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POSITIVE GROUND STATE SOLUTIONS OF
ASYMPTOTICALLY LINEAR SCHRODINGER-POISSON
SYSTEMS

CHAO MA AND CHUN-LEI TANG*

ABSTRACT. : In this paper, we study the following Schrodinger-Poisson system:
—Au+ V(@ + Ab(@)u = g(@)f(u), in B,
—A¢ = \u?, in R3,
where V(z) is a real function on R® and the parameter A € (0, +00), the nonlin-
earity f(s)/s tends to 0 and [ € (0, +c0), respectively, as s — 07 and s — +o0.
Under appropriate assumptions on V', ¢ and f, we give the existence of a posi-

tive ground state solution resolved by variational methods, which depends on the
parameter \.

1. INTRODUCTION AND THE MAIN RESULTS

This paper has been motivated by the problem:

o o
(1.1) iV(2) 50 = A+ K(@)¢(x)v = q(2) f(¢), in R,
— 8¢~ K@)l N

where V (), K(x) are real function on R3. We are interested in looking for a sta-
tionary solution, ie., (x,t) = e "fu(z) with u > 0 in R3. For this purpose, f
is a complex function and supposed to satisfy f(e "u) = e~ f(u), where f is an
arbitrary real function on (0,400). Then it is not difficult to see that u must satisfy
the following Schrodinger-Poisson system:

{—Au +V(@)u+ K(x)p(x)u = q(z)f(u), in R?,

(1.2) —A¢ = K(x)u?, in R3.

This coupling the nonlinear Schrédinger and the Poisson equations arises in an
interesting physical model which describes the interaction of a charged particle
with an electromagnet see [1, 5, 10] and the references therein.

Variational methods and critical point theory are powerful tools in studying non-
linear differential equations [16, 19, 26]. In recent years, system (1.2) has been stud-
ied extensively via modern variational methods under the various hypotheses. These
researches mainly concern the multi-solutions [9, 11, 15, 17, 20]. The concentration
of solutions, see [4, 14] and the positive solutions [1, 8, 11, 17, 21, 25, 27, 29, 30, 31].
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There has been a lot of research on the existence of the ground state solutions for
system (1.2). In [2, 14, 27|, the authors deal with the case when f is critical growth
at infinity. In [3, 2, 8, 28], the authors deal with the case when f is super-linear at
infinity. Specially, in [22], the authors deal with the case when f is asymptotically
linear at infinity. Sun and Chen obtain result as follows:

Theorem A ([22]). Suppose V(z) = 1. Moreover, assume that the following con-
ditions hold:

A) feCOR,RT), f(s) =0 for all s <0 and lim f(s):O.
(A1) n,

S— S
(A2) There exists | € (0,400) such that lim fs) =1

s—+oco 8
(K1) q(x) is a positive continuous function and there exists Ty > 0 such that

sup{f(s)/s:s >0} <inf{l/q(z) : || > Tp}.
(K2) There ezists a constant 5 € (0,1) such that

(1 =75)l > p* :=inf { /]R3(|Vu|2 +u?)dz - u e HY(R?), /]R3 q(x)F(u)dx >

)

N |~

and K(z)py(z)u’dr < QBZ},
R3

where F(u) = /Ou f(s)ds and ¢y (x) ! / K(y) u?(y)dy.

4n r: |2 — Y|
(K3) K € L*(R*)\{0}, K(z) >0 for all x € R3.
Then system (1.2) has a ground state solution in H*(R3) x DY2(R3).

Motivated by the above fact, in this paper, our aim is to revisit system (1.2). We
consider another case:

e when f is asymptotically linear at infinity, i.e., SETOO fiS) =1¢€(0,400), and
q € L?*(R3)\{0}. We obtain the existence of a positive ground state solution via
variational methods.

