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weakly efficient solutions, solutions of the (SVVI) and solutions of the (MVVI) are
discussed. They also presented an existence result for the solutions of weak (MVVI)
and the weak (SVVI). Their approach seems to be more direct than the one adopted
in [6]. They extended the results of [11, 26] for pseudoconvex functions involving
upper Dini directional derivative.

In this paper, we adopt the weighted sum method to study the nonsmooth vector
variational inequalities and nonsmooth vector optimization problem. In particu-
lar, we introduce nonsmooth weighted variational inequalities (in short, NWVI)
and study some relationships among nonsmooth weighted variational inequalities
(in short, NWVI), nonsmooth vector variational inequalities (in short, NVVI) and
nonsmooth vector optimization problem. We establish some existence results for
solutions of (NVVI) and (NWVI) under weighted pseudomonotonicity or weighted
pseudomonotonicity. As an application of our result, we derive an existence result
for solutions of (WOP) for nondifferentiable functions by using the equivalence rela-
tions among (NVVI), (NWVI), (WOP) and (VOP). In the same way, several other
existence results for solutions of (WOP) for nondifferentiable functions can be easily
derived by using our results.

2. Formulations

Throughout the paper, we denote by Rn
+ the non-negative orthant of Rn, that is,

Rn
+ = {u = (u1, . . . , un) ∈ Rn : uj ≥ 0, for j = 1, . . . , n} ,

so that Rn
+ has a nonempty interior with the topology induced in terms of conver-

gence of vectors with respect to the Euclidean metric. That is,

int Rn
+ = {u = (u1, . . . , un) ∈ Rn : uj > 0, for j = 1, . . . , n} .

We denote by Tn
+ and int Tn

+ the simplex of Rn
+ and its interior, respectively, that

is,

Tn
+ =

u = (u1, . . . , un) ∈ Rn
+ :

n∑
j=1

uj = 1

 , and

int Tn
+ =

u = (u1, . . . , un) ∈ int Rn
+ :

n∑
j=1

uj = 1

 .

Let g : Rn → R be a real-valued function. The upper and lower Dini directional
derivatives of g at x ∈ Rn in the direction d ∈ Rn are defined as

(upper Dini directional derivative) gD(x; d) = lim sup
t→0+

g(x+ td)− g(x)

t
,

(lower Dini directional derivative) gD(x; d) = lim inf
t→0+

g(x+ td)− g(x)

t
.

It is easy to see that gD(x; d) ≤ gD(x; d). If the function g is convex, then the
upper and lower Dini directional derivatives are equal to the directional derivative.

It can be easily seen that for all r > 0, (rg)D (x; d) = rgD(x; d), and for all r < 0,

(rg)D (x; d) = rgD(x; d). Also, g
D(x; d) ≥ −gD(x;−d) for all x, d ∈ Rn.
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We adopt the following ordering relations. We consider the cones C0 := Rℓ
+ \{0}

and
◦
C := int Rℓ

+, where Rℓ
+ is the nonnegative orthant of Rℓ and 0 is the origin of

Rℓ; let D be a set of Rℓ. Then for all x, y ∈ D,

x ≥C0 y ⇔ x− y ∈ C0; x ̸≥C0 y ⇔ x− y /∈ C0;

x ≤C0 y ⇔ y − x ∈ C0; x ̸≤C0 y ⇔ y − x /∈ C0;

x ≥ ◦
C
y ⇔ x− y ∈

◦
C; x ̸≥ ◦

C
y ⇔ x− y /∈

◦
C;

x ≤ ◦
C
y ⇔ y − x ∈

◦
C; x ̸≤ ◦

C
y ⇔ y − x /∈

◦
C.

Let K be a nonempty subset of Rn and f = (f1, . . . , fℓ) : Rn → Rℓ be a vector-
valued function. The vector optimization problem (VOP) is defined as follows:

(VOP) min f(x), subject to x ∈ K,

where f(x) = (f1(x), . . . , fℓ(x)).
A point x̄ ∈ K is said to be an efficient solution (respectively, weak efficient

solution) of (VOP) if and only if

f(x̄) ̸≥C0 f(y), for all y ∈ K,(
respectively, f(x̄) ̸≥ ◦

C
f(y), for all y ∈ K

)
.

It is clear that every efficient solution is a weak efficient solution.

Let K be a nonempty subset of Rn, f = (f1, . . . , fℓ) : Rn → Rℓ be a vector-valued
function, and fD(x; d) =

(
fD
1 (x; d), . . . , fD

ℓ (x; d)
)
. The vector variational inequali-

ties are two types, one is called Stampacchia type and another one is called Minty
type. The nonsmooth Stampacchia and Minty type vector variational inequality
problems are defined as follows:
(NSVVIP): Find x̄ ∈ K such that

(2.1) fD(x̄; y − x̄) =
(
fD
1 (x̄; y − x̄), . . . , fD

ℓ (x̄; y − x̄)
)
̸≤C0 0, for all y ∈ K.

(NMVVIP): Find x̄ ∈ K such that

(2.2) fD(y; y − x̄) =
(
fD
1 (y; y − x̄), . . . , fD

ℓ (y; y − x̄)
)
̸≤C0 0, for all y ∈ K.

If we replace the order relation ̸≤C0 by ̸≤ ◦
C

in (2.1) and ̸≤C0 by ̸≤ ◦
C

in (2.2), then

we get the following weak formulations of (NSVVIP) and (NMVVIP):
(NSVVIP)w: Find x̄ ∈ K such that

(2.3) fD(x̄; y − x̄) =
(
fD
1 (x̄; y − x̄), . . . , fD

ℓ (x̄; y − x̄)
)
̸≤ ◦

C
0, for all y ∈ K.

(NMVVIP)w: Find x̄ ∈ K such that

(2.4) fD(y; y − x̄) =
(
fD
1 (y; y − x̄), . . . , fD

ℓ (y; y − x̄)
)
̸≤ ◦

C
0, for all y ∈ K.

Crespi et al. [6] considered these kinds of problems and studied the existence of
their solutions. By using such existence results, they also studied the existence of
an efficient or weak efficient solution of (VOP).



