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Let
∩
i∈I

EP (fi) denote the set of all common solutions of the system of equilibrium

problem (1.2).
For each i ∈ I, if fi(x, y) = ⟨Aix, y − x⟩, where Ai : K → K is a nonlinear oper-

ator, then the problem (1.2) becomes the following system of variational inequality
problem:

(1.3) Find an element x ∈ K such that ⟨Aix, y − x⟩ ≥ 0, ∀ y ∈ K.

As a generalization of nonexpansive mappings, some authors have constructed
some iterative algorithms for fixed point problems of quasi-nonexpansive mappings
and the equilibrium problem (1.1); see, [6, 14, 18, 19].

In this paper, we present a split common solution problem for fixed point problems
of nonlinear mappings and equilibrium problems as follows.

Let E1 and E2 be two real Banach spaces. Let C be a closed convex subset of
E1, K a closed convex subset of E2, A : E1 → E2 a bounded linear operator, f
a bi-function from C × C into R and T : K → K be nonlinear mappings with
F(T ) ̸= ∅. Suppose that EP (f) ̸= ∅. We consider the mathematical model about
the split common solution problem (SCSP, for short) as follows.

(SCSP) Find an element y ∈ EP (f) such that Ay ∈ F(T ).

Let {p ∈ EP (f) : Ap ∈ F(T )} be the solution set of SCSP.

A simple example is given hereunder.

Example 1.1. Let E1 = E2 = R, C = [1,+∞) and K = (−∞,−2]. Let f :
C × C → R, A : R → R and T : K → K be define by f(x, y) = y − x, A(x) = −2x,
T (x) = x, respectively. Clearly, A is a bounded linear operator, EP (f) = {1} and
A(1) = −2 ∈ F(T ). So 1 ∈ {p ∈ EP (f) : Ap ∈ F(T )} ̸= ∅.

Recently, the common solution problem for the equilibrium problem (1.1) and
the fixed point problem of nonlinear operators have been studied by many authors
in real Hilbert spaces or real Banach spaces and many strong or weak convergence
theorems were established. However, the equilibrium problem (1.1) and the fixed
point problem of nonlinear operators always belong to difference subsets of spaces
in general. These show that SCSP is very important and it is an essence of the
development of the common solution problem for the equilibrium problem (1.1) and
the fixed point problem of nonlinear operators. In this paper, we introduce some
new feasible iterative algorithms for the split common solution problems for equi-
librium problems and fixed point problems of nonlinear mappings. Some examples
illustrating our results are also given.

2. Preliminaries

A Banach space (X, ∥·∥) is said to satisfy Opial’s condition, if for each sequence
{xn} in X which converges weakly to a point x ∈ X, we have

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥, ∀ y ∈ X, y ̸= x.

It is well known that any Hilbert space satisfies Opial’s condition.
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Let K be a nonempty subset of a Banach space (X, ∥·∥). Recall that a mapping
T : K → K is said to be

(1) nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ K;
(2) quasi-nonexpansive if F(T ) ̸= ∅ and ∥Tx− p∥ ≤ ∥x− p∥ for all x ∈ K and

p ∈ F(T ).

Definition 2.1 (see [13]). Let K be a nonempty closed convex subset of a real
Hilbert space H and T a mapping from K into K. The mapping T is said to
be demiclosed if, for any sequence {xn} which weakly converges to y, and if the
sequence {Txn} strongly converges to z, then Ty = z.

Remark 2.2. In Definition 2.1, the particular case of demiclosedness at zero is
frequently used in some iterative convergence algorithms, which is the particular
case when z = θ, the zero vector of H; for more detail, one can refer to [13].

Now, we first introduce the concept of zero-demiclosedness.

Definition 2.3. Let K be a nonempty closed convex subset of a real Hilbert space
and T a mapping from K into K. The mapping T is called zero-demiclosed if {xn}
in K satisfying ∥xn − Txn∥ → 0 and xn ⇀ z ∈ K implies Tz = z.

Proposition 2.4. Let K be a nonempty closed convex subset of a real Hilbert space
with zero vector θ. Then the following statements hold.