In the order to obtain our result, we have to overcome various difficulties. First,
the competing effect of the non-local term with the nonlinear term in the functional
I gives rise to some difficulties, and I is defined in Section 2. Second, it is not
difficult to find that every (PS) sequence is bounded when 3 < ¢ < 5 in [8] because
a variant of global Ambrosetti-Rabinowitz condition is satisfied when 3 < ¢ < 5 (see
[12]). However, for the asymptotically linear case, we have to find another method
to verify the boundedness of (PS) sequence. Third, since the embedding H*(R?)
into LI(R3),q € [2,6), is not compact, in order to recover the compactness, we
establish a compactness lemma different from the one in [8]. In fact, this difficulty
can be avoided, when autonomous problems are considered, restricting I to the
subspace of H!(R?) consisting of radially symmetric functions, or, when one is
looking for semi-classical states, by using perturbation methods or a reduction to a
finite dimension by the projections method.
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We state our main result.
Theorem 1.1. Suppose that K(z) = X € (0,+00) is a parameter and (A1), (Az2)
hold. Moreover, assume that the following conditions hold:

(V1) V € C(R3,R)N L>®(R3,R) and V(z) > Vy > 0 for all z € R3;

(A3) q € L2(R*)\{0}, q(x) >0 for all z € R3;

(A4)

[ > A :=inf { /Rg(yvm2 + V(x)u?)dz : u € Hl(]R&"’),/]Ra q(z)udr = 1}.

Then there exists \g > 0 such that system (1.2) has a positive ground state solution
for any X € (0, \g).

Remark 1.2. Indeed, there are many functions V' and ¢ satisfying the conditions
of Theorem 1.1.

Remark 1.3. Theorem 1.1 is different from Theorem A (see [22]). In fact, in
our paper ¢(z) can be unbounded in R3. However, in [22], from the conditions
(A3) and (K1), we obtain ¢(z) must be bounded in R3.

The remainder of this paper is organized as follow. In Section 2, some preliminary
results are presented. In Section 3, we give several important lemmas and the proof
of Theorem 1.1.

2. PRELIMINARIES

In this section, we give the variant version of the Mountain Pass Theorem, which
allows us to find a so-called Cerami-type (PS) sequence, the properties of this kind
of (PS) sequence are very helpful in showing the boundedness of the sequence in
the asymptotically linear case.

Lemma 2.1 ([13, Mountain Pass Theorem)). Let E be a real Banach space with its
dual space E*, and suppose that I € C'(E,R) satisfies

max{I(0),I(e)} < p <n< Hggpﬂux

for some < n,p>0 and e € E with ||e|]| > p. Let ¢ > n be characterized by

— inf I
¢= inf max (v(7)),

where I' = {y € C([0,1], E) : v(0) = 0,v(1) = e} is the set of continuous paths
joining 0 and e; then there exists a sequence {u,} C E such that

I(uy) — ¢ >nand (1+ ||un||)HI/(un)||E* — 0, as n — oo.

This kind of sequence is usually called a Cerami sequence.
Hereafter we use the following notations:

e H'(R3) is the usual Sobolev space endowed with the scalar product and norm

= u- vvu X )uv)ax, U2: U2 .’E'LL2 X
() = [ (V- Vot Vipuoydas full = [ (Fuf +Viapt)a
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under (V7). Specially, HuH%[l(Q) = /(]VU‘Q + V(z)u?)dz, where Q C R3.
Q

ou
81‘1'

e D'2(R?) = {u € L5(R?) :
DY2(R3) is defined by

€ LQ(R?’), i = 1,2,3}. And the norm of

lul3 = / Vulde.
RS

e LI(N)(1 < g < 00,02 C R3), denotes a Lebesgue space, the norm in L94(1) is
denoted by [[ul| L4 (q)-

e For any p > 0 and z € H!(R?), B,(z) denotes the ball of radius p centered at
z and BS(z) :=R?\ B,(2).

e The measure of a set E C R? is denoted by |E|.

e H* denotes the dual space of H'(R3).

e (C; denotes various positive constants which can change from line to line.