670 S. AL-HOMIDAN AND Q. H. ANSARI

Let h = (h1, . . . , hℓ) : K × Rn → Rℓ be a vector-valued function such that,
for each fixed x ∈ K, h(x; d) is positively homogeneous in d. If we consider the
(upper or lower) Dini directional derivative as a bifunction h(x; d), with x referring
to a point in Rn and d referring to a direction from Rn, then (2.1), (2.2), (2.3)
and (2.4) become the following nonsmooth vector variational inequality problems,
namely, Stampacchia type vector variational inequality problems and Minty type
vector variational inequality problems.
Stampacchia vector variational inequality problem (SVVIP): Find x̄ ∈ K such that

(2.5) h(x̄; y − x̄) = (h1(x̄; y − x̄), . . . , hℓ(x̄; y − x̄)) ̸≤C0 0, for all y ∈ K.

Minty vector variational inequality problem (MVVIP): Find x̄ ∈ K such that

(2.6) h(y; y − x̄) =
(
h1(y; y − x̄), . . . , hℓ(y; y − x̄)

)
̸≤C0 0, for all y ∈ K.

If we replace the order relation ̸≤C0 by ̸≤ ◦
C
in (2.5) and ̸≤C0 by ̸≤ ◦

C
in (2.5), then

we get the following weak formulations of (SVVIP) and (MVVIP):
(SVVIP)w: Find x̄ ∈ K such that

(2.7) h(x̄; y − x̄) = (h1(x̄; y − x̄), . . . , hℓ(x̄; y − x̄)) ̸≤ ◦
C
0, for all y ∈ K.

(MVVIP)w: Find x̄ ∈ K such that

(2.8) h(y; y − x̄) = (h1(y; y − x̄), . . . , hℓ(y; y − x̄)) ̸≤ ◦
C
0, for all y ∈ K.

We introduce the following weighted Stampacchia variational inequality problem
and weighted Minty variational inequality problem.
Weighted Stampacchia variational inequality problem (WSVIP): Find x̄ ∈ K w. r. t.
the weight vector W = (W1, . . . ,Wℓ) ∈ Rℓ

+ \ {0} such that

(2.9) W · h(x̄; y − x̄) =

ℓ∑
i=1

Wihi(x̄; y − x̄) ≥ 0, for all y ∈ K,

where · denotes the inner product on Rℓ.

Weighted Minty variational inequality problem (WMVIP): Find x̄ ∈ K w. r. t. the
weight vector W = (W1, . . . ,Wℓ) ∈ Rℓ

+ \ {0} such that

(2.10) W · h(y; y − x̄) =

ℓ∑
i=1

Wihi(y; y − x̄) ≥ 0, for all y ∈ K.

If W ∈ Tℓ
+, then the solution of (WSVIP) and (WMVIP) is called normalized.

If hi(x; d) = fD
i (x; d) for each i = 1, 2, . . . ℓ and all x, d ∈ Rn, then (2.9) and

(2.10) are called weighted nonsmooth Stampacchia variational inequality (WNSVI)
and weighted nonsmooth Minty variational inequality (WNMVI), respectively.

Rest of the paper, unless otherwise specified, we assume thatW = (W1, . . . ,Wℓ) ∈
Rℓ
+ \ {0} is a given weight vector.

We establish the following lemma which shows the relationship between (WSVIP)
and (SVVIP).
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Lemma 2.1. Each normalized solution x̄ ∈ K with the weight vector W ∈ Tℓ
+

(respectively, W ∈ int Tℓ
+) of (WSVIP) is a solution of (SVVIP)w (respectively,

(SVVIP)).

Proof. Let x̄ ∈ K be a normalized solution of (WSVIP) with the weight vector
W ∈ Tℓ

+ (respectively, W ∈ int Tℓ
+). Assume contrary that x̄ ∈ K is not a solution

of (SVVIP)w (respectively, (SVVIP)). Then there exists some y ∈ K such that

h(x̄; y − x̄) = (h1(x̄; y − x̄), . . . , hℓ(x̄; y − x̄)) ≤ ◦
C
0.(

respectively, h(x̄; y − x̄) = (h1(x̄; y − x̄), . . . , hℓ(x̄; y − x̄)) ≤C0 0.
)

Since W ∈ Tℓ
+ (respectively, W ∈ int Tℓ

+), we have

W · h(x̄; y − x̄) < 0,

which contradicts to our assumption that x̄ ∈ K is a normalized solution of (WSVIP).
Hence x̄ ∈ K is a solution of (SVVIP)w (respectively, (SVVIP)). �

In the same way as Lemma 2.1, we can easily establish the following lemma.

Lemma 2.2. Each normalized solution x̄ ∈ K with the weight vector W ∈ Tℓ
+

(respectively, W ∈ int Tℓ
+) of (WMVIP) is a solution of (MVVIP)w (respectively,

(MVVIP)).

3. Preliminaries

Throughout the paper, unless otherwise specified, K is a nonempty convex subset
of Rn.

A function g : Rn → R is said to be:

(a) positively homogeneous if for all x ∈ Rn and all r ≥ 0, we have g(rx) = rg(x);
(b) subodd if for all x ∈ Rn \ {0}, we have g(x) ≥ −g(−x).

Definition 3.1. A function g : K → R is said to be:

(a) quasiconvex if for all x, y ∈ K and all λ ∈ ]0, 1[,

g(x+ λ(y − x)) ≤ max {g(x), g(y)} ;

(b) semistrictly quasiconvex if for all x, y ∈ K with g(y) < g(x),

g(x+ λ(y − x)) < g(x), for all λ ∈ ]0, 1[.

Definition 3.2 ([15]). Let q : K×Rn → R be a bifunction. A function g : K → R
is said to be:

(b) q-convex if for all x, y ∈ K,

q(x; y − x) ≤ g(y)− g(x).

If strict inequality holds, then g is called strictly q-convex;
(b) q-quasiconvex if for all x, y ∈ K,

g(y) < g(x) ⇒ q(x; y − x) ≤ 0;
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(c) q-pseudoconvex if for all x, y ∈ K, x ̸= y,

g(y) < g(x) ⇒ q(x; y − x) < 0;

(d) strictly q-pseudoconvex if for all x, y ∈ K, x ̸= y,

g(y) ≤ g(x) ⇒ q(x; y − x) < 0.