(a) Let T be a mapping from K into K. Then T is zero-demiclosed if and only
if I − T is demiclosed at θ;

(b) Let T be a nonexpansive mapping from H into itself. If there is a bounded
sequence {xn} ⊂ H such that ∥xn − Txn∥ → 0 as n → 0, then T is zero-
demiclosed.

Proof. Obviously, the conclusion (a) holds. To see (b), since {xn} is bounded, there
is a subsequence {xnk

} ⊂ {xn} and z ∈ H such that xnk
⇀ z. One can claim

Tz = z. Indeed, if Tz ̸= z, it follows from the Opial’s condition that

lim inf
k→∞

∥xnk
− z∥ < lim inf

k→∞
∥xnk

− Tz∥

≤ lim inf
k→∞

{∥xnk
− Txnk

∥+ ∥Txnk
− Tz∥}

= lim inf
k→∞

∥Txnk
− Tz∥

≤ lim inf
k→∞

∥xnk
− z∥,

which is a contradiction. So Tz = z and hence T is zero-demiclosed. �

Example 2.5. Let H = R with the inner product defined by ⟨x, y⟩ = xy for all
x, y ∈ R and the standard norm | · |. Let C := [0,+∞). Let T be a mapping from
C into C defined by

Tx =

{
1
x , x ∈ (1,+∞),
0, x ∈ [0, 1].

Then T is a quasi-nonexpansive mapping but not zero-demiclosed.
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Proof. It is easy to verify that F(T ) = {0} and T is a quasi-nonexpansive mapping.
We claim that T is not zero-demiclosed. Let {xn} be a sequence defined by xn =
1+ 1

n , n ∈ N. Clearly, xn → 1 and xn − Txn → 0 as n → ∞ and 1 /∈ F(T ). So T is
not zero-demiclosed. �

Example 2.6. Let H = R with the inner product defined by ⟨x, y⟩ = xy for all
x, y ∈ R and the standard norm | · |. Let C := [0, 1]. Let T1, T2 be two mappings
from C into C defined by

T1x =

{
7
8 , x = 1/5,
1, otherwise

and

T2x =

{
5
6 , x = 1/5,
1, otherwise

.

Then T1 and T2 are all zero-demiclosed quasi-nonexpansive mappings.

Proof. It is easy to verify that F(T1) = F(T2) = {1} and T1, T2 are all quasi-
nonexpansive mappings, so it suffices to prove that T1 and T2 are all zero-demiclosed.

Let {xn} ⊂ C is a sequence satisfying xn−T1xn → 0 and xn → z as n → ∞. We
want to prove z ∈ F(T1) or, to be more precise, z = 1. In fact, since xn−T1xn → 0,
without loss of generality, there exists a subsequence {xni} of {xn} with xni ̸= 1/5
for all i ∈ N. Since

|z − 1| ≤ |z − xni |+ |xni − T1xni |+ |T1xni − 1| → 0 as ni → ∞,

which implies z = 1. This shows T1 is a zero-demiclosed mapping. Similarly, we
can prove T2 is also a zero-demiclosed mapping. �

Let K be a closed convex subset of a real Hilbert space H. For each point x ∈ H,
there exists a unique nearest point in K, denoted by PKx, such that

∥x− PKx∥ ≤ ∥x− y∥, ∀ y ∈ K.

The mapping PK is called the metric projection from H onto K. It is well known
that PK satisfies

⟨x− y, PKx− PKy⟩ ≥ ∥PKx− PKy∥2

for every x, y ∈ H. Moreover, PKx is characterized by the property: for x ∈ H,
and z ∈ K,

z = PK(x) ⇔ ⟨x− z, z − y⟩ ≥ 0, ∀ y ∈ K.

The following results are crucial to our main results.

Lemma 2.7 (see, e.g., [4]). Let H be a real Hilbert space. Then the following hold.

(a) ∥x+ y∥2 ≤ ∥y∥2 + 2⟨x, x+ y⟩ for all x, y ∈ H;
(b) ∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2⟨x, y⟩ for all x, y ∈ H.

Lemma 2.8 (see [2]). Let K be a nonempty closed convex subset of H and F be a
bi-function of K ×K into R satisfying the following conditions.

(A1) F (x, x) = 0 for all x ∈ K;
(A2) F is monotone, that is, F (x, y) + F (y, x) ≤ 0 for all x, y ∈ K;
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(A3) for each x, y, z ∈ K,

lim sup
t↓0

F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ K, y 7→ F (x, y) is convex and lower semi-continuous.

