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NONSMOOTH WEIGHTED VARIATIONAL INEQUALITIES AND
NONSMOOTH VECTOR OPTIMIZATION

SULIMAN AL-HOMIDAN AND QAMRUL HASAN ANSARI

ABSTRACT. In this paper, we use weighted sum method to study nonsmooth
vector variational inequalities and nonsmooth vector optimization problem. In
particular, we introduce nonsmooth weighted variational inequalities (in short,
NWVI) and study some relationships among NWVI, nonsmooth vector varia-
tional inequalities (in short, NVVI), nonsmooth weighted optimization prob-
lem (in short, NWOP) and nonsmooth vector optimization problem (in short,
NVOP). We establish some existence results for solutions of (NVVI) and (NWVI)
under weighted pseudomonotonicity or densely weighted pseudomonotonicity. As
applications of our results, some existence results for solutions of NWOP and
NVOP for nondifferentiable functions by using the equivalence relations among
NVVI, NWVI, NWOP and VOP can be easily derived.

1. INTRODUCTION

The theory of vector variational inequalities, initiated by Giannessi [10] in 1980,
is one of the most elegant and power tools to study vector optimization problems
(in short, VOP); See, for example, [1,2,4-6,9-12,17-19,22-24,26] and the references
therein. The (vector) optimization problem may have a nonsmooth objective func-
tion. Therefore, Crespi et. al. [6] considered the Minty vector variational inequality
defined by means of lower Dini directional derivative. They established the relations
between a Minty vector variational inequality (MVVI) and the solutions of vector
minimization problem (both ideal and weakly efficient but not efficient) solutions.
Crespi et. al. [6] used the scalarization method to obtain their results. Lalitha and
Mehta [17] considered a nonsmooth Stampacchia type vector variational inequal-
ity (in short, NSVVI) and established its equivalence with VOP. They established
the existence of solutions of VOP under certain conditions. In [2], Ansari and Lee
considered both the Minty and the Stampacchia type vector variational inequalities
(MVVIs and SV VIs, respectively) defined by means of upper Dini directional deriv-
ative. By using the (MVVI), they provided a necessary and sufficient condition for
an efficient solution of VOP for pseudoconvex functions involving upper Dini direc-
tional derivative. They established the relationship between the (MVVI) and the
(SVVI) under upper sign continuity. Some relationships among efficient solutions,
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weakly efficient solutions, solutions of the (SVVI) and solutions of the (MVVI) are
discussed. They also presented an existence result for the solutions of weak (MVVI)
and the weak (SVVI). Their approach seems to be more direct than the one adopted
in [6]. They extended the results of [11,26] for pseudoconvex functions involving
upper Dini directional derivative.

In this paper, we adopt the weighted sum method to study the nonsmooth vector
variational inequalities and nonsmooth vector optimization problem. In particu-
lar, we introduce nonsmooth weighted variational inequalities (in short, NWVI)
and study some relationships among nonsmooth weighted variational inequalities
(in short, NWVI), nonsmooth vector variational inequalities (in short, NVVI) and
nonsmooth vector optimization problem. We establish some existence results for
solutions of (NVVI) and (NWVI) under weighted pseudomonotonicity or weighted
pseudomonotonicity. As an application of our result, we derive an existence result
for solutions of (WOP) for nondifferentiable functions by using the equivalence rela-
tions among (NVVI), (NWVI), (WOP) and (VOP). In the same way, several other
existence results for solutions of (WOP) for nondifferentiable functions can be easily
derived by using our results.

2. FORMULATIONS
Throughout the paper, we denote by R’} the non-negative orthant of R", that is,
RY ={u = (u1,...,up) €R" :u; >0, for j =1,...,n},

so that R” has a nonempty interior with the topology induced in terms of conver-
gence of vectors with respect to the Euclidean metric. That is,

int R} = {u=(ur,...,u,) €ER":u; >0, forj=1,...,n}.

We denote by T? and int T" the simplex of R’} and its interior, respectively, that
is,

n
T = u:(ul,...,un)eRﬁ:Zszl , and
j=1

n
int T = ¢ u=(ug,...,uy) € int RZ‘F:Zuj =1
j=1
Let g : R™ — R be a real-valued function. The upper and lower Dini directional
derivatives of g at x € R™ in the direction d € R™ are defined as

td) —
(upper Dini directional derivative) gP (2;d) = lim sup gz + t) g(a:)’
t—0t

td) —
(lower Dini directional derivative) gp(z;d) = lim ng glx + t) g(z)
t—

It is easy to see that gp(x;d) < gP(z;d). If the function g is convex, then the
upper and lower Dini directional derivatives are equal to the directional derivative.

It can be easily seen that for all r > 0, (rg)D (x;d) = rg”(x;d), and for all r < 0,
(rg)? (2;d) = rgp(x;d). Also, gP(x;d) > —gP(x; —d) for all z,d € R™.
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We adopt the following ordering relations. We consider the cones Cp := R4 \ {0}

and C' :=int Rﬂ, where Rﬂ is the nonnegative orthant of R¢ and 0 is the origin of
R’; let D be a set of RY. Then for all z,y € D,

T>coy & x—yE€Cy trcoy & x—y¢Coy
r<cy & y—x€CCo; tZcoy & y—x¢Co
wzéy & r—yeCd; xzéy & -y¢C;

o o]
xgéy & y—zel] xﬁ(ojy & y—x¢C.

