∈ F and there exists τ > 0 such that

(1.2) ∀x, y ∈ X [d(Tx, Ty) > 0 ⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y))].

When Wardowki considered in (1.2) the different type of the mapping F then
we obtain the variety of contractions, some of them are of a type known in the
literature. We can examine the following examples:

Example 1.2 ([24]). Let F1 : (0,∞) → R be given by the formulae F1(α) = lnα. It
is clear that F1 ∈ F . Then each self mapping T on a metric space (X, d) satisfying
(1.2) is an F1-contraction such that

(1.3) d(Tx, Ty) ≤ e−τd(x, y), for all x, y ∈ X,Tx ̸= Ty.

It is clear that for x, y ∈ X such that Tx = Ty the inequality d(Tx, Ty) ≤
e−τd(x, y) also holds. Therefore T satisfies (1.1) with L = e−τ , thus T is a contrac-
tion.

Example 1.3 ([24]). Let F2 : (0,∞) → R be given by the formulae F2(α) = α+lnα.
It is clear that F2 ∈ F . Then each self mapping T on a metric space (X, d) satisfying
(1.2) is an F2-contraction such that

(1.4)
d(Tx, Ty)

d(x, y)
ed(Tx,Ty)−d(x,y) ≤ e−τ , for all x, y ∈ X,Tx ̸= Ty.

We can find in [24] some different examples of the function F belonging to F . In
addition, Wardowski concluded that every F -contraction T is a contractive map-
ping, i.e.,

d(Tx, Ty) < d(x, y), for all x, y ∈ X,Tx ̸= Ty.

Thus, every F -contraction is a continuous mapping.
Also, Wardowski concluded that if F1, F2 ∈ F with F1(α) ≤ F2(α) for all α > 0

and G = F2−F1 is nondecreasing, then every F1-contraction T is an F2-contraction.
He noted that for the mappings F1(α) = lnα and F2(α) = α + lnα, F1 <

F2 and a mapping F2 − F1 is strictly increasing. Hence, he obtained that every
Banach contraction (1.3) satisfies the contractive condition (1.4). On the other
side, Example 2.5 in [24] shows that the mapping T which is not F1-contraction
(Banach contraction), but still is an F2-contraction. Thus, the following theorem,
which was given by Wardowski, is a proper generalization of Banach Contraction
Principle.

Theorem 1.4 ([24]). Let (X, d) be a complete metric space and let T : X → X be
an F -contraction. Then T has a unique fixed point in X.

On the other hand, in 1969, using the concept of the Hausdorff metric, Nadler
[17] introduced the notion of multivalued contraction mapping and proved a multi-
valued version of the well known Banach contraction principle. First we recall that
Hausdorff metric H induced by a metric d on a set X. Let (X, d) be a metric space.
Denote by P (X) the family of all nonempty subsets of X, CB(X) the family of all
nonempty, closed and bounded subsets of X and K(X) the family of all nonempty
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compact subsets of X. It is well known that, H : CB(X) × CB(X) → R defined
by, for every A,B ∈ CB(X),

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
is a metric on CB(X), which is called Hausdorff metric induced by d, where
d(x,B) = inf {d(x, y) : y ∈ B}. Let T : X → CB(X) be a map, then T is called
multivalued contraction if for all x, y ∈ X there exists L ∈ [0, 1) such that

H(Tx, Ty) ≤ Ld(x, y).

Then Nadler [17] proved that every multivalued contraction mapping on complete
metric space has a fixed point.

Inspired by his result, since then various fixed point results concerning mul-
tivalued contractions has been further developed in different directions by many
authors. (see,[6, 7, 8, 11, 13, 14]). For generalizing the Nadler’s result, Reich [20]
presented the following problem: Let (X, d) be a complete metric space. Suppose
that, T : X → CB(X) satisfies

H(Tx, Ty) ≤ α(d(x, y))d(x, y)

for all x, y ∈ X, x ̸= y, where α : (0,∞) → [0, 1) and lim sups→t+ α(s) < 1 for all
t ∈ (0,∞). Does T have a fixed point? Reich [19] gives an affirmative answer to
this problem when Tx is nonempty compact for x ∈ X. Another partial affirmative
answer to the classical unsolved problem of Reich [20] was given by by Mizoguchi and
Takahashi [16]. They consider the condition lim sups→t+ α(s) < 1 for all t ∈ [0,∞)
on α. We can find both a simple proof of Mizoguchi-Takahashi fixed point theorem
and an example showing that it is a real generalization of Nadler’s in [23]. We can
find some important results about this direction in [9].