Let r > 0 and x ∈ H. Then, there exists z ∈ K such that

F (z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, for all y ∈ K.

Lemma 2.9 (see [7]). Let K be a nonempty closed convex subset of H and let F be
a bi-function of K ×K into R satisfying (A1)-(A4). For r > 0 and x ∈ H, define
a mapping Tr : H → K as follows:

(2.1) Tr(x) =

{
z ∈ K : F (z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀ y ∈ K

}
for all x ∈ H. Then the following hold:

(i) Tr is single-valued;
(ii) Tr is firmly nonexpansive, that is, for any x, y ∈ H,

∥Trx− Try∥2 ≤ ⟨Trx− Try, x− y⟩;

(iii) F(Tr) = EP (F );
(iv) EP (F ) is closed and convex.

In 1999, Atsushiba and Takahashi [1] introduced the concept of the W -mapping
as follows:

(2.2)

U1 = β1T1 + (1− β1)I,
U2 = β2T2U1 + (1− β2)I,

...
UN−1 = βN−1TN−1UN−2 + (1− βN−1)I,
W = UN = βNTNUN−1 + (1− βN )I.

where {Ti}Ni is a finite family of mappings of K into itself and βi ∈ [0, 1] for all

i = 1, 2, . . . , N with
∑N

i=1 βi = 1. Such a mapping W is called the W -mapping
generated by T1, T2, . . . , TN and β1, β2, . . . , βN ; see also [16].

Lemma 2.10 (see [5]). Let K be a nonempty closed convex subset of a strictly
convex Banach space X. Let {Ti}Ni=1 be a finite family of quasi-nonexpansive and L-

Lipschitz mappings of K into itself such that
∩N

i=1 F (Ti) ̸= ∅ . and let β1, β2, . . . , βN
be real numbers such that 0 < βi < 1 for all i = 1, 2, . . . , N − 1, 0 < βN ≤
1, and

∑N
i=1 βi = 1. Let W be the W -mapping generated by T1, T2, . . . , TN and

β1, β2, . . . , βN . Then, the following conclusions hold:

(i) W is quasi-nonexpansive and Lipschitz;

(ii) F(W ) =
∩N

i=1F(Ti).

Remark 2.11. (i) Under the same assumptions as Lemma 2.10, if {Ti}Ni=1 is
a finite family of quasi-nonexpansive mappings of K into itself, then, from
the proof of [5, Lemma 3.1], we see that W is quasi-nonexpansive;
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(ii) It is well-known that any real Hilbert space is a strictly convex Banach
space. So Lemma 2.10 is also true in a real Hilbert space.

Example 2.12. Let H,C, T1 and T2 be the same as Example 2.6. Let U1x =
1
2T1x+ 1

2x for all x ∈ C. Define a W -mappings as follows:

Wx =
1

2
T2U1x+

1

2
x for all x ∈ C.

Then the following hold.

(i) F(W ) = F(T1) = F(T2) = {1};
(ii) W is a zero-demiclosed quasi-nonexpansive mapping.

Proof. It is easy to verify that 1 ∈ F(W ). On the other hand, let p ∈ F(W ). Then
we have

|p− 1| ≤ 1

2
|T2U1p− 1|+ 1

2
|p− 1|

≤ 1

2
|U1p− 1|+ 1

2
|p− 1|

=
1

2

∣∣∣∣12T1p+
1

2
p− 1

∣∣∣∣+ 1

2
|p− 1|

≤ 1

4
|T1p− 1|+ 1

4
|p− 1|+ 1

2
|p− 1|

≤ |p− 1|,

which implies the following conclusions hold:

(1) 1
2 |U1p− 1|+ 1

2 |p− 1| = |p− 1|;
(2) 1

2 |T2U1p− 1|+ 1
2 |p− 1| = |p− 1|.

From (1), we have U1p = p which implies T1p = p. By (2), we have T2p = p. So
p ∈ F(T1) = F(T2) = {1} and hence p = 1. Thus F(W ) = {1} and the conclusion
(i) holds.