If q ≡ fD, where f = (f1, . . . , fℓ) : K → Rℓ, the q-convexity, q-quasiconvexity,
and so on are called fD-convexity, fD-quasiconvexity, and so on, respectively.

Lemma 3.3 ( [15, Theorem 4.1]). Let g : K → R be a function and p, q : K×Rn →
R be bifunctions such that for all x ∈ K and all d ∈ Rn, p(x; d) ≤ q(x; d). Then
q-pseudoconvexity, and strict q-pseudoconvexity imply p-pseudoconvexity, and strict
p-pseudoconvexity, respectively.

Definition 3.4 ([13,15]). A bifunction q : K ×Rn → R is said to be pseudomono-
tone if for every pair of distinct points x, y ∈ K, we have

(3.1) q(x; y − x) ≥ 0 ⇒ q(y; y − x) ≥ 0.

Definition 3.5. A real-valued function g : K → R is said to be radially upper
(lower) semicontinuous (also known as upper (lower) hemicontinuous on K if it is
upper (lower) semicontinuous along the line segment in K.

If g is radially upper as well as radially lower semicontinuous on K, then it is
called radially semicontinuous on K.

Lemma 3.6 ([25, Theorems 3.2 and 5.2]). Let g : K → R be a radially upper
semicontinuous on K and let the bifunction q : K×Rn → R be subodd in the second
argument such that for all x ∈ K, q(x; ·) ≤ gD(x; ·). Then

(a) g is q-pseudoconvex if and only if q is pseudomonotone;
(b) g is quasiconvex if and only if it is q-quasiconvex.

Lemma 3.7 ([7, Corollaries 15 and 16]). Let g : K → R be upper semicontinuous
and gD-pseudoconvex. Then, g is quasiconvex and semistrictly quasiconvex.

Theorem 3.8 (Diewert Mean-Value Theorem). [7, Theorem 1] Let g : K → R be
radially upper semicontinuous on K. Then, for any pair x, y of distinct points of
K, there exists w ∈ [x, y[ such that

f(y)− f(x) ≥ fD(w; y − x),

where [x, y[ denotes the line segment joining x and y including the endpoint x. In
other words, there exists λ ∈ [0, 1[ such that

f(y)− f(x) ≥ fD(w; y − x), where w = x+ λ(y − x).

Now we recall some definitions and results which will be used in the sequel.

For every nonempty set A, we denote by 2A the family of all subsets of A. If A
is a nonempty subset of a vector space, then coA denotes the convex hull of A.

The following result will be used to prove the existence of a solution of our
problems.
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Theorem 3.9 ( [8, KKM-Fan Theorem]). Let K be a nonempty convex subset of a
Hausdorff topological vector space E. Assume that G : K → 2K \{∅} be a set-valued
map satisfying the following conditions:

(i) For all x ∈ K, G(x) is closed and is compact for at least one x ∈ K.
(ii) For any finite set {x1, . . . , xm} of K, co{x1, . . . , xm} ⊆

∪m
i=1G(xi).

Then
∩

x∈K G(x) ̸= ∅.

A set-valued map G : K → 2K is called a KKM map if it satisfies condition (ii)
in Theorem 3.9.

We shall use the following fixed point theorem which is a particular form of
Corollary 1 in [3].

Theorem 3.10 ( [3]). Let K be a nonempty convex subset of a Hausdorff topological
vector space E and S, T : K → 2K be set-valued maps. Assume that the following
conditions hold:

(i) For all x ∈ K, S(x) is nonempty and coS(x) ⊆ T (x).
(ii) For all y ∈ K, S−1(y) = {x ∈ K : y ∈ S(x)} is open.
(iii) There exist a nonempty compact convex subset C of K and a nonempty

compact subset D of K such that for each x ∈ K \ D, there exists ỹ ∈ C
satisfying x ∈ S−1(ỹ).

Then there exists x̂ ∈ K such that x̂ ∈ T (x̂).

4. Necessary and sufficient conditions

Throughout the paper, unless otherwise specified, h = (h1, . . . , hℓ) : K×Rn → Rℓ

is a vector-valued bifunction.

Definition 4.1. A vector-valued function f = (f1, . . . , fℓ) : K → Rℓ is said to be:

(a) weighted quasiconvex w. r. t. the weight vector W ∈ Rℓ
+ \ {0} if for all

x, y ∈ K and all λ ∈ ]0, 1[,

W · f(x+ λ(y − x)) ≤ max{W · f(x),W · f(y)};

(b) weighted semistrictly quasiconvex w. r. t. the weight vector W ∈ Rℓ
+ \ {0}

if for all x, y ∈ K,

f(y) < f(x) ⇒ W · f(x+ λ(y − x)) < W · f(x), for all λ ∈ ]0, 1[.

Definition 4.2. A vector-valued function f = (f1, . . . , fℓ) : K → Rℓ is said to be:

(a) weighted h-pseudoconvex (respectively, strictly weighted h-pseudoconvex) w. r. t.
the weight vector W ∈ Rℓ

+ \ {0} if for all x, y ∈ K,

W · h(x; y − x) ≥ 0 ⇒ W · f(x) ≤ W · f(y)(
respectively, W · h(x; y − x) ≥ 0 ⇒ W · f(x) < W · f(y)

)
;

(b) weighted h-quasiconvex w. r. t. the weight vector W ∈ Rℓ
+ \ {0} if for all

x, y ∈ K,

W · f(y) < W · f(x) ⇒ W · h(x; y − x) ≤ 0.
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If h ≡ fD, then the weighted h-pseudoconvexity (respectively, strict weighted
h-pseudoconvexity and weighted h-quasiconvexity) w. r. t. the weight vector W ∈
Rℓ
+ \ {0} is called weighted fD-pseudoconvexity (respectively, strict weighted fD-

pseudoconvexity and weighted fD-quasiconvexity) w. r. t. the weight vector W ∈
Rℓ
+ \ {0}.

