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FEASIBLE ITERATIVE ALGORITHMS FOR SPLIT COMMON
SOLUTION PROBLEMS

WEI-SHIH DU AND ZHENHUA HE*

ABSTRACT. In this paper, we introduce some new feasible iterative algorithms
for the split common solution problems for equilibrium problems and fixed point
problems of nonlinear mappings. Some examples illustrating our results are also
given.

1. INTRODUCTION

Throughout this paper, we assume that H is a real Hilbert space with zero vector
0, whose inner product and norm are denoted by (-,-) and || - ||, respectively. Let
K be a nonempty subset of H and T" be a mapping from K into itself. The set of
fixed points of T is denoted by F(T'). The symbols N and R are used to denote
the sets of positive integers and real numbers, respectively. We write x,, — = to
indicate that the sequence {x,} weakly converges to z and x,, — z will symbolize
strong convergence as usual.

Let K be a nonempty closed convex subset of H and let f be a bi-function from
K x K into R. The classical equilibrium problem is to find x € K such that

(1.1) flz,y) >0, Vye K.

Let EP(f) denote the set of all solutions of the problem (1.1). Since a lot of
problems in physics, optimization, and economics reduce to find a solution of (1.1)
(see, for instance, [2, 12]), some authors have proposed some methods to find the
solution of equilibrium problem (1.1); for instance, see [2, 7, 8, 12]. Some iterative
algorithms for fixed point problems of nonexpansive mappings and the equilibrium
problem (1.1) have been constructed; see, [4, 10, 11, 15, 16, 17].

Recently, some authors considered the common solution for a system of equilib-
rium problems and fixed point problems of nonlinear operators. Let I be an index
set. For each i € I, let f; be a bi-function from K x K into R. The system of
equilibrium problem is to find = € K such that

(1.2) fi(z,y) >0, Vye K andViel.
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Let (| EP(f;) denote the set of all common solutions of the system of equilibrium
el
problem (1.2).
For each i € I, if fi(z,y) = (Aix,y — x), where A; : K — K is a nonlinear oper-
ator, then the problem (1.2) becomes the following system of variational inequality
problem:

(1.3) Find an element z € K such that (A;z,y —z) >0, Vye K.

As a generalization of nonexpansive mappings, some authors have constructed
some iterative algorithms for fixed point problems of quasi-nonexpansive mappings
and the equilibrium problem (1.1); see, [6, 14, 18, 19].

In this paper, we present a split common solution problem for fixed point problems
of nonlinear mappings and equilibrium problems as follows.

Let E7 and Es be two real Banach spaces. Let C' be a closed convex subset of
Ey, K a closed convex subset of Fs, A : Ey — FE5 a bounded linear operator, f
a bi-function from C' x C into R and T : K — K be nonlinear mappings with
F(T) # 0. Suppose that EP(f) # (. We consider the mathematical model about
the split common solution problem (SCSP, for short) as follows.

(SCSP) Find an element y € EP(f) such that Ay € F(T).
Let {p € EP(f): Ap € F(T)} be the solution set of SCSP.

A simple example is given hereunder.

Example 1.1. Let £y = Ey = R, C = [1,400) and K = (—o0,—2]. Let f :
CxC—-R A:R—Rand T: K — K be define by f(z,y) =y — z, A(x) = —2uz,
T(x) = x, respectively. Clearly, A is a bounded linear operator, EP(f) = {1} and
A(l)=—2€ F(T). So 1 € {p e EP(f) : Ap € F(T)} # 0.

Recently, the common solution problem for the equilibrium problem (1.1) and
the fixed point problem of nonlinear operators have been studied by many authors
in real Hilbert spaces or real Banach spaces and many strong or weak convergence
theorems were established. However, the equilibrium problem (1.1) and the fixed
point problem of nonlinear operators always belong to difference subsets of spaces
in general. These show that SCSP is very important and it is an essence of the
development of the common solution problem for the equilibrium problem (1.1) and
the fixed point problem of nonlinear operators. In this paper, we introduce some
new feasible iterative algorithms for the split common solution problems for equi-
librium problems and fixed point problems of nonlinear mappings. Some examples
illustrating our results are also given.