Let K be a nonempty subset of R” and f = (f1,..., f¢) : R® — R’ be a vector-
valued function. The vector optimization problem (VOP) is defined as follows:

(VOP) min f(z), subject to x € K,
where f(x) = (fi(x),..., fe(z)).

A point z € K is said to be an efficient solution (respectively, weak efficient
solution) of (VOP) if and only if

f(@) 2¢o f(y), forally €K,
(respectively, f(@) 26 f(y), forallye K) .

It is clear that every efficient solution is a weak efficient solution.

Let K be a nonempty subset of R”, f = (f1,..., f¢) : R® = R’ be a vector-valued
function, and fP(x;d) = (le(:U; d),...,fP(z; d)) The vector variational inequali-
ties are two types, one is called Stampacchia type and another one is called Minty
type. The nonsmooth Stampacchia and Minty type vector wvariational inequality
problems are defined as follows:

(NSVVIP): Find z € K such that

21)  fP@y-3) = (fP@y—3),....fP@y—75) £cy 0, forally € K.
(NMVVIP): Find z € K such that

22)  fPlyy-2)= (P yy—2),. . [y — 1) £0, 0, forally € K.

If we replace the order relation Z¢, by ﬁg’; in (2.1) and ¢, by gé in (2.2), then

we get the following weak formulations of (NSVVIP) and (NMVVIP):
(NSVVIP),,: Find Z € K such that

23)  fPEy-2) = @y-2),. .. 0@y —1) £e 0, forallyc K.
(NMVVIP),,: Find z € K such that
24) Py —2) = (Flyy—2),... [Py =) £5,0, forally € K.

Crespi et al. [6] considered these kinds of problems and studied the existence of
their solutions. By using such existence results, they also studied the existence of
an efficient or weak efficient solution of (VOP).
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Let h = (h1,...,he) : K x R* — R’ be a vector-valued function such that,
for each fixed z € K, h(x;d) is positively homogeneous in d. If we consider the
(upper or lower) Dini directional derivative as a bifunction h(x;d), with z referring
to a point in R™ and d referring to a direction from R”, then (2.1), (2.2), (2.3)
and (2.4) become the following nonsmooth vector variational inequality problems,
namely, Stampacchia type vector variational inequality problems and Minty type
vector variational inequality problems.

Stampacchia vector variational inequality problem (SVVIP): Find z € K such that

(2.5) Mz;y—7) = (h(Z;y — ), ..., he(Ty — &) £, 0, forall y € K.
Minty vector variational inequality problem (MVVIP): Find Z € K such that

(2.6)  hysy—1) = (ha(y;y =), .., hely;y — 7)) £ 0, forally € K.

If we replace the order relation Z¢, by gé in (2.5) and £¢, by gé in (2.5), then

we get the following weak formulations of (SVVIP) and (MVVIP):

(SVVIP),: Find z € K such that

(2.7) hzy — ) = (h(T;9y — T), ..., (T y — T)) ﬁé 0, forallye K.
(MVVIP),,: Find z € K such that

(2.8) Wy:y = 7) = ((y;y =), he(y;y = 7)) £5,0, forally € K.

We introduce the following weighted Stampacchia variational inequality problem
and weighted Minty variational inequality problem.
Weighted Stampacchia variational inequality problem (WSVIP): Find z € K w. r. t.
the weight vector W = (W1,..., W) € R{ \ {0} such that

(2.9) W h(z;y — ) ZWh (z;y—x) >0, foralyekK,

where - denotes the inner product on R¢.

Weighted Minty variational inequality problem (WMVIP): Find £ € K w. r. t. the
weight vector W = (Wy,...,W;) € R \ {0} such that

¢
(2.10) W h(y;y — ) = > Wihi(y;y —7) >0, forally € K.
i=1
If W € T% , then the solution of (WSVIP) and (WMVIP) is called normalized.
If hi(z;d) = fP(x;d) for each i = 1,2,...¢ and all ,d € R, then (2.9) and

(2.10) are called weighted nonsmooth Stampacchia variational inequality (WNSVI)
and weighted nonsmooth Minty variational inequality (WNMVI), respectively.

Rest of the paper, unless otherwise specified, we assume that W = (W1,..., W) €
RY \ {0} is a given weight vector.

We establish the following lemma which shows the relationship between (WSVIP)
and (SVVIP).
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Lemma 2.1. FEach normalized solution T € K with the weight vector W & ']I‘?F
(respectively, W € int T ) of (WSVIP) is a solution of (SVVIP), (respectively,
(SVVIP)).

Proof. Let & € K be a normalized solution of (WSVIP) with the weight vector
W e ']I‘ﬂ (respectively, W € int Tﬁ). Assume contrary that £ € K is not a solution
of (SVVIP),, (respectively, (SVVIP)). Then there exists some y € K such that

hMz;y—z) = (h(zy — ), ..., he(ZTyy — X)) 55 0.

(respectively, Mz;y—7) = (h(Zy — )y ..., he(ZTyy — T)) <y O.)
Since W € T% (respectively, W € int T ), we have
W h(z;y—1z) <0,

which contradicts to our assumption that Z € K is a normalized solution of (WSVIP).
Hence z € K is a solution of (SVVIP),, (respectively, (SVVIP)). O

In the same way as Lemma 2.1, we can easily establish the following lemma.