The aim of this paper is to introduce the multivalued F -contractions, by combin-
ing the ideas of Wardowski and Nadler, and give a fixed point result for this type
of mappings on a complete metric space.

2. The results

Definition 2.1. Let (X, d) be a metric space and T : X → CB(X) be a mapping.
Then T is said to be a multivalued F -contraction if F ∈ F and there exists τ > 0
such that

(2.1) ∀x, y ∈ X [H(Tx, Ty) > 0) ⇒ τ + F (H(Tx, Ty)) ≤ F (d(x, y)].

When we consider F (α) = lnα,we can say that every multivalued contraction is
also multivalued F -contraction.

Our main result is as follows:

Theorem 2.2. Let (X, d) be a complete metric space and T : X → K(X) be a
multivalued F -contraction, then T has a fixed point in X.

Remark 2.3. Let A be a compact subset of a metric space (X, d) and x ∈ X, then
there exists a ∈ A such that d(x, a) = d(x,A).
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Proof of Theorem 2.2. Let x0 ∈ X. As Tx is nonempty for all x ∈ X, we can choose
x1 ∈ Tx0. If x1 ∈ Tx1, then x1 is a fixed point of T and so the proof is complete.
Let x1 /∈ Tx1. Then, since Tx1 is closed, d(x1, Tx1) > 0. On the other hand, from
d(x1, Tx1) ≤ H(Tx0, Tx1) and (F1)

F (d(x1, Tx1)) ≤ F (H(Tx0, Tx1))

From (2.1), we can write that

(2.2) F (d(x1, Tx1)) ≤ F (H(Tx0, Tx1)) ≤ F (d(x1, x0))− τ

Since Tx1 is compact, we obtain that there exists x2 ∈ Tx1 such that d(x1, x2) =
d(x1, Tx1). Then, from (2.2)

F (d(x1, x2)) ≤ F (H(Tx0, Tx1)) ≤ F (d(x1, x0))− τ

If we continue recursively, then we obtain a sequence {xn} in X such that xn+1 ∈
Txn and

(2.3) F (d(xn, xn+1)) ≤ F (d(xn, xn−1))− τ

for all n = 1, 2, · · · . If there exists n0 ∈ N for which xn0 ∈ Txn0 , then xn0 is a
fixed point of T and so the proof is complete. Thus, suppose that for every n ∈ N,
xn /∈ Txn. Denote an = d(xn, xn+1), for n = 0, 1, 2, · · · . Then an > 0 for all n ∈ N
and, using (2.3), the following holds:

(2.4) F (an) ≤ F (an−1)− τ ≤ F (an−2)− 2τ ≤ · · · ≤ F (a0)− nτ.

From (2.4), we get limn→∞ F (an) = −∞.Thus, from (F2), we have

lim
n→∞

an = 0.

From (F3) there exists k ∈ (0, 1) such that

lim
n→∞

aknF (an) = 0.

By (2.4), the following holds for all n ∈ N

(2.5) aknF (an)− aknF (a0) ≤ −aknnτ ≤ 0.

Letting n → ∞ in (2.5), we obtain that

(2.6) lim
n→∞

nakn = 0.

From (2.6), there exits n1 ∈ N such that nakn ≤ 1 for all n ≥ n1. So, we have, for
all n ≥ n1

(2.7) an ≤ 1

n1/k
.

In order to show that {xn} is a Cauchy sequence consider m,n ∈ N such that
m > n ≥ n1.Using the triangular inequality for the metric and from (2.7), we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

= an + an+1 + · · ·+ am−1

=

m−1∑
i=n

ai
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≤
∞∑
i=n

ai

≤
∞∑
i=n

1

i1/k

By the convergence of the series
∞∑
i=1

1
i1/k

, passing to limit n → ∞, we get d(xn, xm) →

0. This yields that {xn} is a Cauchy sequence in (X, d). Since (X, d) is a complete
metric space, the sequence {xn} converges to some point z ∈ X, that is,limn→∞ xn =
z.