e For any u € H'(R?), the linear operator T, : DV2(R3) — R defined as

Tu(v) = / Mu?vdz
R3
is continuous. The Hélder inequality and the Sobolev inequality imply
(2.1) ITu@)| < Al osa 176 < CAlul2[1v]| 5, where &> 0.
Then by the Lax-Milgram theorem there exists ®[u] = ¢, € DV2(R?) such that for
any v € DL2(R3)
(2.2) Ve, - Vvdr = / Mulvdz.
R3 R3
Therefore, —A¢, = Au? in a weak sense. We can write an integral expression for

¢ in the form
L[ xP(y)
w(T) = — dy.
ouw) = - [ 2=y

In addition, by (2.1) and (2.2), we easily obtain that ||¢,||p < CA|u|/?>. Hence, we
have

” puuldr < ||u||i12/5(R3)||¢uHL6(R3) < Ci\||ul|*, where C; > 0.

Lemma 2.2 ([10]). For any u € HY(R3), we have

(i) ¢u >0;
(i) Gty = t2¢u, for any t > 0;
(iii) if up — u in HY(R3), then ¢, — ¢u in DV2(R3) and

(buuZd:n < lim inf Qﬁunuidx.
R3 n—oQ R3

To find a weak solution (u,¢) € H'(R?) x DL2(R?), it is sufficient to seek a
solution of the first equation of system (1.2) with ¢ = ¢,,. We define a functional
Iy : HY(R?) — R by, for all u € H'(R3)

(2.3) I(u) = %||u||2 + iA/R bu(2)uldz — /R o(2) F (u)dz,
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u

where F(u) = / f(s)ds. Tt is easy to show that I, € C1(H'(R?),R), and for all
u,p € H'(R?)

(Iy(u), )
(2.4) = /}RS(VU Vo + V(x)up)dr + X /}R3 Ou(z)updr — /11{3 q(z) f(u)pde.

Hence if u € H'(R3) is a critical point of Iy, then the pair (u,¢) is a solution of
system (1.2).

3. PROOF OF THEOREM

In what follows, we ensure that the functional I has what is called the mountain
pass geometry.

Lemma 3.1. Suppose that (V1) and (A1) —(As) hold, then there exist p > 0 and n >
0 such that

inf{Iy(u) : uw € H'(R?) with |lul| = p} > 7.

Proof. For any £ > 0, it follows from (A7) and (Asg) that there exists C. > 0 such
that, for all s € R

(3.1) |/ (s)] < els| + Ces?,
and, for all s € R then
€ o9 C¢f 3
F < = — .
)l < S5+ s

From (As), the Holder inequality and the Sobolev inequality, we obtain

\ [Lawra < [ Saenidrs [ S
R3 R3 R3
Che
< S lull® + Ceful?

for all u € HY(R3).
By Lemma 2.2, this yields
Lo 1 2
L) = Sful?+2x [ du@lds— [ q(e)F(u)ds
2 4 R3 R3

1—016
2

(3:2) > [ul® = Cel|ul .
So, by fixing € € (0, C%), letting |Ju|| = p > 0, small enough, it is easy to see that
there is 7 > 0 such that this lemma holds. O

Lemma 3.2. Suppose that (V1) and (A1) — (Ay) hold , then there exist ug € H*(R?)
with |Jup|| > p and Ag > 0 such that Ix(ug) < 0 for A € (0, Ag), where p is given by
Lemma 3.1.
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Proof. By (A4), there is &€ € H(R3) such that & > 0, / q(2)€%dz = 1 and A <
R3

|€]> < I. Then from (A;),(As) and the Dominated Convergence Theorem, we
obtain

1o(t€) F(t€)

. o1
tig-ri-loo 2 N §H£H _tlg-loo qu(l’) 12 du ( )

1 . F(tg) .o

= Z[€)®> = lim / q(z &dx
?H | L roe (weRta)20) @)y

Y
2 z /xew:s(a:#o}

_ = 2 7 2

= sl -3 [ a@eas

_ Loep
= SUEr-n<o.