Lemma 2.2. FEach normalized solution T € K with the weight vector W & Tﬁ-
(respectively, W € int T% ) of (WMVIP) is a solution of (MVVIP),, (respectively,
(MVVIP)).

3. PRELIMINARIES

Throughout the paper, unless otherwise specified, K is a nonempty convex subset
of R™.

A function g : R™ — R is said to be:

(a) positively homogeneous if for all x € R™ and all » > 0, we have g(rz) = rg(z);
(b) subodd if for all x € R™ \ {0}, we have g(z) > —g(—=x).

Definition 3.1. A function g : K — R is said to be:
(a) quasiconvez if for all z,y € K and all A € |0, 1],
9(z + Ay — z)) <max{g(x),9(y)};
(b) semistrictly quasiconvez if for all x,y € K with g(y) < g(z),
glx+ My —z)) <g(x), forall Ae]0,1].

Definition 3.2 ([15]). Let g : K x R™ — R be a bifunction. A function g : K — R
is said to be:

(b) g-convex if for all z,y € K,
q(z;y — =) < g(y) — g(x).

If strict inequality holds, then g is called strictly q-convex;
(b) g-quasiconvex if for all z,y € K,

g(y) <g(x) = q(z;y—x)<0;
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(¢) g-pseudoconver if for all x,y € K, x # vy,

9(y) <gl@) = qlz;y—x)<0;
(d) strictly q-pseudoconvez if for all x,y € K, x # y,

g(y) <g(x) = q(z;y—x)<0.

If ¢ = fP, where f = (f1,..., f) : K — R’ the ¢-convexity, ¢-quasiconvexity,
and so on are called fP-convexity, fP-quasiconvexity, and so on, respectively.

Lemma 3.3 ([15, Theorem 4.1]). Let g : K — R be a function and p,q: K xR" —
R be bifunctions such that for all x € K and all d € R", p(x;d) < q(z;d). Then
q-pseudoconvezity, and strict q-pseudoconverity imply p-pseudoconvezity, and strict
p-pseudoconvexity, respectively.

Definition 3.4 ([13,15]). A bifunction ¢ : K x R” — R is said to be pseudomono-
tone if for every pair of distinct points x,y € K, we have

(3.1) gz;y—2)>0 = qy;y—x)>0.

Definition 3.5. A real-valued function g : K — R is said to be radially upper
(lower) semicontinuous (also known as upper (lower) hemicontinuous on K if it is
upper (lower) semicontinuous along the line segment in K.

If g is radially upper as well as radially lower semicontinuous on K, then it is
called radially semicontinuous on K.

Lemma 3.6 ([25, Theorems 3.2 and 5.2]). Let g : K — R be a radially upper
semicontinuous on K and let the bifunction q : K x R™ — R be subodd in the second
argument such that for all v € K, q(x;-) < gP(x;-). Then

(a) g is g-pseudoconvez if and only if q is pseudomonotone;
(b) g is quasiconvez if and only if it is q-quasiconver.

Lemma 3.7 ([7, Corollaries 15 and 16]). Let g : K — R be upper semicontinuous
and gP-pseudoconvex. Then, g is quasiconvex and semistrictly quasiconver.

Theorem 3.8 (Diewert Mean-Value Theorem). [7, Theorem 1] Let g : K — R be
radially upper semicontinuous on K. Then, for any pair x,y of distinct points of
K, there exists w € [x,y[ such that

fy) = f(@) = fP(wsy — ),

where [x,y| denotes the line segment joining x and y including the endpoint x. In
other words, there exists X € [0, 1[ such that

fly) = f(@) > fPlwsy —x),  where w =z + My — ).
Now we recall some definitions and results which will be used in the sequel.

For every nonempty set A, we denote by 24 the family of all subsets of A. If A
is a nonempty subset of a vector space, then coA denotes the convex hull of A.

The following result will be used to prove the existence of a solution of our
problems.
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Theorem 3.9 ( [8, KKM-Fan Theorem]). Let K be a nonempty convex subset of a
Hausdorff topological vector space E. Assume that G : K — 25\ {0} be a set-valued
map satisfying the following conditions:

(i) For all x € K, G(z) is closed and is compact for at least one x € K.
(i) For any finite set {x1,...,xm} of K, co{z1,...,zm} C Uit G(x;).

Then (\,ex G(x) # 0.

A set-valued map G : K — 2K is called a KKM map if it satisfies condition (ii)
in Theorem 3.9.

We shall use the following fixed point theorem which is a particular form of
Corollary 1 in [3].

Theorem 3.10 ( [3]). Let K be a nonempty convex subset of a Hausdorff topological
vector space E and S,T : K — 2K be set-valued maps. Assume that the following
conditions hold:

(i) For all x € K, S(z) is nonempty and coS(x) C T'(x).

(i) Forallye K, S~ y) ={r € K :y € S(z)} is open.

(iii) There exist a nonempty compact convex subset C' of K and a nonempty
compact subset D of K such that for each x € K \ D, there exists §y € C
satisfying x € STH(7).

Then there exists & € K such that € T(Z).

4. NECESSARY AND SUFFICIENT CONDITIONS

Throughout the paper, unless otherwise specified, h = (hy,..., hs) : K xR® — Rf
is a vector-valued bifunction.