To see (ii), it is not hard to verify that W is quasi-nonexpansive, so it suffices to
prove thatW is zero-demiclosed. Let {xn} ⊂ C be a sequence satisfying xn−Wxn →
0 and xn → z as n → ∞. From xn − Wxn → 0, there exists a subsequence
{xnl

} of {xn} such that xnl
̸= 1/5 for all l ∈ N. Indeed, let Λ := {n ∈ N :

xn ̸= 1/5}. If ♯(Λ), the cardinal number of Λ, is finite, then xn = 1/5, T1xn = 7/8
and U1xn = 43/80 ̸= 1/5 for all n ∈ N \ Λ. So Wxn = 3/5 for all n ∈ N \ Λ which
implies limn→∞ (xn −Wxn) ̸= 0, a contraction.

Now, we claim z = 1. For nl, since T1xnl
= 1, U1xnl

= 1/2 + 1
2xnl

̸= 1/5 and
T2U1xnl

= 1, we have

Wxnl
= 1/2 +

1

2
xnl

and

Wxnl
− xnl

= 1/2(1− xnl
).

Since xn −Wxn → 0, we get xnl
→ 1 which implies z = 1. Hence, we show that W

is a zero-demiclosed mapping. �
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Lemma 2.13 (see [9]). Let H be a real Hilbert space. Then for any x1, x2, . . . , xk ∈
H and a1, a2, . . . , ak ∈ [0, 1] with

∑k
i=1 ai = 1, k ∈ N, we have∥∥∥∥∥

k∑
i=1

aixi

∥∥∥∥∥
2

=

k∑
i=1

ai∥xi∥2 −
k−1∑
i=1

k∑
j=i+1

aiaj∥xi − xj∥2.

In particular, we have

(1) ∥αx+(1−α)y∥2 = α∥x∥2+(1−α)∥y∥2−α(1−α)∥x− y∥2 for all x, y ∈ H
and α ∈ [0, 1];

(2) the map f : H → R defined by f(x) = ∥x∥2 is convex.

3. Main results

In this section, we will introduce some new iterative algorithms for the split
common solution problems. First of all, we need the following result.

Lemma 3.1. Let I = {1, 2, . . . , k} be a finite index set. For each i ∈ I, let fi be bi-
functions from K×K into R satisfying the conditions (A1)-(A4) and for each r > 0,
let T i

r : H → K be defined as (2.1). Let {rn} ⊂ (0,+∞) with lim infn→∞ rn > 0 and
{xn} ⊂ H be given. Then the following statements hold.

(1) For each (i, n) ∈ I×N, T i
rn is a firmly non-expansive single-valued mapping

and F(T i
rn) = EP (fi) is closed and convex.

(2) For each (i, n) ∈ I × N, let uin = T i
rnxn and zn = u1

n+u2
n+···+uk

n
k . Then we

have
(i) ∥zn− v∥2 ≤ ∥xn− v∥2− 1

k

∑k
i=1 ∥uin−xn∥2 for any v ∈

∩k
i=1EP (fi).

(ii) If ∥uin − xn∥ → 0 and uin ⇀ z as n → ∞, then z ∈
∩k

i=1EP (fi).

Proof. The conclusion (1) follows from Lemma 2.9 immediately. To see (2), we first

prove that (i) holds. For any v ∈
∩k

i=1EP (fi), by Lemma 2.9 and Lemma 2.7, we
obtain

∥uin − v∥2 = ∥T i
rnxn − T i

rnv∥
2 ≤ ⟨T i

rnxn − T i
rnv, xn − v⟩

=
1

2

{
∥uin − v∥2 + ∥xn − v∥2 − ∥uin − xn∥2

}
,

which yields that

(3.1) ∥uin − v∥2 ≤ ∥xn − v∥2 − ∥uin − xn∥2.

By Lemma 2.13, we get

(3.2) ∥zn − v∥2 ≤ 1

k

k∑
i=1

∥uin − v∥2.