So, if I(t&) — —oo0 as t — +o00, then there exists ug € H'(R3) with |lug|| > p
such that Ip(ug) < 0. Since Iy(ug) — Io(ug) as A — 07, there exists Ao > 0 such
that I)(ug) < 0, for all A € (0, Ao). [l

By Lemmas 3.1, 3.2 and Lemma 2.1, there is a sequence {u,} C H'(R?) such
that

(33)  In(un) — ¢>0and (1+ [[un|) 13 (wn)] -

Lemma 3.3. Suppose that (V1) and (A1)—(A4) hold, then the sequence {u,} defined
n (3.3) is bounded in H(R3).

— 0, as n — oo.

Proof. By (A1) and (Ag), it is sufficient to define Ly = sup,-q /s € (0,400) such
s

that

(34) 0< I <y,

for all s € R. From (3.3), we obtain (I, (us), un) < [lun], ie.

090 4 Vi) + A = ala) ) < ]
which implies that

/ (Vanl? + V(@ + Muid)dz < [l + / 0(@) f (tn)und
R3 R3

(3.5) < HunH—i—Lo/ q(x)uidac
R3

by (As) and (3.4).
Since —A¢,, = \u2 and (2.2), by the Young inequality, we have

R3 R3

/ Vb |[Vitn|de
R3

IN
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1

<! / (Vanl? + [V, [2)
2 Jus

1

(3.6) _ /(Wmf+x%wgm.
2[@3

From (3.5) and (3.6), we obtain

1
/ (IVun|? + V(@)up)da < [luy|| —/ 9(x, un)dz,
2 R3 R3

1.e.

1
(3.7) Sllunll* < Jlunl] —/ 9(x, un)dz,
R3

where g(z,u,) = AMun|* — Log(z)u?, = € R3. From ¢ € L?(R?), we can conclude

that for every ¢ > 0, there exist R. > 0, M. > 0 such that

/ ¢*(z)dz < € and / ¢ (z)dz < e.
|z|>Re {ze€R3:|z|<R.,q(x)>M:}

So, if we fix € small enough, we can obtain

: :
Lo/ q(z)uidr < L0</ qQ(x)dx> (/ uidaz)
|z]>Re |z|> Re |z|> Re

VAN
Q
N
i

\Y2
&
=)
[\
2
IS8
8
N———
=
s
)

(3.8)

IN

ol
B
3
=

and

1
Lo | g@)dde < 3
{z€R3:|z|<Rc,q(x)>M:} 8

which implies that

L(]/ g(x)uide = LO/ q(z)u?da
|lz|<Re {z€R3:|z|<R.,q(z)<M:}

+L0/ q(z)ulda
{2€R3:|2|<R. q(x)>M:}
1
(3.9) g/' LoMoa2de + - un|2.
je|<Re 8

Denote go(t) = Mt|> — LoM.t?. Let p = 2nﬂ£g0(t), then p € (—00,0). Now from
€
(3.9) and (3.8), we obtain

/g(w,un)dx = / g(:n,un)d:n—i—/ g(x,uy)dx
R3 || <Re |z|>Re

1
> [ buds = gl [ s
Ix‘SRS ‘LE|2R5
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1
> ulBr O] = glual - [ Logta)dis
|z|>Re
1
(3.10) > B (0)] —

Using (3.7) and (3.10), we have
1 1
Sllunll* < flunll + 4 llun]l* + || Br. 0)],
which yields that ||u,|| is bounded. O

To prove that the Cerami sequence {u,} in (3.3) converges to a nonzero critical
point of Iy, the following compactness lemma is useful.

Lemma 3.4. Assume that (V1) and (A1) — (A4) hold, then for any e > 0 and there

exist R. > 0 and N; > 0 such that (|Vun|? + V(z)u)dx < e, if R> R.yn >
|z[>R
Ne.

Proof. Let £g : R — [0, 1] be a smooth function such that

{0, o<a/<R,

and, for some constant C' > 0 (independent of R)

C
(3.11) |Vér(z)| < 7 forallz e R3.
Then for any € > 0 (¢ < 3), there exists R. > 0 such that

C? /
(3.12) 7 < 4e®Vj, for any R > R..
From the Young inequality, (3.11), (3.12) and (V}), we get, for alln € N and R > R.