From (2.1), for all x, y ∈ X with H(Tx, Ty) > 0, we get

H(Tx, Ty) < d(x, y)

and so

H(Tx, Ty) ≤ d(x, y)

for all x, y ∈ X. Then

d(xn+1, T z) ≤ H(Txn, T z) ≤ d(xn, z)

Passing to limit n → ∞, we obtain d(z, Tz) = 0.Thus, we get z ∈ Tz = Tz. This
completes the proof. □

Remark 2.4. Note that in Theorem 2.2, Tx is compact for all x ∈ X. Thus,
we can present the following problem: Let (X, d) be a complete metric space and
T : X → CB(X) be a multivalued F -contraction. Does T has a fixed point? By
adding a condition on F , we can give a partial answer for this problem as follows:

Theorem 2.5. Let (X, d) be a complete metric space and T : X → CB(X) be a
multivalued F -contraction. Suppose that, F also satisfies

(F4) F (inf A) = inf F (A) for all A ⊂ (0,∞) with inf A > 0.
Then T has a fixed point.

Proof. Let x0 ∈ X. As Tx is nonempty for all x ∈ X, we can choose x1 ∈ Tx0.
If x1 ∈ Tx1, then x1 is a fixed point of T and so the proof is complete. Let
x1 /∈ Tx1. Then, since Tx1 is closed, d(x1, Tx1) > 0. On the other hand, from
d(x1, Tx1) ≤ H(Tx0, Tx1) and (F1)

F (d(x1, Tx1)) ≤ F (H(Tx0, Tx1)).

From (2.1), we can write that

(2.8) F (d(x1, Tx1)) ≤ F (H(Tx0, Tx1)) ≤ F (d(x1, x0))− τ.

From (F4) we can write (note that d(x1, Tx1) > 0 )

F (d(x1, Tx1)) = inf
y∈Tx1

F (d(x1, y)),

and so from (2.8) we have

(2.9) inf
y∈Tx1

F (d(x1, y)) ≤ F (d(x1, x0))− τ < F (d(x1, x0))−
τ

2
.
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Then, from (2.9) there exists x2 ∈ Tx1 such that

F (d(x1, x2)) ≤ F (d(x1, x0))−
τ

2
.

If x2 ∈ Tx2 we are finished. Otherwise, by the same way we can find x3 ∈ Tx2 such
that

F (d(x2, x3)) ≤ F (d(x2, x1))−
τ

2
.

We continue recursively, then we obtain a sequence {xn} in X such that xn+1 ∈ Txn
and

F (d(xn, xn+1)) ≤ F (d(xn, xn−1))−
τ

2
for all n = 1, 2, · · · . The rest of the proof can be completed as in the proof of
Theorem 2.2. □
Remark 2.6. Note that if F is right-continuous and satisfies (F1), then it satisfies
(F4).

In the light of the Example 2.5 of [24], we can give the following example. This
example shows that T is a multivalued F -contraction but it is not multivalued
contraction.

Example 2.7. Let X = {xn = n(n+1)
2 : n ∈ N} and d(x, y) = |x− y| , x, y ∈ X.

Then (X, d) is a complete metric space. Define the mapping T : X → K(X) by the
formulae:

Tx =

 {x1} , x = x1

{x1, x2, · · · , xn−1} , x = xn

We claim that T is a multivalued F -contraction with respect to F (α) = α + lnα
and τ = 1. To see this, we consider the following cases.

First, observe that

∀m,n ∈ N [H(Txm, Txn) > 0 ⇔ ((m > 2 and n = 1) or (m > n > 1))]

Case 1. For m > 2 and n = 1, we have

H(Txm, Tx1)

d(xm, x1)
eH(Txm,Tx1)−d(xm,x1) =

xm−1 − x1
xm − x1

exm−1−xm

=
m2 −m− 2

m2 +m− 2
e−m < e−m < e−1

Case 2. For m > n > 1, we have

H(Txm, Txn)

d(xm, xn)
eH(Txm,Txn)−d(xm,xn) =

xm−1 − xn−1

xm − xn
exm−1−xn−1−xm+xn

=
m+ n− 1

m+ n+ 1
en−m < en−m ≤ e−1

This shows that T is multivalued F -contraction (see (1.4)), therefore, all conditions
of Theorem 2.2 (or Theorem 2.5) are satisfied and so T has a fixed point in X.

On the other hand, since

lim
n→∞

H(Txn, Tx1)

d(xn, x1)
= lim

n→∞

xn−1 − 1

xn − 1
= 1,
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then T is not a multivalued contraction.
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