Hence, it follows from (3.1) and (3.2) that

∥zn − v∥2 ≤ ∥xn − v∥2 − 1

k

k∑
i=1

∥uin − xn∥2
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and (i) is proved. Finally, we show (ii). For each i ∈ I, since

fi(u
i
n, y) +

1

rn
⟨y − uin, u

i
n − xn⟩ ≥ 0, ∀ y ∈ K,

it follows from (A2) that

1

rn
⟨y − uin, u

i
n − xn⟩ ≥ fi(y, u

i
n) + fi(u

i
n, y) +

1

rn
⟨y − uin, u

i
n − xn⟩ ≥ fi(y, u

i
n),

and hence

(3.3) ⟨y − uin,
uin − xn

rn
⟩ ≥ fi(y, u

i
n), ∀ y ∈ K.

Applying (A4) and (3.3), we obtain fi(y, z) ≤ 0, ∀ y ∈ K. Let y ∈ K be given. Put

yt = ty + (1− t)z, t ∈ (0, 1).

Then yt ∈ K and fi(yt, z) ≤ 0 for all i ∈ I. For each i ∈ I, by (A1) and (A4), we
get

0 = fi(yt, yt) ≤ tfi(yt, y) + (1− t)fi(yt, z) ≤ tfi(yt, y).

So fi(yt, y) ≥ 0 for all i ∈ I. For any i ∈ I, by (A3), we have

fi(z, y) ≥ lim
t↓0

fi(ty + (1− t)z, y) = lim
t↓0

fi(yt, y) ≥ 0,

which implies z ∈
∩k

i=1EP (fi). �
Theorem 3.2. Let H1 and H2 be two real Hilbert spaces. Let C be a nonempty
closed convex subset of H1 and K a nonempty closed convex subset of H2. Let
I := {1, 2, . . . , k} denote a finite index set. For any i ∈ I, let Gi : C → C be
quasi-nonexpansive mappings and fi : C × C → R be bi-functions. Let A : H1 →
H2 be a bounded linear operator with its adjoint A∗ and T : K → K be a zero-
demiclosed quasi-nonexpansive mapping with F(T ) ̸= ∅. Let β ∈ (0, 1), ρ be the
spectral radius of the operator A∗A and λ ∈ (0, 1

ρβ ). Let W be the W -mapping

generated by G1, G2, . . . , Gk and γ1, γ2, . . . , γk, where γi ∈ [0, 1] for all i ∈ I with∑
i∈I γi = 1.

Let {xn} and {uin} be sequences generated in the following manner:

(3.4)


x1 ∈ C,
uin = T i

rnxn, ∀ i ∈ I,

vn = u1
n+···+uk

n
k ,

xn+1 = (1− αn)yn + αnWyn,
yn = PC(vn + λβA∗(T − I)Avn), ∀ n ∈ N,

where PC is a projection operator from H1 into C and the control coefficient se-
quences {αn} ⊂ (0, 1) and {rn} ⊂ (0,+∞) satisfy the following restrictions:

(D1) there exists ξ ∈ (0, 1) such that αn ∈ [ξ, 1− ξ] for all n ∈ N;
(D2) lim inf

n→∞
rn > 0.

If W is zero-demiclosed, Ω =
(∩k

i=1EP (fi)
)∩(∩k

i=1F(Gi)
)
̸= ∅ and Γ = {p ∈

Ω : Ap ∈ F(T )} ̸= ∅, then the sequences {xn} and {uin}, converge weakly to an
element q ∈ Γ.
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Proof. Let p ∈ Γ. So Ap ∈ F(T ). For each n ∈ N, applying (2) of Lemma 3.1, we
have

(3.5) ∥vn − p∥2 ≤ ∥xn − p∥2 − 1

k

k∑
i=1

∥uin − xn∥2

and

(3.6) ∥uin − p∥ = ∥T i
rnxn − p∥ ≤ ∥xn − p∥.

Since T is quasi-nonexpansive,

(3.7) ∥TAvn −Ap∥ ≤ ∥Avn −Ap∥ for each n ∈ N.

For each n ∈ N, by (b) of Lemma 2.7 and (3.7), we have

2λβ⟨vn − p,A∗(T − I)Avn⟩ =2λβ⟨A(vn − p) + (T − I)Avn

− (T − I)Avn, (T − I)Avn⟩
= 2λβ(⟨TAvn −Ap, (T − I)Avn⟩ − ∥(T − I)Avn∥2)

= 2λβ
(1
2
∥TAvn −Ap∥2 + 1

2
∥(T − I)Avn∥2(3.8)

− 1

2
∥Avn −Ap∥2 − ∥(T − I)Avn∥2

)
≤ 2λβ

(1
2
∥(T − I)Avn∥2∥(T − I)Avn∥2

)
= − λβ∥(T − I)Avn∥2.