2. PRELIMINARIES

A Banach space (X, ||-]|) is said to satisfy Opial’s condition, if for each sequence
{zn} in X which converges weakly to a point x € X, we have

liminf ||z, — z|| < liminf ||z, —y|, Yye X,y #x.
n—o0 n—oo

It is well known that any Hilbert space satisfies Opial’s condition.
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Let K be a nonempty subset of a Banach space (X, ||-||). Recall that a mapping
T: K — K is said to be

(1) nonexpansive if ||Tx — Ty|| < ||z — y|| for all z,y € K;
(2) quasi-nonexpansive if F(T) # () and || Tz — p|| < ||« — p|| for all z € K and
pe F(T).

Definition 2.1 (see [13]). Let K be a nonempty closed convex subset of a real
Hilbert space H and T a mapping from K into K. The mapping T is said to
be demiclosed if, for any sequence {z,} which weakly converges to y, and if the
sequence {T'x,} strongly converges to z, then Ty = z.

Remark 2.2. In Definition 2.1, the particular case of demiclosedness at zero is
frequently used in some iterative convergence algorithms, which is the particular
case when z = 6, the zero vector of H; for more detail, one can refer to [13].

Now, we first introduce the concept of zero-demiclosedness.

Definition 2.3. Let K be a nonempty closed convex subset of a real Hilbert space
and T a mapping from K into K. The mapping T is called zero-demiclosed if {x,}
in K satisfying ||, — Tx,|| — 0 and x,, — z € K implies Tz = z.

Proposition 2.4. Let K be a nonempty closed convex subset of a real Hilbert space
with zero vector . Then the following statements hold.

(a) Let T be a mapping from K into K. Then T is zero-demiclosed if and only
if I —T is demiclosed at 0;

(b) Let T' be a nonexpansive mapping from H into itself. If there is a bounded
sequence {x,} C H such that ||z, — Tzy| — 0 asn — 0, then T is zero-
demiclosed.

Proof. Obviously, the conclusion (a) holds. To see (b), since {x,} is bounded, there
is a subsequence {z,,} C {z,} and z € H such that z,, — z. One can claim
Tz = z. Indeed, if Tz # z, it follows from the Opial’s condition that

liminf ||z,, —2|| < liminf |z, — Tz
k—oo k—o0
< liminf{[lan, — T, | + [T, — T}
k—o0
= liminf [|Tz,, —Tz|
k—o0
< liminf ||z, — 2|,
k—o0
which is a contradiction. So Tz = z and hence T is zero-demiclosed. O

Example 2.5. Let H = R with the inner product defined by (z,y) = xy for all
z,y € R and the standard norm | - |. Let C' := [0, +00). Let T be a mapping from
C into C defined by

1
= e (1,+00),
Tx—{ 8, x € [0,1].

Then T is a quasi-nonexpansive mapping but not zero-demiclosed.
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Proof. Tt is easy to verify that F(T') = {0} and T is a quasi-nonexpansive mapping.
We claim that T is not zero-demiclosed. Let {z,} be a sequence defined by z,, =
1+ neN. Clearly, 2, » 1 and 2, — Tz, — 0 asn — oo and 1 ¢ F(T). So T is
not zero-demiclosed. O

Example 2.6. Let H = R with the inner product defined by (x,y) = zy for all
z,y € R and the standard norm |- |. Let C' := [0,1]. Let T3, T> be two mappings
from C into C' defined by
7 =
Twz{ 513’ z=1/5,

, otherwise

and 5
sz:{ 6 z=1/5,

1, otherwise

Then T7 and T are all zero-demiclosed quasi-nonexpansive mappings.