Definition 4.1. A vector-valued function f = (f1,..., f¢) : K — R’ is said to be:

(a) weighted quasiconver w. r. t. the weight vector W € R \ {0} if for all
xz,y € K and all A € |0, 1],

W flz+ Ay —2)) < max{W - f(z), W - f(y)};

(b) weighted semistrictly quasiconvex w. r. t. the weight vector W € R \ {0}
if for all x,y € K,

fly) <flx) = W-flx+Xy—=z)<W- f(x), foral Ae]0,1].
Definition 4.2. A vector-valued function f = (f1,..., f¢) : K — R’ is said to be:

(a) weighted h-pseudoconvex (respectively, strictly weighted h-pseudoconver) w. 1. t.
the weight vector W € R \ {0} if for all 2,y € K,

W h(z;y—z)>0 = W.f(x)<W-[f(y)
(respectively, W h(z;y—2)>0 = W'f(a:)<W‘f(y));

(b) weighted h-quasiconver w. 1. t. the weight vector W € R4 \ {0} if for all
x,y €K,

W-fly) <W-f(xr) = W-h(zx;y—=x)<O0.
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If h = fP, then the weighted h-pseudoconvexity (respectively, strict weighted
h-pseudoconvexity and weighted h-quasiconvexity) w. r. t. the weight vector W €
RY \ {0} is called weighted fP-pseudoconvexity (respectively, strict weighted f-
pseudoconvexity and weighted fP-quasiconvexity) w. r. t. the weight vector W €

RS\ {0},

Lemma 4.3. Let f = (f1,..., f¢) : K — R be a vector-valued function such that
for each f; is radially upper semicontinuous on K. Let h : K x R* — R¢ be a
vector-valued function and W € R \ {0} such that d — W - h(x;d) is subodd and
W - h(z;d) < (W - £)P(z;d) for all z € K and d € R™.
(a) f is weighted quasiconvez if and only if it is weighted h-quasiconver w. . t.
the same weight vector W € RY.\ {0}.
(b) f is weighted h-pseudoconvez if and only if h is weighted pseudomonotone
w. 7. t. the same weight vector W € RY. \ {0}.

Proof. Consider g(x) = W- f(x) and q(x;d) = W -h(z;d) for all z € K and d € R™.
Then by Lemma 3.6, we get the conclusion. O

Lemma 4.4. Let f = (f1,...,f)) : K — RY be weighted fP-pseudoconvex w. r. t.
the weight vector W € ]Rﬁ\{O} and for eachi = 1,...,¢, f; be upper semicontinuous.
Then f is weighted quasiconvex and weighted semistrictly quasiconver w. r. t. the
same weight vector W € RY \ {0}.

Proof. Define g : K — R by

1
g(x) = Zszz(l“), for all z € K.
i=1

Then for all x € K and all d € R", we have
9P (w;d) = (Wifi+ -+ Wefo)” (2:d)
WP (w;d) + -+ WefP (w;d)
= W fP(z;a).

We claim that ¢ is g”-pseudoconvex, that is, for all 2,y € K with = # ¥, we have
9(y) < g(x) implies g (z;y — x) < 0.

Let g(y) < g(x). Then, W-f(y) < W-f(z). Since f is weighted f”-pseudoconvex
w. 1. t. the weight vector W € R% \ {0}, we have W - fP(z;y — ) < 0, that is,
gD (x;y — ) < 0. Hence g is gD—pseudomonotone. Since each f; is upper semi-
continuous, ¢ is also upper semicontinuous. Hence, by Lemma 3.7, g is quasicon-

vex and semistrictly quasiconvex, that is, f is weighted quasiconvex and weighted
semistrictly quasiconvex w. 1. t. the same weight vector W € R4 \ {0}. O

IN

Let K be a nonempty subset of R” and f : K — R"™ be a vector-valued function.
We consider the following weighted optimization problem:

(WOP) min W - f(z) subject to z € K,
where W = (W1,...,W,) € R} \ {0}.
If W € T, then the solution of (WOP) is called normalized.
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The following lemma is well-known.

Lemma 4.5. (See, for example, [21, Theorem 3.1.1 and Theorem 3.1.2]) FEach
normalized solution * € K with weight vector W & Tﬁ (respectively, W € int Tﬂ )
of (WOP) is a weak efficient solution of (VOP) (respectively, an efficient solution
of (VOP)).

The following result provides the relation among the solutions of (WOP), (WNSVIP),
(WSVIP), and efficient solution of (VOP).

Proposition 4.6. Let K be a nonempty conver subset of R™.

(a) If T € K is a solution of (WOP), then it is a solution of (WNSVIP).

(b) If —f is strictly weighted h-pseudoconvexr w. r. t. the weight vector W &€
RY \ {0}, then every solution of (WOP) is a solution of (WSVIP).

(c) If f is weighted h-pseudoconver w. . t. the weight vector W € RY \ {0},
then every solution of (WSVIP) is a solution of (WOP).

(d) If f is strictly weighted h-pseudoconvex w. r. t. the weight vector W € Rﬂ\
{0}, then the solution (if there is any) of (WSVIP) is unique. Furthermore,
this unique solution of (WSVIP) is an efficient solution of (VOP).

Proof. (a) Let z € K be a solution of (WOP). Then for all y € K,
W-fly) =W f(@)=0.
Since K is convex, T + A(y — Z) € K for all A € [0,1], and hence,
1

SV f@+ My —2) =W - f(y) 20, forall A€ ]0,1].

Therefore,

> 0.