Since ρ is the spectral radius of A∗A, we have

λ2β2⟨(T − I)Avn, AA
∗(T − I)Avn⟩ ≤ ρλ2β2⟨(T − I)Avn, (T − I)Avn⟩

= ρλ2β2∥(T − I)Avn∥2 ∀n ∈ N.(3.9)

For each n ∈ N, from (3.4)-(3.9) we have

∥yn − p∥2 = ∥PC(vn + λβA∗(T − I)Avn)− PCp∥2

≤ ∥vn + λβA∗(T − I)Avn − p∥2

= ∥vn − p∥2 + ∥λβA∗(T − I)Avn∥2

+ 2λβ⟨vn − p,A∗(T − I)Avn⟩
= ∥vn − p∥2 + λ2β2⟨(T − I)Avn, AA∗(T − I)Avn⟩(3.10)

+ 2λβ⟨vn − p,A∗(T − I)Avn⟩
≤ ∥vn − p∥2 + ρλ2β2∥(T − I)Avn∥2

− λβ∥(T − I)Avn∥2

=∥vn − p∥2 − λβ(1− ρλβ)∥(T − I)Avn∥2

≤ ∥xn − p∥2 − λβ(1− ρλβ)∥(T − I)Avn∥2.

Since λ ∈ (0, 1
ρβ ), 1− ρλβ > 0, by (3.10), we have

∥yn − p∥2 ≤ ∥vn − p∥2
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and
∥yn − p∥2 ≤ ∥xn − p∥2 for each n ∈ N.

On the other hand, from (3.4) and (3.10), we obtain

∥xn+1 − p∥2 = ∥(1− αn)(yn − p) + αn(Wyn − p)∥2

= (1− αn)∥yn − p∥2 + αn∥Wyn − p∥2 − (1− αn)αn∥yn −Wyn∥2

≤ (1− αn)∥yn − p∥2 + αn∥yn − p∥2 − (1− αn)αn∥yn −Wyn∥2(3.11)

= ∥yn − p∥2 − αn(1− αn)∥Wyn − yn∥2

≤ ∥vn − p∥2 − αn(1− αn)∥Wyn − yn∥2 − λβ(1− ρλβ)∥(T − I)Avn∥2

≤ ∥xn − p∥2 − αn(1− αn)∥Wyn − yn∥2 − λβ(1− ρλβ)∥(T − I)Avn∥2.
Hence we know from (3.11) that the sequence {∥xn − p∥} is nonincreasing and
lim
n→∞

∥xn − p∥ exists. By above inequalities, we also obtain

ℓ := lim
n→∞

∥xn − p∥ = lim
n→∞

∥vn − p∥ = lim
n→∞

∥yn − p∥.

From (3.11) again and the condition (D1),

(3.12) lim
n→∞

∥Wyn − yn∥ = lim
n→∞

∥(T − I)Avn∥ = 0.

Again from (3.5), we have

(3.13) lim
n→∞

∥uin − xn∥ = 0, ∀i ∈ I.

It follows from (3.13) and Lemma 2.5 that

(3.14) lim
n→∞

∥vn − xn∥ = 0.

Since {xn} is bounded, {xn} has a weakly convergence subsequence {xnl
}. Let

xnl
⇀ q for some q ∈ C. Then uinl

⇀ q, vnl
⇀ q and Avnl

⇀ Aq ∈ K by
(3.12)-(3.14). Since A is bounded and lim

n→∞
∥(T − I)Avn∥ = 0, we obtain

∥yn − vn∥ = ∥PC(vn + λβA∗(T − I)Avn)− PCvn∥
≤ ∥(vn + λβA∗(T − I)Avn)− vn∥
= ∥λβA∗(T − I)Avn∥ → 0 as n → ∞,

which yields that ynl
⇀ q as nl → ∞. Since W is a zero-demiclosed quasi-

nonexpansive mapping, by (3.12), we have q ∈ F(W ). Notice that uinl
⇀ q,

so, from (2) of Lemma 3.1, (3.13) and (D2), we have q ∈
∩k

i=1EP (fi). So,

q ∈ F(W )
∩
(
∩k

i=1EP (fi)) = Ω. On the other hand, since T is also a zero-
demiclosed mapping, it follows (3.12) that Aq ∈ F(T ) which implies q ∈ Γ.