Proof. 1t is easy to verify that F(T1) = F(T») = {1} and T1,T» are all quasi-
nonexpansive mappings, so it suffices to prove that 17 and 75 are all zero-demiclosed.

Let {z,} C C is a sequence satisfying =, — T1x, — 0 and x,, — z as n — co. We
want to prove z € F(T}) or, to be more precise, z = 1. In fact, since x,, — T12,, — 0,
without loss of generality, there exists a subsequence {z,,} of {z,} with z,, #1/5
for all ¢ € N. Since

|z — 1| < |z —zp,;| + |20, — T1xn,| + |T1Tn, — 1| = 0 as n; — oo,
which implies z = 1. This shows 77 is a zero-demiclosed mapping. Similarly, we

can prove 15 is also a zero-demiclosed mapping. O

Let K be a closed convex subset of a real Hilbert space H. For each point x € H,
there exists a unique nearest point in K, denoted by Pxx, such that

| — Pra|| <z —yl, Vy € K.

The mapping Py is called the metric projection from H onto K. It is well known
that Py satisfies
(x =y, P — Pry) > ||Pxa — Pgyl?
for every x,y € H. Moreover, Pxx is characterized by the property: for x € H,
and z € K,
z2=Pg(z)e (r—2,2—y) >0, Vye K.

The following results are crucial to our main results.

Lemma 2.7 (see, e.g., [4]). Let H be a real Hilbert space. Then the following hold.

@) lz+yl? < llyl? + 2(z,z + y) for allz,y € H;
(b) lz —yl* = ll=* + llyll* - 2(z,y) for allz,y € H.

Lemma 2.8 (see [2]). Let K be a nonempty closed convex subset of H and F be a
bi-function of K x K into R satisfying the following conditions.

(A1) F(z,z) =0 for allx € K;

(A2) F is monotone, that is, F(x,y) + F(y,z) <0 for all z, y € K;
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(A3) for each z,y,z € K,
limsup F(tz + (1 — t)z,y) < F(x,y);
tl0
(A4) for each x € K,y +— F(x,y) is convex and lower semi-continuous.
Let r >0 and x € H. Then, there exists z € K such that

1
F(z,y)—l—;(y—z,z—m) >0, forally € K.

Lemma 2.9 (see [7]). Let K be a nonempty closed convex subset of H and let F' be
a bi-function of K x K into R satisfying (A1)-(A4). Forr >0 and x € H, define
a mapping 1. : H — K as follows:

(2.1) TT(az):{zEK:F(z,y)%—i(y—z,z—m)20,VyEK}

for all x € H. Then the following hold:
(i) T, is single-valued;
(ii) T; is firmly nonexpansive, that is, for any x,y € H,

HTTQJ - Try”2 < <Trx - Ty, — y>;

(i) F(T,) = EP(F),;
(iv) EP(F) is closed and convex.

In 1999, Atsushiba and Takahashi [1] introduced the concept of the W-mapping
as follows:
Up =11+ (1 = p),
U = BoToU1 + (1 — B2)1,
(2.2) z
Un-1=pBN1TN-1Un—2+ (1 - Bn-1)1,
W =Un = BNTNUNn—1+ (1 = Bn)I.

where {T;}¥ is a finite family of mappings of K into itself and 3; € [0, 1] for all
i =1,2,..., N with le\;l B; = 1. Such a mapping W is called the W-mapping
generated by T, Ty, ..., Ty and B1, B2, ..., Bn; see also [16].

Lemma 2.10 (see [5]). Let K be a nonempty closed convex subset of a strictly
convex Banach space X . Let {Tl}f\il be a finite family of quasi-nonexpansive and L-
Lipschitz mappings of K into itself such that ﬂf\il F(T;) #0 . and let By, B2, ..., BN
be real numbers such that 0 < B; < 1 for alli = 1,2,...,N —1, 0 < By <
1, and Zfil Bi = 1. Let W be the W-mapping generated by T1,T5,...,Tn and
B1,B2,...,8n. Then, the following conclusions hold:

(i) W is quasi-nonexpansive and Lipschitz;

(i) FOW) = Ny F(T).