(W )P (Z:y — 7) = limsup W-fz+XMy—2))-W- f(y)
A—0*t A
Thus,
0<(W- )P @y —2) <W- [P(zy - 2),
and hence, € K is a solution of (WNSVIP).

(b) Suppose that Z is a solution of (WOP), but not a solution of (WSVIP). Then,
there exists y € K such that

(4.1) W h(z;y —z) <0.
Since —f is strictly weighted h-pseudoconvex, we have

a contradiction to our supposition that Z is a solution of (WOP). Hence, T is a
solution of (WSVIP).

(c) Assume that z € K is a solution of (WSVIP) w. r. t. the weight vector
W € RS \ {0}. Then,

W h(z;y—z) >0, forallye K.

By weighted h-pseudoconvexity of f w. r. t. the weight vector W € R% \ {0}, we
obtain the conclusion.



676 S. AL-HOMIDAN AND Q. H. ANSARI

(d) Suppose that there are two distinct solutions z and & of (WSVIP). Then,

(4.2) W-h(z;y—z) >0, foralyekK,
and
(4.3) W-h(z;y—x)>0, forallye K.

By strict weighted h-pseudoconvexity of f, we obtain

W f(z)<W- f(y), forallyeK,
and

W f(z)<W- f(y), forallye K.

In particular, we have
W f(z) <W- f(z) <W- f(z),

which is a contradiction. Hence, the solution of (WSVIP) is unique.
Furthermore, suppose that Z is a unique solution of (WSVIP) but not an efficient
solution of (VOP). Then, there exists § € K such that

f@) 2co f@) & f@) - fG) R\ {0}
Therefore, f;(Z) > fi(y) for all i € & = {1,2,...,¢} and f;(Z) > f;(y) for some
j € &. Since W € Rﬁ \ {0}, we have W - f(z) > W - f(y). By strict weighted
h-pseudoconvexity of f, we obtain
W h(z;9—17) <0,

a contradiction to the fact that z is a solution of (WSVIP). Hence, 7 is an efficient
solution of (VOP). O

In view of Lemma 4.5 and Proposition 4.6 (c), we conclude the following result.

Corollary 4.7. If f = (f1,..., f¢) : K — RY is weighted h-pseudoconver w. r. t. the
weight vector W € ’]I‘ﬁ (respectively, W € int ’]Tﬁ), then every solution of (WSVIP)
is a weak efficient solution of (VOP) (respectively, an efficient solution of (VOP)).

We present the relation between a solution of (WMVIP) and a solution of (WOP).

Proposition 4.8. Let K be a nonempty convexr subset of R". For each i € % =
{1,...,¢}, let f; : K — R be upper semicontinuous and, for all x € K, let h;(x;-) be
positively homogeneous and subodd. Let f be weighted fP-pseudoconvex w. r. t. the
weight vector W € RS\ {0} such that W - h(z;-) < (W - £)P(x;+) for all z,d € R".
Then, © € K is a solution of (WMVIP) if and only if it is a solution of (WOP)
w. 1. t. the same weight vector W € RS \ {0}.

Proof. Suppose that z € K is a solution of (WMVIP), but not a solution of (WOP)
w. T. t. the same weight vector W € R \ {0}. Then, there exists y € K such that

W flx) >W- f(y).

Let y(A) =+ My — z) for all A € [0,1]. Then y(\) € K for all A € [0,1] because
K is convex. Since f is weighted fP-pseudoconvex w. r. t. the weight vector
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W € RS \ {0}, by Lemma 4.4, f is weighted quasiconvex and weighted semistrictly
quasiconvex w. 1. t. the same weight vector W € R \ {0}. Therefore,
(4.4) W f(y(\) <W- f(z), forall Ae]0,1].
Consider a real-valued function g : K — R defined by

)4
g(x) = Zszz(x), for all z € K.
i=1

Then gP(x;d) < S35, WifP(x;d) for all z € K and all d € R™. Tt is easy to see
that gP (x;-) positively homogeneous. Also, g is upper semicontinuous because each
fi is upper semicontinuous. By the Diewert Mean-Value Theorem 3.8, there exists
a € 10,1 such that

(4.5) g(y(N) = 9(2) = ¢”(y(a);y(N) — ), for all A € ]0, 1[.
The inequality (4.4) can be re-written as
(4.6) 9(y(N) = 9(z + My — 7)) < 9(2).

By combining (4.5) and (4.6), we obtain
9" (y(a);y(N) — ) < 0.

Since gP(z;-) is positively homogeneous in the second argument, we have

9P (y(e);y — ) < 0.
Since y(a) — = = a(y — ), we have
9”7 (y(a);y(a) — z) < 0.

By suboddness of g”(-;-) in the second argument, we obtain g (y(a); Z —y(a)) > 0.
Since gP(z;d) < Zle W, fP(x;d) for all z € K and d € R", we have

¢
> WifP () y(e) — 7) > 0,
=1

a contradiction to the fact that z is a solution of (WMVIP). Hence, z € K is a
solution of (WOP).