/]RB |Vuy, - VEgun&rlde = . (V2e€RVuy,) - (\/12—6unV§R>‘dx

1
< 5/ \Vuﬂ%%dw%—/ u?|Vép|?dx
R3 48 R3

1 C?
< Vup|*dz + — u2—d33
/ [V 4e Jigj<or " R?
< 5/ \Vun\zdx—i-s/ Vou? dx

R3 |z|<2R
<

6/ \Vun\zdx—i-s/ V(x)uldx
R3 R3

(3.13) = ellunll?,

which implies that

/ V() 2 = / Vun e + / 2| VR 2da
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+2/ ]Vun . VfRunfR’d{L'
R3

02
/ |Vun|2d:r—i—/ —uldx 4 2¢||u ||?
R3 R3

IN

Rz

IN

/3 |V, |?dx + /3 Vouzdx + 2¢||un||?
R R

lun® + 2] un
2|

VARV

Hence we have
(3.14) unérll < V3||un|

for all n € N and R > R.. By (3.3), one has || I (uy)]
Then for € > 0 above, there exists IN; > 0 such that

e llunll — 0, as n — oo.

’ 9
3.15 L (up)| s ||tin]| < —=, for all n > N..
(3.15) (3 (un ) ] sl 7
It follows from (3.14) and (3.15) that, for all n > N. and R > R.
(3.16) [T\ (un), unér)| < N5 (un) |1+ unérl| < e.

Similar to (3.13), we get, for all n € N and R > R.
/ Vi, - VERUR|dz < €|
R3
By Lemma 2.2, (43) and (3.4), for all n € N and R > R., we have

Bwn)untn) = [ Vuafénde+ [ Vioniends

+ Vuy, - VEgupdr — / Q(x)f(un)ungl%dx
R3 R3

AV

/ |V, |*Epdx + / V(z)uépda
R3 R3

(3.17) e / Logla)eridds.
R

From the Hoélder inequality, we obtain

/ Log(a)€muldr < Lo / g(z)u2dz
R3 |z|>R

o /Mmdx)f( /Wugdxf
< 03< /|xZRq2<x>dx)2\|un|2.

So, for € > 0 above, there exists R. > 0 such that

IN

(3.18) / Loq(z)¢gulda < e|juy|?, for any R > R..
R3
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Choose R. = max{R_., R\ }, by (3.16) — (3.18) and Lemma 3.3, there exists Cy > 0
such that, for all n > N, and R > R,

/ |V, |2Epda + / V(z)ulérdr < Coe,
R3 R3

which complete the proof. O

Lemma 3.5. Let (V4) and (A1) —(A4) hold. Then u, — uin H(R3), as n — oo,
for some u € H'(R?)\{0}.

Proof. By Lemma 3.3, {u,} is bounded in H!(R3). Subject to a subsequence, we
can assume that, there exists u € H'(R3) such that

u, — uin HY(R3); u, — u a.e. in R?;
u, — win L*(B), with B C R? is bounded and s = 2, 3.

Note that,
) = [ (Fua + Vi) )da
A / G ud — / o(2) (1) tnd
(3.19) =
and

(I (up),u) = /]1%3 (Vuy, - Vu+ V(z)u,u)de

—i—)\/ Gu,, Unudr — / q(z) f(up)udz
R3 R3
(3.20) = o(1).
Since u, — u in H*(R3), we can see
(3.21) / (Vup - Vu + V(2)upu)de = / (|Vul? + V(z)u?)dz + o(1).
R3 R3
By Lemma 3.4, for any € > 0, we can find N € N and R, > 0 such that foranyn € N

with n > N: and R > Rc, one has [lun||z1(Bg,0)) < € and [[un — ul|Ls(Bg(0)) < € for
s = 2,3. It follows that

lun —ullzs@wsy < llun — ullLssreo)) + llun — ullLs(se (0
< lun = ullLsro)) + lunllzs s, 0) + lwllzs s, 0)
< e+ Ca(llunll g (s, 0)) + lullm (55, 0))
< (1+2Cy)e,

for any n € N with n > N, and s = 2,3. Therefore, for s = 2,3, we have
(3.22) U, — u in L*(R3), as n — oo.