Remark 2.11. (1) Under the same assumptions as Lemma 2.10, if {T;}Y, is
a finite family of quasi-nonexpansive mappings of K into itself, then, from
the proof of [5, Lemma 3.1], we see that W is quasi-nonexpansive;
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(ii) It is well-known that any real Hilbert space is a strictly convex Banach
space. So Lemma 2.10 is also true in a real Hilbert space.

Example 2.12. Let H,C,T7 and T, be the same as Example 2.6. Let Uiz =
%Tlas + %l’ for all x € C'. Define a W-mappings as follows:

1 1
Wax = §T2U1m + §x for all x € C.

Then the following hold.
(i) F(W) =F(Th) = F(Tz) = {1};

(ii) W is a zero-demiclosed quasi-nonexpansive mapping.

Proof. Tt is easy to verify that 1 € F(W). On the other hand, let p € F(W). Then
we have

1 1
lp—1] < §|T2U1p—1|+§|17—1|

1 1
< Z|Up—1]+=p—1
< Slw—1+5p-1]

1]1 1 1
= Z|iTp+p—1|+p-1
2'2 1p+2p ’+2|P |
1 1 1
< —Tip—1|+-lp—1]+=|p—1
< le !+4@ \+2@ \

which implies the following conclusions hold:
(1) 3l =1+ 3lp =1 =|p—1};
(2) 3IT2Up = 1]+ 5lp = 1| = Ip = 1].

From (1), we have U;p = p which implies T1p = p. By (2), we have Thp = p. So
p € F(Th) = F(Tz) = {1} and hence p = 1. Thus F(W) = {1} and the conclusion
(i) holds.

To see (ii), it is not hard to verify that W is quasi-nonexpansive, so it suffices to
prove that W is zero-demiclosed. Let {z,,} C C be a sequence satisfying z, — Wz, —
0 and z,, - z as n — oo. From z, — Wz, — 0, there exists a subsequence
{zpn,} of {z,} such that z,, # 1/5 for all [ € N. Indeed, let A := {n € N :
xn # 1/5}. If 4(A), the cardinal number of A, is finite, then =, = 1/5, T1x,, = 7/8
and Uyx,, = 43/80 # 1/5 for all n € N\ A. So Wx,, = 3/5 for all n € N\ A which
implies lim,, o0 (x, — Wx,,) # 0, a contraction.

Now, we claim z = 1. For ng, since Tix,, = 1, Uiz, = 1/2 4+ %a:m # 1/5 and
ToU iy, = 1, we have

W, =1/2+ %mnl
and

Wan, —xn, = 1/2(1 — xy,).

Since z, — Wz, — 0, we get x,,, — 1 which implies z = 1. Hence, we show that W
is a zero-demiclosed mapping. O
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Lemma 2.13 (see [9]). Let H be a real Hilbert space. Then for any x1, o, ..., x €
H and ay,az,...,a; € [0,1] with Zle a; =1, k € N, we have

k 2 k k-1 k
Yol =Y ailwill? =Y Y aagle -l
i—1 i—1

i=1 j=i+1
In particular, we have
(1) llaz + (1= a)yl* = allz]* + (1 - a)[ly|* - a(l - a)llz — y[|* for all z,y € H
and o € [0,1];
(2) the map f: H — R defined by f(x) = ||z||* is conves.

3. MAIN RESULTS

In this section, we will introduce some new iterative algorithms for the split
common solution problems. First of all, we need the following result.