Lemma 4.3. Let f = (f1, . . . , fℓ) : K → Rℓ be a vector-valued function such that
for each fi is radially upper semicontinuous on K. Let h : K × Rn → Rℓ be a
vector-valued function and W ∈ Rℓ

+ \ {0} such that d 7→ W · h(x; d) is subodd and

W · h(x; d) ≤ (W · f)D(x; d) for all x ∈ K and d ∈ Rn.

(a) f is weighted quasiconvex if and only if it is weighted h-quasiconvex w. r. t.
the same weight vector W ∈ Rℓ

+ \ {0}.
(b) f is weighted h-pseudoconvex if and only if h is weighted pseudomonotone

w. r. t. the same weight vector W ∈ Rℓ
+ \ {0}.

Proof. Consider g(x) = W ·f(x) and q(x; d) = W ·h(x; d) for all x ∈ K and d ∈ Rn.
Then by Lemma 3.6, we get the conclusion. �
Lemma 4.4. Let f = (f1, . . . , fℓ) : K → Rℓ be weighted fD-pseudoconvex w. r. t.
the weight vector W ∈ Rℓ

+\{0} and for each i = 1, . . . , ℓ, fi be upper semicontinuous.
Then f is weighted quasiconvex and weighted semistrictly quasiconvex w. r. t. the
same weight vector W ∈ Rℓ

+ \ {0}.

Proof. Define g : K → R by

g(x) =
ℓ∑

i=1

Wifi(x), for all x ∈ K.

Then for all x ∈ K and all d ∈ Rn, we have

gD(x; d) = (W1f1 + · · ·+Wℓfℓ)
D (x; d)

≤ W1f
D
1 (x; d) + · · ·+Wℓf

D
ℓ (x; d)

= W · fD(x; d).

We claim that g is gD-pseudoconvex, that is, for all x, y ∈ K with x ̸= y, we have
g(y) < g(x) implies gD(x; y − x) < 0.

Let g(y) < g(x). Then, W ·f(y) < W ·f(x). Since f is weighted fD-pseudoconvex
w. r. t. the weight vector W ∈ Rℓ

+ \ {0}, we have W · fD(x; y − x) < 0, that is,

gD(x; y − x) < 0. Hence g is gD-pseudomonotone. Since each fi is upper semi-
continuous, g is also upper semicontinuous. Hence, by Lemma 3.7, g is quasicon-
vex and semistrictly quasiconvex, that is, f is weighted quasiconvex and weighted
semistrictly quasiconvex w. r. t. the same weight vector W ∈ Rℓ

+ \ {0}. �
Let K be a nonempty subset of Rn and f : K → Rn be a vector-valued function.

We consider the following weighted optimization problem:

(WOP) minW · f(x) subject to x ∈ K,

where W = (W1, . . . ,Wℓ) ∈ Rℓ
+ \ {0}.

If W ∈ Tℓ
+, then the solution of (WOP) is called normalized.
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The following lemma is well-known.

Lemma 4.5. (See, for example, [21, Theorem 3.1.1 and Theorem 3.1.2]) Each
normalized solution x̄ ∈ K with weight vector W ∈ Tℓ

+ (respectively, W ∈ int Tℓ
+)

of (WOP) is a weak efficient solution of (VOP) (respectively, an efficient solution
of (VOP)).

The following result provides the relation among the solutions of (WOP), (WNSVIP),
(WSVIP), and efficient solution of (VOP).

Proposition 4.6. Let K be a nonempty convex subset of Rn.

(a) If x̄ ∈ K is a solution of (WOP), then it is a solution of (WNSVIP).
(b) If −f is strictly weighted h-pseudoconvex w. r. t. the weight vector W ∈

Rℓ
+ \ {0}, then every solution of (WOP) is a solution of (WSVIP).

(c) If f is weighted h-pseudoconvex w. r. t. the weight vector W ∈ Rℓ
+ \ {0},

then every solution of (WSVIP) is a solution of (WOP).
(d) If f is strictly weighted h-pseudoconvex w. r. t. the weight vector W ∈ Rℓ

+ \
{0}, then the solution (if there is any) of (WSVIP) is unique. Furthermore,
this unique solution of (WSVIP) is an efficient solution of (VOP).

Proof. (a) Let x̄ ∈ K be a solution of (WOP). Then for all y ∈ K,

W · f(y)−W · f(x̄) ≥ 0.

Since K is convex, x̄+ λ(y − x̄) ∈ K for all λ ∈ [0, 1], and hence,

1

λ
(W · f(x̄+ λ(y − x̄))−W · f(y)) ≥ 0, for all λ ∈ ]0, 1].

Therefore,

(W · f)D (x̄; y − x̄) = lim sup
λ→0+

W · f(x̄+ λ(y − x̄))−W · f(y)
λ

≥ 0.

Thus,

0 ≤ (W · f)D (x̄; y − x̄) ≤ W · fD(x̄; y − x̄),

and hence, x̄ ∈ K is a solution of (WNSVIP).

(b) Suppose that x̄ is a solution of (WOP), but not a solution of (WSVIP). Then,
there exists y ∈ K such that

(4.1) W · h(x̄; y − x̄) < 0.

Since −f is strictly weighted h-pseudoconvex, we have

W · f(x̄) > W · f(y),
a contradiction to our supposition that x̄ is a solution of (WOP). Hence, x̄ is a
solution of (WSVIP).

(c) Assume that x̄ ∈ K is a solution of (WSVIP) w. r. t. the weight vector
W ∈ Rℓ

+ \ {0}. Then,
W · h(x̄; y − x̄) ≥ 0, for all y ∈ K.

By weighted h-pseudoconvexity of f w. r. t. the weight vector W ∈ Rℓ
+ \ {0}, we

obtain the conclusion.
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(d) Suppose that there are two distinct solutions x̄ and x̂ of (WSVIP). Then,

(4.2) W · h(x̄; y − x̄) ≥ 0, for all y ∈ K,

and

(4.3) W · h(x̂; y − x̂) ≥ 0, for all y ∈ K.

By strict weighted h-pseudoconvexity of f , we obtain

W · f(x̄) < W · f(y), for all y ∈ K,

and

W · f(x̂) < W · f(y), for all y ∈ K.