Conversely, assume that 7 € K is a solution of (WOP), then W f(z) < W cot f(y)
for all y € K. By weighted fP-pseudoconvexity of f and Lemma 3.6, f is weighted
fP-quasiconvex, and hence

W h(y;z —y) <0.
Since W - h(z;d) < W - fP(x;d) < (W - f)P(2;d), we have
W Pz —y) <.
By suboddness of i in the second argument, we obtain
W-h(y;z —y) > 0.
Thus, Z is a solution of (WMVIP). O
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5. EXISTENCE THEORY

Definition 5.1. A vector-valued bifunction h = (hy,..., h) : K x R — R’ is said
to be:
(a) weighted pseudomonotone w. 1. t. the weight vector W € R \ {0} if for all
z,y € K,

W h(z;y—2) >0 = W-h(y;y—x)>0;

(b) strictly weighted pseudomonotone w. 1. t. the weight vector W € RY \ {0}
if for all x,y € K with x # vy,

W-h(x;y—2) >0 = W-h(y;y—x)>0;
(c) weighted subodd w. r. t. the weight vector W € R% \ {0} if W - h(z;d) >
—W - h(z; —d);
(d) weighted proper subodd w. r. t. the weight vector W € Rﬂ \ {0} if
W - h(z;d) = Wihi(z;d1) + Waha(z;da) + - - - + Wihe(z;dg) > 0,
for every d; € R™ with Zle di=0and z € K.

We introduce the notion of weighted upper sign continuity for a bifunction h,
which extends the concept of upper sign continuity introduced by Hadjisavvas [14].

Definition 5.2. A vector-valued bifunction h = (h1,...,hs) : K x R® — R’ is said
to be weighted upper sign continuous w. r. t. the weight vector W & Rﬂ \ {0} if for
all z,y € K and A € ]0,1],

W-hlz+XNy—=z);y—2x) >0 = W h(x;y—1z)>0.

Of course, if the function z — W - h(x;d) is radially upper semicontinuous, then
h is weighted upper sign continuous.

The following proposition can be easily proved by using the definition of weighted
pseudomonotonicity and weighted upper sign continuity, and therefore, we omit the
proof.

Lemma 5.3. Let the vector-valued bifunction h : K x R* — R be weighted pseu-
domonotone and weighted upper sign continuous w. r. t. the same weight vector
W € RY \ {0} such that for each fived v € K, h(x;-) is positively homogeneous.
Then, T € K is a solution of (WSVIP) if and only if it is a solution of (WMVIP).

Corollary 5.4. Let the vector-valued bifunction h : K x R* — R® be weighted
pseudomonotone w. 1. t. the weight vector W € R% \ {0} such that W - h(z;d) is
radially upper semicontinuous and positively homogeneous in d. Then, * € K 1is a

solution of (WSVIP) if and only if it is a solution of (WMVIP).

Definition 5.5 ([20]). A subset Ky of K is said to be segment-dense in K if for
all z € K, there can be found xy € Ky such that x is a cluster point of the set
[, 0] N Ko, where [x, (] denotes the line segment joining = and z( including end
points.

We define densely weighted pseudomonotonicity, which generalize the notion of
densely pseudomonotonicity considered by Luc [20].
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Definition 5.6. The vector-valued bifunction h : K xR™ — R is said to be densely
weighted pseudomonotone (respectively, densely strict weighted pseudomonotone)
w. r. t. the weight vector W € Rﬂ \ {0} on K if there exists a segment-dense subset
Ky C K such that h is weighted pseudomonotone (respectively, strictly weighted
pseudomonotone) w. 1. t. the weight vector W € R% \ {0} on Kj.

We consider the following weighted Minty variational inequality problem de-
fined over the set Ky, where Kj is same as in the definition of densely weighted
pseudomonotone map. (WMVIP)y: Find z € K w. r. t. the weight vector
W = (Wi,...,W;) € R \ {0} such that

(5.1) W h(y;y —x) >0, forall ye K.
Obviously, (WMVIP) = (WMVIP),.

Lemma 5.7. If W - h(-;-) is upper semicontinuous in both the argument, then
(WMVIP)y = (WMVIP).

Proof. Let € K be a solution of (WMVIP)q. Then
(5.2) W h(y;y —x) >0, forall ye K.

Since K| is segment-dense, for all y € K, we can find yg € Ky and y,,, € [y, yo] N Ko
for all m € N such that lim,, o0 ¥m = y. Then from (5.2), we get

W h(ym; ym — ) >0, for all m € N.

Since limy, oo Y = y and h is upper semicontinuous in both the arguments, we
have
W h(y;y — ) > limsup W - h(Ym; ym — %) >0, forally € K.

m—ro0

Hence 7 is a solution of (WMVIP). O

We prove the existence of a solution of (WSVIP) under the weighted pseudomono-
tonicity.

Theorem 5.8. Let K be a nonempty, compact and convex subset of R"™. Let
h: K x R* — R’ be weighted upper sign continuous, weighted proper subodd and
weighted pseudomonotone w. r. t. the same weight vector W € Rﬂ_\{O} such that for
each x € K, W - h(x;-) is positively homogeneous and upper semicontinuous. Then
there exists a solution T € K of (WMVIP), and hence, it is a solution of (WSVIP).
Furthermore, if W € [[;c; T then there exists a normalized solution T € K of
(WSVIP), and hence, it is a solution of (SVVIP),,. Moreover, if W € [\, (int T),
then T € K is a solution of (SVVIP).

Proof. For each y € K, define two set-valued maps P,Q : K — 2K by
Ply)={z e K: W h(z;y —x) >0}
and

Qly) ={r e K: W h(y,y —z) > 0}.