Lemma 3.1. Let I = {1,2,...,k} be a finite index set. For each i € I, let f; be bi-
functions from K x K into R satisfying the conditions (A1)-(A4) and for eachr > 0,
let T!: H — K be defined as (2.1). Let {r,} C (0, +00) with liminf, o r, > 0 and
{zn} C H be given. Then the following statements hold.
(1) For each (i,n) € I xN, T,?n is a firmly non-expansive single-valued mapping
and F(T! ) = EP(f;) is closed and convez.
(2) For each (i,n) € I x N, let v}, = T} z, and z, = W Then we
have
() 20— l* < lon —vl|? = § iyl —zal® for any v € Nz, EP(f).
(i) If ||ul, — zn|| — 0 and ul, — 2z as n — oo, then z € ﬂle EP(f:).

Proof. The conclusion (1) follows from Lemma 2.9 immediately. To see (2), we first

prove that (i) holds. For any v € ﬂle EP(f;), by Lemma 2.9 and Lemma 2.7, we
obtain

I3, 20 — T3 0l* < AT} a0 — T, v, 20 — )

o, o Loll? < (1)
= 5 Al = ol o+l — ol — oy — 2}
which yields that

(31) o~ 0l < lm — o s — o

By Lemma 2.13, we get
1N,
(32 lew vl < 7 3, — ol
i=1
Hence, it follows from (3.1) and (3.2) that

k
1 .
20 — 0l < [|l2n — ||* - Z > [luh, — 2|
i=1
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and (i) is proved. Finally, we show (ii). For each i € I, since

. 1 o
filup,y) + =y = up, up — 20) 2 0, Vy € K,

n

it follows from (A2) that

1 o A , 1 o .
a@ = Up, Uy, — Tn) > fiy, up,) + filug,y) + E@ — Uy, Uy, — ) > fi(y, uy,),
and hence
n

Applying (A4) and (3.3), we obtain f;(y,2z) <0, Vy € K. Let y € K be given. Put
y=ty+ (1—1t)z, t€(0,1).
Then y; € K and fi(y:,2) <0 for all ¢ € I. For each i € I, by (Al) and (A4), we
get
0= fi(yt7yt) < tfl(yt’y) + (1 - t)fi(ytaz) < tfl(ytay)
So fi(ys,y) >0 for all i € I. For any i € I, by (A3), we have

(2,y) > lim fi(ty + (1 — t)z,9) = lim f;(ye,y) > 0,
fi(z,y) tlirgf(yﬂt( )2, Y) ;g)lf(yty) 0

which implies z € ﬂle EP(f:). O

Theorem 3.2. Let Hy and Hy be two real Hilbert spaces. Let C' be a nonempty
closed convex subset of Hy and K a nonempty closed convex subset of Ho. Let
I .= {1,2,...,k} denote a finite index set. For any i € I, let G; : C — C be
quasi-nonexpansive mappings and f; : C x C — R be bi-functions. Let A : Hy —
Hy be a bounded linear operator with its adjoint A* and T : K — K be a zero-
demiclosed quasi-nonexpansive mapping with F(T) # 0. Let 5 € (0,1), p be the
spectral radius of the operator A*A and \ € (0,%5). Let W be the W-mapping
generated by G1,Go,...,Gy and 1,72, ...,7k, where v; € [0,1] for all i € I with
2ieri = L.

Let {z,} and {ul} be sequences generated in the following manner:

x1 € C,
uy, = Tfnxnv kv 1€ 1,
(3.4) vy = Ynttln

k I
Tpy1 = (1 — an)yn + anWyn,
Yn = Po(vn, + ABA*(T — I)Avy,), VneN,
where Po is a projection operator from Hp into C' and the control coefficient se-
quences {an} C (0,1) and {r,} C (0,+00) satisfy the following restrictions:
(D1) there exists & € (0,1) such that o, € [§,1 —&] for all n € N;
(D2) liminfr, > 0.
n—oo