In particular, we have

W · f(x̄) < W · f(x̂) < W · f(x̄),

which is a contradiction. Hence, the solution of (WSVIP) is unique.
Furthermore, suppose that x̄ is a unique solution of (WSVIP) but not an efficient

solution of (VOP). Then, there exists ỹ ∈ K such that

f(x̄) ≥C0 f(ỹ) ⇔ f(x̄)− f(ỹ) ∈ Rℓ
+ \ {0}.

Therefore, fi(x̄) ≥ fi(ỹ) for all i ∈ I = {1, 2, . . . , ℓ} and fj(x̄) > fj(ỹ) for some

j ∈ I . Since W ∈ Rℓ
+ \ {0}, we have W · f(x̄) ≥ W · f(ỹ). By strict weighted

h-pseudoconvexity of f , we obtain

W · h(x̄; ỹ − x̄) < 0,

a contradiction to the fact that x̄ is a solution of (WSVIP). Hence, x̄ is an efficient
solution of (VOP). �

In view of Lemma 4.5 and Proposition 4.6 (c), we conclude the following result.

Corollary 4.7. If f = (f1, . . . , fℓ) : K → Rℓ is weighted h-pseudoconvex w. r. t. the
weight vector W ∈ Tℓ

+ (respectively, W ∈ int Tℓ
+), then every solution of (WSVIP)

is a weak efficient solution of (VOP) (respectively, an efficient solution of (VOP)).

We present the relation between a solution of (WMVIP) and a solution of (WOP).

Proposition 4.8. Let K be a nonempty convex subset of Rn. For each i ∈ I =
{1, . . . , ℓ}, let fi : K → R be upper semicontinuous and, for all x ∈ K, let hi(x; ·) be
positively homogeneous and subodd. Let f be weighted fD-pseudoconvex w. r. t. the
weight vector W ∈ Rℓ

+ \ {0} such that W · h(x; ·) ≤ (W · f)D(x; ·) for all x, d ∈ Rn.
Then, x̄ ∈ K is a solution of (WMVIP) if and only if it is a solution of (WOP)
w. r. t. the same weight vector W ∈ Rℓ

+ \ {0}.

Proof. Suppose that x̄ ∈ K is a solution of (WMVIP), but not a solution of (WOP)
w. r. t. the same weight vector W ∈ Rℓ

+ \ {0}. Then, there exists y ∈ K such that

W · f(x) > W · f(y).

Let y(λ) = x̄ + λ(y − x̄) for all λ ∈ [0, 1]. Then y(λ) ∈ K for all λ ∈ [0, 1] because
K is convex. Since f is weighted fD-pseudoconvex w. r. t. the weight vector
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W ∈ Rℓ
+ \ {0}, by Lemma 4.4, f is weighted quasiconvex and weighted semistrictly

quasiconvex w. r. t. the same weight vector W ∈ Rℓ
+ \ {0}. Therefore,

(4.4) W · f(y(λ)) < W · f(x̄), for all λ ∈ ]0, 1[.

Consider a real-valued function g : K → R defined by

g(x) =

ℓ∑
i=1

Wifi(x), for all x ∈ K.

Then gD(x; d) ≤
∑ℓ

i=1Wif
D
i (x; d) for all x ∈ K and all d ∈ Rn. It is easy to see

that gD(x; ·) positively homogeneous. Also, g is upper semicontinuous because each
fi is upper semicontinuous. By the Diewert Mean-Value Theorem 3.8, there exists
α ∈ ]0, 1[ such that

(4.5) g(y(λ))− g(x̄) ≥ gD(y(α); y(λ)− x̄), for all λ ∈ ]0, 1[.

The inequality (4.4) can be re-written as

(4.6) g(y(λ)) = g(x̄+ λ(y − x̄)) < g(x̄).

By combining (4.5) and (4.6), we obtain

gD(y(α); y(λ)− x̄) < 0.

Since gD(x; ·) is positively homogeneous in the second argument, we have

gD(y(α); y − x̄) < 0.

Since y(α)− x̄ = α(y − x̄), we have

gD(y(α); y(α)− x̄) < 0.

By suboddness of gD(·; ·) in the second argument, we obtain gD(y(α); x̄−y(α)) > 0.

Since gD(x; d) ≤
∑ℓ

i=1Wif
D
i (x; d) for all x ∈ K and d ∈ Rn, we have

ℓ∑
i=1

Wif
D
i (y(α); y(α)− x̄) > 0,

a contradiction to the fact that x̄ is a solution of (WMVIP). Hence, x̄ ∈ K is a
solution of (WOP).

Conversely, assume that x̄ ∈ K is a solution of (WOP), thenW ·f(x̄) ≤ W cot f(y)
for all y ∈ K. By weighted fD-pseudoconvexity of f and Lemma 3.6, f is weighted
fD-quasiconvex, and hence

W · h(y; x̄− y) ≤ 0.

Since W · h(x; d) ≤ W · fD(x; d) ≤ (W · f)D(x; d), we have

W · fD(y; x̄− y) ≤ 0.

By suboddness of h in the second argument, we obtain

W · h(y; x̄− y) ≥ 0.

Thus, x̄ is a solution of (WMVIP). �
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5. Existence Theory

Definition 5.1. A vector-valued bifunction h = (h1, . . . , hℓ) : K ×Rn → Rℓ is said
to be:

(a) weighted pseudomonotone w. r. t. the weight vector W ∈ Rℓ
+ \ {0} if for all

x, y ∈ K,

W · h(x; y − x) ≥ 0 ⇒ W · h(y; y − x) ≥ 0;

(b) strictly weighted pseudomonotone w. r. t. the weight vector W ∈ Rℓ
+ \ {0}

if for all x, y ∈ K with x ̸= y,

W · h(x; y − x) ≥ 0 ⇒ W · h(y; y − x) > 0;

(c) weighted subodd w. r. t. the weight vector W ∈ Rℓ
+ \ {0} if W · h(x; d) ≥

−W · h(x;−d);
(d) weighted proper subodd w. r. t. the weight vector W ∈ Rℓ

+ \ {0} if

W · h(x; d) = W1h1(x; d1) +W2h2(x; d2) + · · ·+Wℓhℓ(x; dℓ) ≥ 0,

for every di ∈ Rn with
∑ℓ

i=1 di = 0 and x ∈ K.