By upper semicontinuity of W-h(z;d) in d, Q(y) is a closed subset of a compact set
K, and hence, Q(y) is compact for each y € K. By weighted pseudomonotonicity
of h, we have P(y) C Q(y). By using the standard argument and weighted proper
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suboddness of h, it is easy to see that for every finite set {z1,..., 2} of K one
has co{z1,...,zm} € Uj, P(z) (see for example, proof of Theorem 2.2 in [17]).
Since for all y € K, P(y) € Q(y), we also have, co{z1,...,zm} C Ui, Q(zx). By
applying Theorem 3.9, we have ﬂyeKQ(y) # (), that is, there exists Z € K such
that
W -h(y;y —x) >0, forallye K.

Hence, z € K is a solution of (WMVIP). By Lemma 5.3, % is a solution of (WSVIP).

If Well,e;T, then z € K is a normalized solution of (WSVIP), and hence, by
Lemma 2.1 it is a solution of (SVVIP),,. Further, if W € [[,c;(int T) then again
by Lemma 2.1 € K is a solution of (SVVIP). O

Corollary 5.9. Let K be a nonempty, compact and convexr subset of R™. Let
f = (fi,....f0) : K — R be a vector-valued function such that for each f; is
radially upper semicontinuous on K. Let h : K x R" — RY be weighted upper sign
continuous and weighted proper subodd w. r. t. the same weight vector W € Rﬂ\{O}
such that d — W - h(x;d) is positively homogeneous, upper semicontinuous and
W -h(z;d) < (W - )P (2;d) for all x € K and d € R™. Then there exists a solution
z € K of (WOP). Furthermore, if W € [[,c; T4 (respectively, W € int T4 ), then
there ezists a weak efficient solution & € K of (VOP) (respectively, efficient solution
z € K of (VOP)).

Theorem 5.10. Let K be a nonempty, compact and conver subset of R™. Let
h: K x R* — RY be weighted upper sign continuous, weighted proper subodd and
strictly weighted pseudomonotone w. r. t. the same weight vector W € Rﬁ\{O} such
that for each x € K, W-h(x;-) is positively homogeneous and upper semicontinuous.
Then there exists a unique solution & € K of (WMVIP), and hence, it is a unique
solution of (WSVIP). Furthermore, if W € [[,c; T then there exists a normalized
unique solution T € K of (WSVIP), and hence, it is unique solution of (SVVIP),,.
Moreover, if W € [[;,(int T), then T € K is a unique solution of (SVVIP).

Proof. In view of Theorem 5.8, it is sufficient to show that (WSVIP) has at most
one solution. Suppose there exist two solutions 2’ and z” of (WSVIP), then we have

W - h(z";2' —2") > 0.
By the weighted strictly pseudomonotonicity of h, we have
W h(z';2" —2") > 0.

By weighted proper suboddness of h, we have W - h(a’; 2" — /) < 0. that is, 2’ is
not a solution of (WSVIP), a contradiction. O

When K is not necessarily compact, we have the following results.

Theorem 5.11. Let K be a nonempty, closed and convex subset of R™. Let h :
K x R" — R be weighted upper sign continuous, weighted pseudomonotone and
weighted proper subodd w. r. t. weight vector W € ]Rf_ \ {0} on K such that for each
x € K, W - h(x;-) is positively homogeneous and upper semicontinuous. Assume
that there exist a compact subset C' of R™ and y € C' N K such that

(5.3) W h(x;y—x) <0, foralzeK\C.
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Then there exists a solution & € K of (WMVIP), and hence, it is a solution of
(WSVIP). Furthermore, if W € [[,c; T then there exists a normalized solution
z € K of (WSVIP), and hence, it is a solution of (SVVIP),. Moreover, if W &€
[[i=,(int T), then T € K is a solution of (SVVIP).

Proof. Let the set-valued maps P,Q : K — 2K be the same as in the proof of
Theorem 5.8. Let §y € K and the set C' be the same as in the hypothesis. Then, we
want to show that P(y) is compact. If P(g) € C, then there exists x € P(g) such
that x € K \ C. It follows that

W h(z;9—z) >0,

which contradicts (5.3). Therefore, we have P(y) C C. Then P(y) is a closed subset
of a compact set C, and hence, compact. Since for each y € K, Q(y) is closed and
P(y) € Q(y). Therefore, Q(y) is compact. Then by using the same argument as
in the proof of Theorem 5.8, there exists a solution of (WMVIP). Rest of the proof
follows from the proof of Theorem 5.8. O

Theorem 5.12. Let K be a nonempty, closed and convex subset of R™. Let h :
K x R" — R be weighted upper sign continuous, weighted pseudomonotone and
weighted proper subodd w. r. t. weight vector W € RS \ {0} on K such that for each
x € K, let h(x;-) be positively homogeneous and upper semicontinuous. Assume
that there exist a compact subset D of R™ and § € D N K such that

(5.4) W -h(g;9—x) <0, forallxe K\D.

Then there exists a solution & € K of (WMVIP), and hence, it is a solution of
(WSVIP). Furthermore, if W € [[,c; T then there exists a normalized solution
z € K of (WSVIP), and hence, it is a solution of (SVVIP),. Moreover, if W &€
[[i=,(int T), then T € K is a solution of (SVVIP).

Proof. Let the set-valued maps P,Q : K — 2K be the same as in the proof of
Theorem 5.8. Let § € K and the set D be the same as in the hypothesis. By the
same argument as in the proof of Theorem 5.8, we derive that @) is a KKM map
and, for each y € K, Q(y) is closed. It can be easily seen that Q(7) C (K N D) is
a compact subset of K. Then, by Theorem 3.9, (N, cx Q(y) # 0. Rest of the proof
follows on the lines of the proof of Theorem 5.8. O

We use Theorem 3.10 to establish the following existence result for a solution
of (WMVIP) and (WSVIP). Some conditions in this result are different from the
conditions in Theorems 5.11 and 5.12.