If W is zero-demiclosed, £ = (ﬂle EP(fl)> N (ﬂle F(GQ) #0 andT ={p €

Q: Ap € F(T)} # 0, then the sequences {x,} and {ul}, converge weakly to an
element g € T'.
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Proof. Let p € . So Ap € F(T). For each n € N, applying (2) of Lemma 3.1, we
have

k
1 .
(3.5) lvn = plI* < llzn —pl|* — %ZHU%—%W
i=1
and
(3.6) luly — pll = | T} 2 — pl| < llzn — p-

Since T is quasi-nonexpansive,
(3.7) T Av,, — Ap|| < ||Av,, — Ap|| for each n € N.
For each n € N, by (b) of Lemma 2.7 and (3.7), we have
20B(vy, — p, AY(T — I)Av,) =2\B(A(vy, — p) + (T — I)Av,
— (T — 1)Av,, (T — I)Avy,)
— BT Av, — Ap, (T — 1) Av,) — (T — 1) Av, )

1 1
(3.8) = 208( 1T Av — Apll? + SI(T = 1) Ay |
1
— 5l 4v, — Ap|* = (T = D) Av, |2)

< 28 (51T~ 1) Aw (T~ 1) vy |?)
= = ABI(T — 1) Aw, |,
Since p is the spectral radius of A*A, we have
N2B2((T — I)Avy, AA*(T — I)Avy,) < pN2B2((T — I) Avy, (T — I)Avy,)
(3.9) = pA232|(T — I)Av,||*> VYn eN.
For each n € N, from (3.4)-(3.9) we have
lyn — P> = | Po(vn + ABA*(T — I) Avy,) — Popl|?
< v + ABA*(T — I)Av,, — pl|?
= |lon = plI” + [ANBAX(T — I) Avy||?
+ 22B(vy, — p, AX(T — I)Avy,)
(3.10) = |Jvn — p||> + N2B2((T — I) Av,, AA*(T — I) Avy,)
+ 20B(vy, — p, A*(T — I)Avy,)
< lon = plI? + pA* B2 (T — I) Avy |
— ABI(T = I) A, ||?
=[lvn = plI> = AB(L = pAB) (T — I) Av,||?
< llzn = plI> = AB(L = pAB) (T — 1) Avy .

Since A € (0, piﬁ), 1—pAB >0, by (3.10), we have

[ _pH2 < lvn — p”2
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and
lYn —p||2 < lzn —pH2 for each n € N.

On the other hand, from (3.4) and (3.10), we obtain
1 = pI* = (1 = ) (Y — p) + n(Wyn —p)|°
= (1= an)llyn = plI* + @nWyn = ol = (1 = an)an]lyn — Wya|®

(3.11) < (1= an)llyn —pI* + anllyn — plI> — (1 — an)om|lyn — Wynll?
= llyn = plI* = an(1 = @) [Wyn — yall?
< o = plI? = an(l = an)[Wyn — ynll> = AB(1 = pAB) (T — I) Avy ||?
< an = plI* — (1 — @) [[Wyn — yall®> = AB(1 = pAB) (T — I) Av, ||*.

Hence we know from (3.11) that the sequence {||x,, — p||} is nonincreasing and
ILm ||z — p|| exists. By above inequalities, we also obtain
n—oo

t:= lim |z, —p| = lim o, —pl| = lim |y, —p|.
n—o00 n— 00 n—0o0

From (3.11) again and the condition (D1),

(3'12) lim ||Wyn - yn” = lim H(T - I)AvnH =0.
n—oo n—oo
Again from (3.5), we have
(3.13) lim [[u), —2,|| =0, Viel.
n—oQ