We introduce the notion of weighted upper sign continuity for a bifunction h,
which extends the concept of upper sign continuity introduced by Hadjisavvas [14].

Definition 5.2. A vector-valued bifunction h = (h1, . . . , hℓ) : K×Rn → Rℓ is said
to be weighted upper sign continuous w. r. t. the weight vector W ∈ Rℓ

+ \ {0} if for
all x, y ∈ K and λ ∈ ]0, 1[,

W · h(x+ λ(y − x); y − x) ≥ 0 ⇒ W · h(x; y − x) ≥ 0.

Of course, if the function x 7→ W · h(x; d) is radially upper semicontinuous, then
h is weighted upper sign continuous.

The following proposition can be easily proved by using the definition of weighted
pseudomonotonicity and weighted upper sign continuity, and therefore, we omit the
proof.

Lemma 5.3. Let the vector-valued bifunction h : K × Rn → Rℓ be weighted pseu-
domonotone and weighted upper sign continuous w. r. t. the same weight vector
W ∈ Rℓ

+ \ {0} such that for each fixed x ∈ K, h(x; ·) is positively homogeneous.
Then, x̄ ∈ K is a solution of (WSVIP) if and only if it is a solution of (WMVIP).

Corollary 5.4. Let the vector-valued bifunction h : K × Rn → Rℓ be weighted
pseudomonotone w. r. t. the weight vector W ∈ Rℓ

+ \ {0} such that W · h(x; d) is
radially upper semicontinuous and positively homogeneous in d. Then, x̄ ∈ K is a
solution of (WSVIP) if and only if it is a solution of (WMVIP).

Definition 5.5 ([20]). A subset K0 of K is said to be segment-dense in K if for
all x ∈ K, there can be found x0 ∈ K0 such that x is a cluster point of the set
[x, x0] ∩K0, where [x, x0] denotes the line segment joining x and x0 including end
points.

We define densely weighted pseudomonotonicity, which generalize the notion of
densely pseudomonotonicity considered by Luc [20].
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Definition 5.6. The vector-valued bifunction h : K×Rn → Rℓ is said to be densely
weighted pseudomonotone (respectively, densely strict weighted pseudomonotone)
w. r. t. the weight vector W ∈ Rℓ

+ \{0} on K if there exists a segment-dense subset
K0 ⊆ K such that h is weighted pseudomonotone (respectively, strictly weighted
pseudomonotone) w. r. t. the weight vector W ∈ Rℓ

+ \ {0} on K0.

We consider the following weighted Minty variational inequality problem de-
fined over the set K0, where K0 is same as in the definition of densely weighted
pseudomonotone map. (WMVIP)0: Find x̄ ∈ K w. r. t. the weight vector
W = (W1, . . . ,Wℓ) ∈ Rℓ

+ \ {0} such that

(5.1) W · h(y; y − x̄) ≥ 0, for all y ∈ K0.

Obviously, (WMVIP) ⇒ (WMVIP)0.

Lemma 5.7. If W · h(·; ·) is upper semicontinuous in both the argument, then
(WMVIP)0 ⇒ (WMVIP).

Proof. Let x̄ ∈ K be a solution of (WMVIP)0. Then

(5.2) W · h(y; y − x̄) ≥ 0, for all y ∈ K0.

Since K0 is segment-dense, for all y ∈ K, we can find y0 ∈ K0 and ym ∈ [y, y0]∩K0

for all m ∈ N such that limm→∞ ym = y. Then from (5.2), we get

W · h(ym; ym − x̄) ≥ 0, for all m ∈ N.
Since limm→∞ ym = y and h is upper semicontinuous in both the arguments, we
have

W · h(y; y − x̄) ≥ lim sup
m→∞

W · h(ym; ym − x̄) ≥ 0, for all y ∈ K.

Hence x̄ is a solution of (WMVIP). �
We prove the existence of a solution of (WSVIP) under the weighted pseudomono-

tonicity.

Theorem 5.8. Let K be a nonempty, compact and convex subset of Rn. Let
h : K × Rn → Rℓ be weighted upper sign continuous, weighted proper subodd and
weighted pseudomonotone w. r. t. the same weight vector W ∈ Rℓ

+\{0} such that for
each x ∈ K, W · h(x; ·) is positively homogeneous and upper semicontinuous. Then
there exists a solution x̄ ∈ K of (WMVIP), and hence, it is a solution of (WSVIP).
Furthermore, if W ∈

∏
i∈I T then there exists a normalized solution x̄ ∈ K of

(WSVIP), and hence, it is a solution of (SVVIP)w. Moreover, if W ∈
∏n

i=1(int T),
then x̄ ∈ K is a solution of (SVVIP).

Proof. For each y ∈ K, define two set-valued maps P,Q : K → 2K by

P (y) = {x ∈ K : W · h(x; y − x) ≥ 0}
and

Q(y) = {x ∈ K : W · h(y, y − x) ≥ 0}.
By upper semicontinuity of W ·h(x; d) in d, Q(y) is a closed subset of a compact set
K, and hence, Q(y) is compact for each y ∈ K. By weighted pseudomonotonicity
of h, we have P (y) ⊆ Q(y). By using the standard argument and weighted proper
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suboddness of h, it is easy to see that for every finite set {x1, . . . , xm} of K one
has co{x1, . . . , xm} ⊆

∪m
k=1 P (xk) (see for example, proof of Theorem 2.2 in [17]).

Since for all y ∈ K, P (y) ⊆ Q(y), we also have, co{x1, . . . , xm} ⊆
∪m

k=1Q(xk). By
applying Theorem 3.9, we have

∩
y∈K Q(y) ̸= ∅, that is, there exists x̄ ∈ K such

that

W · h(y; y − x̄) ≥ 0, for all y ∈ K.