By (3.4), (Aj3), the Holder inequality and (3.22), one has

a(@) f (un) (un — u)d / () () [ty — ]l

RS
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< / Lo|g(z)up||uy — uldx
R3
< Lollgllcoms)llunll £6msyllun — ull L3 ®s)
(3.23) — 0, as n —» oo.

From the Holder inequality and (3.22), we get
< [ bunllun — ulds
R3

/ O,y Un (U, — w)d
R3
< [ llnemayllunll Lo @s) lun — ull 2 (ms)
(3.24) — 0, as n — oo.
By (3.19),(3.20), (3.23) and (3.24), we have

/ (|Vun|* + V(2)u?)dx = / (Vuy, - Vu+ V(z)uyu)dz 4+ o(1),
R3 R3
which implies that
/ (|Vun|* + V(2)u?)de = / (|Vul? + V(z)u?)dz + o(1)
R3 R3

by (3.21). i.e., ||unl| — ||ul|, as n — co. This together with u, — u in H'(R3),
shows that u,, — u in H'(R?), as n — oc.

From u, — u in H'(R?) and (3.3), we obtain I\(u) = ¢ > 0. So u €
H(R3)\{0}. O

Now we give the proof of the main result.

Proof of Theorem 1.1. Set the Nehari manifold
N = {u € H (R*\{0} : (I}(u),u) = 0}

From Lemma 3.5, A is nonempty. For any u € N, by Lemma 2.2, we have
0 = <I)\('LL),U>
= ulP o [ batde— [ ae)(uds
R3 R3
Jull? = [ 4t (w)uds.
R3

Now, choose ¢ € (0, Ci) in the proof of Lemma 3.1 and use (3.1) to get

/ u)udx

(3.25)

Vv

< /]R3 (eq(z)u? + Ceq()|uf*)da

IN

0ﬂm\+c/‘ (2)|uf3da

A

(3.26) < Cuellul® + Cel|ul®.
Therefore, by (3.25) and (3.26), for every u € N, we have
0> [lu]l® = Crellul|* = Cellul,
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which implies that

1-— 018
Ce
Hence any limit point of a sequence in the Nehari manifold is different from zero.

We claim that Iy is bounded from below on N, i.e., there exists M; > 0 such
that I(u) > —Mj, for any u € N. Otherwise, there exists {u,} C N such that

lul| > > 0, for any u € N.

(3.27) I(up) < —n, for any n € N.
From (3.2), we obtain

1-— 016
In(up) > THunH2 - Cs||un||3~

This and (3.27) imply that ||u, || — 400, as n — oo. Because {u,,} C N, as in the
proof of Lemma 3.3, we obtain that {u,} is bounded in H'(R3), so ||u,| — +oc
is impossible. Then, I is bounded from below on N. So we may define

¢ =1inf{I\(u) : we N}, and ¢ > —M;, where M; > 0.

Let {@,} C N, such that I\(4,) — ¢ as n —» co. Following the same procedures
as the proof of Lemmas 3.3, 3.4 and Lemma 3.5, we can show that {u,} is bounded
in H'(R?) and it has a convergent subsequence, strongly to @ € H'(R3)\{0}. Thus
In(@) = ¢ and I,(a@) = 0. Therefore (@, ¢3) € H'(R?) x D“?(R?) is a ground state
solution of system (1.2).

If we denote 4t = max{+u, 0} the positive (negative) part of @ and by (4;), we
have

0= (I)(a),a")

—Na~? = (752 N
= [ 0w P~ [ @)@ as
= P =a [ o),
i.e.
@ |? + A - (a7)?dx =0
i+ [ 6o Pda

and therefore, 4 > 0 in R3. By the standard arguments, see [6, 23], we have

u € L®(R?), and u € Cllo’f(R?’) with 0 < o < 1. Moreover, by the Harnack’s
inequality, see [24], @(x) > 0 for all x € R3.

So (@, ¢z) € H'(R3) x D}2(R3) is a positive ground state solution of system (1.2).
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