It follows from (3.13) and Lemma 2.5 that
(3.14) lim |v, — z,|| = 0.
n—oo

Since {z,} is bounded, {z,} has a weakly convergence subsequence {z,,}. Let
Tp, — q for some ¢ € C. Then u;,, — ¢, vp, — ¢q and Av,, — Aq € K by
(3.12)-(3.14). Since A is bounded and li_)rn [(T" = I)Avy|| = 0, we obtain

n—oo

lyn — vnll = || Po(vn + ABA* (T — 1) Avy,) — Powy||
< ||[(vn, + ABA™(T — I)Avy,) — vy |
= ||ABA* (T — I)Av,|| — 0 as n — 0o,
which yields that y,, — ¢ as n; — oo. Since W is a zero-demiclosed quasi-
nonexpansive mapping, by (3.12), we have ¢ € F(W). Notice that u;, — g,
so, from (2) of Lemma 3.1, (3.13) and (D2), we have ¢ € ﬂle EP(fi). So,

qg € F(W) ﬂ(ﬂle EP(f;)) = Q. On the other hand, since T is also a zero-
demiclosed mapping, it follows (3.12) that Aq € F(T') which implies ¢ € T.

Finally, we prove {z,} converges weakly to ¢ € I'. Otherwise, if there exists other
subsequence of {z,} which is denoted by {z,,} such that z,,, — z € I with z # q.
Then, by Opial’s condition, we get

liminf ||z, — 2| < liminf ||z, —q|| <liminf |z, — 2|,
—00 J—o0 J—o0

a contradiction. Hence {x,} and {u!} converge weakly to an element in I, respec-
tively and we obtain the desired result. The proof is completed. O
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Remark 3.3. We know that any nonexapansive mapping is quasi-nonexpansive
mappings, so Theorem 3.2 also holds when G; (or T) is nonexpansive for all ¢ € I.

Here, we give a simple example illustrating Theorem 3.2.

Example 3.4. Let Hy = Hy = H =R, C :=[0,1] and K :=[-1,0]. Let 71, T>, W
be the same as Examples 2.6 and 2.12. Let Az = —x for all z € R. Then A is
a bounded linear operator from C into K and A*(the adjoint of A) = A . Let
filz,y) =x —y and fo(z,y) = 2(x —y) for all z,y € C. Then f; and fo satisfy the
condition (A1)-(A4) and EP(f1) = EP(f2) = {1}.

Let T be defined by

-1 xz#-1/5,
Tx—{ 7/9 &= —1/5 for all x € K.

Then T' := {p € (ﬂ?zl EP(fZ)) N (ﬂ?zl F(E)) :Ap € F(T)} = {1}. Moreover,
following a similar argument as the proof of Example 2.6 or Example 2.12; one can
see that T is a zero-demiclosed quasi-nonexpansive mapping.

Let {z,} and {u’}, i = 1,2, be sequences generated by

fl( nay) 7<y_un7un xn>207 y€C7/L:1727

ul
+u
Up = )

Tn4+1 = (1 - an)yn + anWyTw
yn = Po(vp + ABA*(T — I)Avy,), Vn €N,

where Pg is a projection operator from H into C, A\, 5 € (0,1), {a,} C (0,1) and
the control coefficient sequence {r,} C (0,4o00) satisfies r,, > 1 for all n € N.
Then {x,} and {u’,} converge strongly to an element q € I" for i = 1,2. Moreover,
Tptl = u}z =1 for all n € N.

Proof. For i € {1,2}, let
1
iy, z,w,r) :i(z—y)ﬂ—;(y—z,z—w) =(z— )(14—7) Vy,z,we C,Vr>1.

It is easy to verify that there exists a unique element z = 1 € C such that for each
i€ {1,2},

1
oily, z,w,r) =i(z —y) + ;(y—z,z—fw) >0,Vy,weC,Vr>1.

So, fromfz( Ly) 4+ = (y—u ul, —x,) > 0,4 € {1,2}, and r, > 1, we have

n» 'n

ul = u2 =1 for all n € N. Further, v, = 1 for all n € N. From the definition

of T and A, we obtain (T' — I)Av, = 0 and A*(T — I)Av, = 0. Hence y, =
Po(vn + ABA*(T — I)Avy,) = 1 and x, 41 = ul, = 1 for all n € N. O

In Theorem 3.2, if the index set I is a singleton, we have the following Corollary
3.5.