Finally, we prove {xn} converges weakly to q ∈ Γ. Otherwise, if there exists other
subsequence of {xn} which is denoted by {xnj} such that xnj ⇀ z ∈ Γ with z ̸= q.
Then, by Opial’s condition, we get

lim inf
j→∞

∥xnj − z∥ < lim inf
j→∞

∥xnj − q∥ < lim inf
j→∞

∥xnj − z∥,

a contradiction. Hence {xn} and {uin} converge weakly to an element in Γ, respec-
tively and we obtain the desired result. The proof is completed. �
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Remark 3.3. We know that any nonexapansive mapping is quasi-nonexpansive
mappings, so Theorem 3.2 also holds when Gi (or T ) is nonexpansive for all i ∈ I.

Here, we give a simple example illustrating Theorem 3.2.

Example 3.4. Let H1 = H2 = H = R, C := [0, 1] and K := [−1, 0]. Let T1, T2,W
be the same as Examples 2.6 and 2.12. Let Ax = −x for all x ∈ R. Then A is
a bounded linear operator from C into K and A∗(the adjoint of A) = A . Let
f1(x, y) = x− y and f2(x, y) = 2(x− y) for all x, y ∈ C. Then f1 and f2 satisfy the
condition (A1)-(A4) and EP (f1) = EP (f2) = {1}.

Let T be defined by

Tx =

{
−1 x ̸= −1/5,
−7/9 x = −1/5

for all x ∈ K.

Then Γ :=
{
p ∈

(∩2
i=1EP (fi)

)∩(∩2
i=1 F (Ti)

)
: Ap ∈ F (T )

}
= {1}. Moreover,

following a similar argument as the proof of Example 2.6 or Example 2.12, one can
see that T is a zero-demiclosed quasi-nonexpansive mapping.

Let {xn} and {uin}, i = 1, 2, be sequences generated by
fi(u

i
n, y) +

1
rn
⟨y − uin, u

i
n − xn⟩ ≥ 0, y ∈ C, i = 1, 2,

vn = u1
n+u2

n
2 ,

xn+1 = (1− αn)yn + αnWyn,
yn = PC(vn + λβA∗(T − I)Avn), ∀ n ∈ N,

where PC is a projection operator from H into C, λ, β ∈ (0, 1), {αn} ⊂ (0, 1) and
the control coefficient sequence {rn} ⊂ (0,+∞) satisfies rn ≥ 1 for all n ∈ N.
Then {xn} and {uin} converge strongly to an element q ∈ Γ for i = 1, 2. Moreover,
xn+1 = uin = 1 for all n ∈ N.

Proof. For i ∈ {1, 2}, let

φi(y, z, w, r) = i(z− y)+
1

r
⟨y− z, z−w⟩ = (z− y)(i+

z − w

r
),∀ y, z, w ∈ C, ∀ r ≥ 1.

It is easy to verify that there exists a unique element z = 1 ∈ C such that for each
i ∈ {1, 2},

φi(y, z, w, r) = i(z − y) +
1

r
⟨y − z, z − w⟩ ≥ 0,∀ y, w ∈ C, ∀ r ≥ 1.

So, from fi(u
i
n, y) +

1
rn
⟨y − uin, u

i
n − xn⟩ ≥ 0, i ∈ {1, 2}, and rn ≥ 1, we have

u1n = u2n = 1 for all n ∈ N. Further, vn = 1 for all n ∈ N. From the definition
of T and A, we obtain (T − I)Avn = 0 and A∗(T − I)Avn = 0. Hence yn =
PC(vn + λβA∗(T − I)Avn) = 1 and xn+1 = uin = 1 for all n ∈ N. �

In Theorem 3.2, if the index set I is a singleton, we have the following Corollary
3.5.