Theorem 5.13. Let K be a nonempty conver subset of R™. Let h = (hq,...,hy) :
K — R be weighted pseudomonotone, weighted upper sign continuous w. r. t. the
same weight vector W € R{.\ {0}. For each x € K, let h(x;-) be weighted quasicon-
vex w. 1. t. the weight vector W € R \ {0} such that W - h(x;-) is upper semicon-
tinuous and positively homogeneous with W - h(x,0) = 0. Assume that there exist a
nonempty compact convex subset C' of K and a nonempty compact subset D of K
such that for each v € K\ D, there exists § € C such that W -h(y;y—x) < 0. Then
there exists a solution & € K of (WMVIP), and hence, it is a solution of (WSVIP).
Furthermore, if W € [[;c; T then there exists a normalized solution = € K of
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(WSVIP), and hence, it is a solution of (SVVIP),,. Moreover, if W € []1_, (int T),
then T € K is a solution of (SVVIP).

Proof. For each x € K, define set-valued maps S, T : K — 2% by
S(x)={ye K:W-h(y;y —z) <0}
and
T(x)={ye K:W-h(x;y —z) <0}
By the weighted quasiconvexity of h in the second argument, T'(z) is convex, for
each z € K. From the weighted pseudomonotonicity of h, we have S(z) C T'(x) for

all z € K. Since T'(x) is convex, coS(z) C T'(z) for all x € K.
For each y € K, the complement of S~!(y) in K is

(ST W) ={z € K: W h(y;y — ) >0}

is closed in K because the upper semicontinuity of W - h(x;d) in d. Hence, S™1(y)
is open in K.

Assume that for all z € K, S(z) is nonempty. Then all the conditions of Theorem
3.10 are satisfied, and therefore, there exists # € K such that & € T'(z). It follows
that

0=W-h(@;d—#) <0,
a contradiction. Hence, there exists Z € K such that S(z) = (). This implies that
for all y € K,
W - h(y;y — ) > 0.
Thus, Z is a solution of (WMVIP). By Lemma 5.3, z € K is a solution of (WSVIP).
Rest of the proof is same as in the last part of the proof of Theorem 5.8 O

We introduce weighted properly quasiconvexity which generalizes the notion of
0-diagonally quasiconcavity [27].

Definition 5.14. Let K be a nonempty subset of R”. A vector-valued bifunction A :
K xR" — R is said to be weighted properly quasimonotone w. r. t. the weight vector
W e Rﬁ\{O} if for every x1, za, ..., 2, € K and every y € co{x1,z2,...,Tm}, there
exists i € {1,2,...,m} such that

W h(x;;y —x;) <0.
Theorem 5.15. Let K be a nonempty compact conver subset of R™ and let h : K %
R™ — Rf be weighted properly quasimonotone w. r. t. the weight vector W € Rﬂ_\{O}
such that W - h(-;-) is upper semicontinuous. Then, (WMVIP) has a solution.
Proof. Define the set-valued mapping P : K — 2K by
Ply)={ze K:W . -h(y;y—z) >0}, forallye K.

For any y1,v2,...,ym € K and § € co{y1, 2, ..., ym}, weighted proper quasimono-
tonicity implies that § € ;- P(y;). Also, for each y € K, P(y) is a closed subset

of a compact set K, and hence, compact. Therefore, by Theorem 3.9, it follows that
Nyex Py) # 0. Thus, any T € (,cx P(y) is a solution of (WMVIP). O

Finally, we establish an existence result under densely weighted pseudomono-
tonicity.
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Theorem 5.16. Let K be a nonempty, compact and conver subset of R™. Let
h: K xR" — RY be weighted proper subodd and densely weighted pseudomonotone
w. 1. t. the same weight vector W € RE \ {0}. Assume that W - h(-;-) is upper
semicontinuous, and for each x € K, let W - h(x;-) be positively homogeneous.
Then there exists a solution = € K of (WMVIP)y, and hence, it is a solution of
(WMVIP). Furthermore, T is also a solution of (WSVIP).

Proof. Let Ky be the same as in the definition of a densely weighted pseudomonotone
map. For each y € Ky, define two set-valued maps P, Q : Ky — 25X by

Ply)={z € K: W h(z;y —x) >0}

and
Qly) ={z e K:W-h(y,y —x) > 0}.
Following the same argument as in the proof of Theorem 5.8, we obtain that

(WMVIP) has a solution z. By Lemma 5.7, Z is a solution of (WMVIP). Therefore,
by Lemma 5.3, z € K is a solution of (WSVIP). O

Corollary 5.17. Let K be a nonempty, compact and convex subset of R"™. Let h :
K xR" — Rf be weighted proper subodd and densely strict weighted pseudomonotone
w. 1. t. the same weight vector W € RY \ {0}. Assume that W - h(+;-) is upper
semicontinuous, and for each v € K, let W -h(x;-) be positively homogeneous. Then
there exists a solution T € K of (WMVIP)y, and hence, it is a solution (WMVIP).
Furthermore, T € K is a solution of (WSVIP), and it is unique if T € K.
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