Corollary 3.5. Let Hy and Hs be two real Hilbert spaces. Let C' be a closed convex
subset of Hi and K a closed convex subset of Ho. Let S : C — C be a zero-
demiclosed quasi-nonexrpansive mappings and f be a bi-functions from C x C into
R with Q= EP(f)(F(S) #0. Let A: Hy — Hj be a bounded linear operator with
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its adjoint A* and T : K — K be a zero-demiclosed quasi-nonerpansive mapping
with F(T) # 0. Let 5 € (0,1), p be the spectral radius of the operator A*A and
A€ (0, 55).

Let {x,,} and {u,} be sequences generated in the following manner:

x1 € C,

fun,y) + %«y_unaun —x,) >0, y€C,
Tn+l1l = (1 - an)yn + ansyna

Yn = Po(un + ABA*(T — I)Auy,), ¥V n €N,

where Po is a projection operator from Hp into C' and the control coefficient se-
quences {an} C (0,1) and {rp,} C (0,+00) satisfy the following restrictions:

(D1) there exists € € (0,1) such that oy, € [£,1 —&] for all n € N;
(D2) lirginf rn > 0.

IfT ={peQ:Ap e F(T)} # 0, then the sequences {x,} and {uy,}, converge
weakly to an element g € T'.

If S = I in Corollary 3.5, we have the following Corollary 3.6.

Corollary 3.6. Let Hi and Hs be two real Hilbert spaces. Let C' be a closed convex
subset of H1 and K a closed convex subset of Ha. Let f be a bi-function from C x C
into R with Q = EP(f) # 0. Let A: Hi — Hs be a bounded linear operator with
its adjoint A* and T : K — K be a zero-demiclosed quasi-nonexpansive mapping
with F(T) # 0. Let 8 € (0,1), p be the spectral radius of the operator A*A and
A€ (0, 55).

Let 1 € C. Let {x,} and {un} be sequences generated in the following manner:

1‘160,
f(un>y)+%<y_unaun_$n> 207 ye Ca

Tnt1 = Po(un + ABA*(T — I)Auy), V n €N,

where Po is a projection operator from Hy into C and the control coefficient se-
quences {an} C (0,1) and {r,} C (0,+00) satisfy the following restrictions:

(D1) there exists £ € (0,1) such that o, € [€,1 —&] for all n € N;
(D2) liminfr, > 0.

n—oo

IfT = {p € EP(f) : Ap € F(T)} # 0, then the sequences {x,} and {uy},

converge weakly to an element g € I.

In Corollary 3.5, if f(z,y) = 0 for all z,y € C, we have the following Corollary
3.7.

Corollary 3.7. Let Hy and Hs be two real Hilbert spaces. Let C' be a closed convex
subset of Hi and K a closed convex subset of Ho. Let S : C — C be a zero-
demiclosed quasi-nonexpansive mapping with F(S) # 0. Let A : Hy — Hjy be a
bounded linear operator with its adjoint A* and T : K — K be a zero-demiclosed
quasi-nonezxpansive mapping with F(T) # 0. Let 8 € (0,1), p be the spectral radius
of the operator A*A and \ € (0, %)
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Let {x,} be a sequence generated in the following manner:

x1 € C,
Tn+1l = (1 - an)yn + ansyna
yn = Po(xy, + \BA*(T — I)Ax,), ¥V n € N,

where Po is a projection operator from Hy into C and there exists £ € (0,1) such
that ay, € [§,1 —&] for alln e N. IfT' ={p € EP(f): Ap € F(T)} # 0, then the
sequence {xyn} converges weakly to an element q € F(T).

Remark 3.8. The class of problems considered in Corollary 3.7 is so-called the
split common fixed-point problem which is a generalization of the spilt feasibility
problem and the convex feasibility problem; for more detail, see [3, 13].
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