Hence, x̄ ∈ K is a solution of (WMVIP). By Lemma 5.3, x̄ is a solution of (WSVIP).
If W ∈

∏
i∈I T, then x̄ ∈ K is a normalized solution of (WSVIP), and hence, by

Lemma 2.1 it is a solution of (SVVIP)w. Further, if W ∈
∏

i∈I(int T) then again
by Lemma 2.1 x̄ ∈ K is a solution of (SVVIP). �

Corollary 5.9. Let K be a nonempty, compact and convex subset of Rn. Let
f = (f1, . . . , fℓ) : K → Rℓ be a vector-valued function such that for each fi is
radially upper semicontinuous on K. Let h : K × Rn → Rℓ be weighted upper sign
continuous and weighted proper subodd w. r. t. the same weight vector W ∈ Rℓ

+\{0}
such that d 7→ W · h(x; d) is positively homogeneous, upper semicontinuous and
W · h(x; d) ≤ (W · f)D(x; d) for all x ∈ K and d ∈ Rn. Then there exists a solution
x̄ ∈ K of (WOP). Furthermore, if W ∈

∏
i∈I Tℓ

+ (respectively, W ∈ int Tℓ
+), then

there exists a weak efficient solution x̄ ∈ K of (VOP) (respectively, efficient solution
x̄ ∈ K of (VOP)).

Theorem 5.10. Let K be a nonempty, compact and convex subset of Rn. Let
h : K × Rn → Rℓ be weighted upper sign continuous, weighted proper subodd and
strictly weighted pseudomonotone w. r. t. the same weight vector W ∈ Rℓ

+\{0} such
that for each x ∈ K, W ·h(x; ·) is positively homogeneous and upper semicontinuous.
Then there exists a unique solution x̄ ∈ K of (WMVIP), and hence, it is a unique
solution of (WSVIP). Furthermore, if W ∈

∏
i∈I T then there exists a normalized

unique solution x̄ ∈ K of (WSVIP), and hence, it is unique solution of (SVVIP)w.
Moreover, if W ∈

∏n
i=1(int T), then x̄ ∈ K is a unique solution of (SVVIP).

Proof. In view of Theorem 5.8, it is sufficient to show that (WSVIP) has at most
one solution. Suppose there exist two solutions x′ and x′′ of (WSVIP), then we have

W · h(x′′;x′ − x′′) ≥ 0.

By the weighted strictly pseudomonotonicity of h, we have

W · h(x′;x′ − x′′) > 0.

By weighted proper suboddness of h, we have W · h(x′;x′′ − x′) < 0. that is, x′ is
not a solution of (WSVIP), a contradiction. �

When K is not necessarily compact, we have the following results.

Theorem 5.11. Let K be a nonempty, closed and convex subset of Rn. Let h :
K × Rn → Rℓ be weighted upper sign continuous, weighted pseudomonotone and
weighted proper subodd w. r. t. weight vector W ∈ Rℓ

+ \{0} on K such that for each
x ∈ K, W · h(x; ·) is positively homogeneous and upper semicontinuous. Assume
that there exist a compact subset C of Rn and ỹ ∈ C ∩K such that

(5.3) W · h(x; ỹ − x) < 0, for all x ∈ K \ C.
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Then there exists a solution x̄ ∈ K of (WMVIP), and hence, it is a solution of
(WSVIP). Furthermore, if W ∈

∏
i∈I T then there exists a normalized solution

x̄ ∈ K of (WSVIP), and hence, it is a solution of (SVVIP)w. Moreover, if W ∈∏n
i=1(int T), then x̄ ∈ K is a solution of (SVVIP).

Proof. Let the set-valued maps P,Q : K → 2K be the same as in the proof of
Theorem 5.8. Let ỹ ∈ K and the set C be the same as in the hypothesis. Then, we
want to show that P (ỹ) is compact. If P (ỹ) ̸⊆ C, then there exists x ∈ P (ỹ) such
that x ∈ K \ C. It follows that

W · h(x; ỹ − x) ≥ 0,

which contradicts (5.3). Therefore, we have P (ỹ) ⊆ C. Then P (ỹ) is a closed subset
of a compact set C, and hence, compact. Since for each y ∈ K, Q(y) is closed and
P (y) ⊆ Q(y). Therefore, Q(ỹ) is compact. Then by using the same argument as
in the proof of Theorem 5.8, there exists a solution of (WMVIP). Rest of the proof
follows from the proof of Theorem 5.8. �
Theorem 5.12. Let K be a nonempty, closed and convex subset of Rn. Let h :
K × Rn → Rℓ be weighted upper sign continuous, weighted pseudomonotone and
weighted proper subodd w. r. t. weight vector W ∈ Rℓ

+ \{0} on K such that for each
x ∈ K, let h(x; ·) be positively homogeneous and upper semicontinuous. Assume
that there exist a compact subset D of Rn and ỹ ∈ D ∩K such that

(5.4) W · h(ỹ; ỹ − x) < 0, for all x ∈ K \D.

Then there exists a solution x̄ ∈ K of (WMVIP), and hence, it is a solution of
(WSVIP). Furthermore, if W ∈

∏
i∈I T then there exists a normalized solution

x̄ ∈ K of (WSVIP), and hence, it is a solution of (SVVIP)w. Moreover, if W ∈∏n
i=1(int T), then x̄ ∈ K is a solution of (SVVIP).

Proof. Let the set-valued maps P,Q : K → 2K be the same as in the proof of
Theorem 5.8. Let ỹ ∈ K and the set D be the same as in the hypothesis. By the
same argument as in the proof of Theorem 5.8, we derive that Q is a KKM map
and, for each y ∈ K, Q(y) is closed. It can be easily seen that Q(ỹ) ⊆ (K ∩D) is
a compact subset of K. Then, by Theorem 3.9,

∩
y∈K Q(y) ̸= ∅. Rest of the proof

follows on the lines of the proof of Theorem 5.8. �
We use Theorem 3.10 to establish the following existence result for a solution

of (WMVIP) and (WSVIP). Some conditions in this result are different from the
conditions in Theorems 5.11 and 5.12.