Corollary 3.5. Let H1 and H2 be two real Hilbert spaces. Let C be a closed convex
subset of H1 and K a closed convex subset of H2. Let S : C → C be a zero-
demiclosed quasi-nonexpansive mappings and f be a bi-functions from C × C into
R with Ω = EP (f)

∩
F (S) ̸= ∅. Let A : H1 → H2 be a bounded linear operator with
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its adjoint A∗ and T : K → K be a zero-demiclosed quasi-nonexpansive mapping
with F(T ) ̸= ∅. Let β ∈ (0, 1), ρ be the spectral radius of the operator A∗A and
λ ∈ (0, 1

ρβ ).

Let {xn} and {un} be sequences generated in the following manner:
x1 ∈ C,
f(un, y) +

1
rn
⟨y − un, un − xn⟩ ≥ 0, y ∈ C,

xn+1 = (1− αn)yn + αnSyn,
yn = PC(un + λβA∗(T − I)Aun), ∀ n ∈ N,

where PC is a projection operator from H1 into C and the control coefficient se-
quences {αn} ⊂ (0, 1) and {rn} ⊂ (0,+∞) satisfy the following restrictions:

(D1) there exists ξ ∈ (0, 1) such that αn ∈ [ξ, 1− ξ] for all n ∈ N;
(D2) lim inf

n→∞
rn > 0.

If Γ = {p ∈ Ω : Ap ∈ F(T )} ̸= ∅, then the sequences {xn} and {un}, converge
weakly to an element q ∈ Γ.

If S = I in Corollary 3.5, we have the following Corollary 3.6.

Corollary 3.6. Let H1 and H2 be two real Hilbert spaces. Let C be a closed convex
subset of H1 and K a closed convex subset of H2. Let f be a bi-function from C×C
into R with Ω = EP (f) ̸= ∅. Let A : H1 → H2 be a bounded linear operator with
its adjoint A∗ and T : K → K be a zero-demiclosed quasi-nonexpansive mapping
with F(T ) ̸= ∅. Let β ∈ (0, 1), ρ be the spectral radius of the operator A∗A and
λ ∈ (0, 1

ρβ ).

Let x1 ∈ C. Let {xn} and {un} be sequences generated in the following manner:
x1 ∈ C,
f(un, y) +

1
rn
⟨y − un, un − xn⟩ ≥ 0, y ∈ C,

xn+1 = PC(un + λβA∗(T − I)Aun), ∀ n ∈ N,

where PC is a projection operator from H1 into C and the control coefficient se-
quences {αn} ⊂ (0, 1) and {rn} ⊂ (0,+∞) satisfy the following restrictions:

(D1) there exists ξ ∈ (0, 1) such that αn ∈ [ξ, 1− ξ] for all n ∈ N;
(D2) lim inf

n→∞
rn > 0.

If Γ = {p ∈ EP (f) : Ap ∈ F(T )} ̸= ∅, then the sequences {xn} and {un},
converge weakly to an element q ∈ Γ.

In Corollary 3.5, if f(x, y) = 0 for all x, y ∈ C, we have the following Corollary
3.7.

Corollary 3.7. Let H1 and H2 be two real Hilbert spaces. Let C be a closed convex
subset of H1 and K a closed convex subset of H2. Let S : C → C be a zero-
demiclosed quasi-nonexpansive mapping with F(S) ̸= ∅. Let A : H1 → H2 be a
bounded linear operator with its adjoint A∗ and T : K → K be a zero-demiclosed
quasi-nonexpansive mapping with F(T ) ̸= ∅. Let β ∈ (0, 1), ρ be the spectral radius
of the operator A∗A and λ ∈ (0, 1

ρβ ).
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Let {xn} be a sequence generated in the following manner: x1 ∈ C,
xn+1 = (1− αn)yn + αnSyn,
yn = PC(xn + λβA∗(T − I)Axn), ∀ n ∈ N,

where PC is a projection operator from H1 into C and there exists ξ ∈ (0, 1) such
that αn ∈ [ξ, 1 − ξ] for all n ∈ N. If Γ = {p ∈ EP (f) : Ap ∈ F(T )} ̸= ∅, then the
sequence {xn} converges weakly to an element q ∈ F(T ).

Remark 3.8. The class of problems considered in Corollary 3.7 is so-called the
split common fixed-point problem which is a generalization of the spilt feasibility
problem and the convex feasibility problem; for more detail, see [3, 13].
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