Theorem 5.13. Let K be a nonempty convex subset of Rn. Let h = (h1, . . . , hℓ) :
K → Rℓ be weighted pseudomonotone, weighted upper sign continuous w. r. t. the
same weight vector W ∈ Rℓ

+ \{0}. For each x ∈ K, let h(x; ·) be weighted quasicon-

vex w. r. t. the weight vector W ∈ Rℓ
+ \ {0} such that W · h(x; ·) is upper semicon-

tinuous and positively homogeneous with W ·h(x,0) = 0. Assume that there exist a
nonempty compact convex subset C of K and a nonempty compact subset D of K
such that for each x ∈ K \D, there exists ỹ ∈ C such that W ·h(ỹ; ỹ−x) < 0. Then
there exists a solution x̄ ∈ K of (WMVIP), and hence, it is a solution of (WSVIP).
Furthermore, if W ∈

∏
i∈I T then there exists a normalized solution x̄ ∈ K of
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(WSVIP), and hence, it is a solution of (SVVIP)w. Moreover, if W ∈
∏n

i=1(int T),
then x̄ ∈ K is a solution of (SVVIP).

Proof. For each x ∈ K, define set-valued maps S, T : K → 2K by

S(x) = {y ∈ K : W · h(y; y − x) < 0}
and

T (x) = {y ∈ K : W · h(x; y − x) < 0}.
By the weighted quasiconvexity of h in the second argument, T (x) is convex, for
each x ∈ K. From the weighted pseudomonotonicity of h, we have S(x) ⊆ T (x) for
all x ∈ K. Since T (x) is convex, coS(x) ⊆ T (x) for all x ∈ K.

For each y ∈ K, the complement of S−1(y) in K is

[S−1(y)]c = {x ∈ K : W · h(y; y − x) ≥ 0}
is closed in K because the upper semicontinuity of W · h(x; d) in d. Hence, S−1(y)
is open in K.

Assume that for all x ∈ K, S(x) is nonempty. Then all the conditions of Theorem
3.10 are satisfied, and therefore, there exists x̂ ∈ K such that x̂ ∈ T (x̂). It follows
that

0 = W · h(x̂; x̂− x̂) < 0,

a contradiction. Hence, there exists x̄ ∈ K such that S(x̄) = ∅. This implies that
for all y ∈ K,

W · h(y; y − x̄) ≥ 0.

Thus, x̄ is a solution of (WMVIP). By Lemma 5.3, x̄ ∈ K is a solution of (WSVIP).
Rest of the proof is same as in the last part of the proof of Theorem 5.8 �

We introduce weighted properly quasiconvexity which generalizes the notion of
0-diagonally quasiconcavity [27].

Definition 5.14. LetK be a nonempty subset of Rn. A vector-valued bifunction h :
K×Rn → Rℓ is said to be weighted properly quasimonotone w. r. t. the weight vector
W ∈ Rℓ

+\{0} if for every x1, x2, . . . , xm ∈ K and every y ∈ co{x1, x2, . . . , xm}, there
exists i ∈ {1, 2, . . . ,m} such that

W · h(xi; y − xi) ≤ 0.

Theorem 5.15. Let K be a nonempty compact convex subset of Rn and let h : K×
Rn → Rℓ be weighted properly quasimonotone w. r. t. the weight vector W ∈ Rℓ

+\{0}
such that W · h(·; ·) is upper semicontinuous. Then, (WMVIP) has a solution.

Proof. Define the set-valued mapping P : K → 2K by

P (y) = {x ∈ K : W · h(y; y − x) ≥ 0}, for all y ∈ K.

For any y1, y2, . . . , ym ∈ K and ỹ ∈ co{y1, y2, . . . , ym}, weighted proper quasimono-
tonicity implies that ỹ ∈

∩m
i=1 P (yi). Also, for each y ∈ K, P (y) is a closed subset

of a compact set K, and hence, compact. Therefore, by Theorem 3.9, it follows that∩
y∈K P (y) ̸= ∅. Thus, any x̄ ∈

∩
y∈K P (y) is a solution of (WMVIP). �

Finally, we establish an existence result under densely weighted pseudomono-
tonicity.
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Theorem 5.16. Let K be a nonempty, compact and convex subset of Rn. Let
h : K × Rn → Rℓ be weighted proper subodd and densely weighted pseudomonotone
w. r. t. the same weight vector W ∈ Rℓ

+ \ {0}. Assume that W · h(·; ·) is upper
semicontinuous, and for each x ∈ K, let W · h(x; ·) be positively homogeneous.
Then there exists a solution x̄ ∈ K of (WMVIP)0, and hence, it is a solution of
(WMVIP). Furthermore, x̄ is also a solution of (WSVIP).

Proof. LetK0 be the same as in the definition of a densely weighted pseudomonotone
map. For each y ∈ K0, define two set-valued maps P,Q : K0 → 2K by

P (y) = {x ∈ K : W · h(x; y − x) ≥ 0}

and

Q(y) = {x ∈ K : W · h(y, y − x) ≥ 0}.
Following the same argument as in the proof of Theorem 5.8, we obtain that
(WMVIP)0 has a solution x̄. By Lemma 5.7, x̄ is a solution of (WMVIP). Therefore,
by Lemma 5.3, x̄ ∈ K is a solution of (WSVIP). �

Corollary 5.17. Let K be a nonempty, compact and convex subset of Rn. Let h :
K×Rn → Rℓ be weighted proper subodd and densely strict weighted pseudomonotone
w. r. t. the same weight vector W ∈ Rℓ

+ \ {0}. Assume that W · h(·; ·) is upper
semicontinuous, and for each x ∈ K, let W ·h(x; ·) be positively homogeneous. Then
there exists a solution x̄ ∈ K of (WMVIP)0, and hence, it is a solution (WMVIP).
Furthermore, x̄ ∈ K is a solution of (WSVIP), and it is unique if x̄ ∈ K0.
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F. Giannessi, S. Komloski and T. Tapcsáck (eds), Kluwer Academic Publisher, Dordrech, The
Netherlands, 1998, pp. 93–99.



684 S. AL-HOMIDAN AND Q. H. ANSARI

[12] F. Giannessi (Editor), Vector Variational Inequalities and Vector Equilibria. Mathematical
Theories, Kluwer Academic Publisher, Dordrecht, The Netherlands (2000).
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