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There has been a lot of research on the existence of the ground state solutions for
system (1.2). In [2, 14, 27], the authors deal with the case when f is critical growth
at infinity. In [3, 2, 8, 28], the authors deal with the case when f is super-linear at
infinity. Specially, in [22], the authors deal with the case when f is asymptotically
linear at infinity. Sun and Chen obtain result as follows:

Theorem A ([22]). Suppose V (x) ≡ 1. Moreover, assume that the following con-
ditions hold:

(A1) f ∈ C(R,R+), f(s) ≡ 0 for all s < 0 and lim
s→0+

f(s)

s
= 0.

(A2) There exists l ∈ (0,+∞) such that lim
s→+∞

f(s)

s
= l.

(K1) q(x) is a positive continuous function and there exists T0 > 0 such that

sup{f(s)/s : s > 0} ≤ inf{1/q(x) : |x| ≥ T0}.
(K2) There exists a constant β ∈ (0, 1) such that

(1− β)l > µ∗ := inf

{∫
R3

(|∇u|2 + u2)dx : u ∈ H1(R3),

∫
R3

q(x)F (u)dx ≥ l

2
,

and

∫
R3

K(x)ϕu(x)u
2dx < 2βl

}
,

where F (u) =

∫ u

0
f(s)ds and ϕu(x) =

1

4π

∫
R3

K(y)

|x− y|
u2(y)dy.

(K3) K ∈ L2(R3)\{0}, K(x) ≥ 0 for all x ∈ R3.

Then system (1.2) has a ground state solution in H1(R3)×D1,2(R3).

Motivated by the above fact, in this paper, our aim is to revisit system (1.2). We
consider another case:

• when f is asymptotically linear at infinity, i.e., lim
s→+∞

f(s)

s
= l ∈ (0,+∞), and

q ∈ L2(R3)\{0}. We obtain the existence of a positive ground state solution via
variational methods.

In the order to obtain our result, we have to overcome various difficulties. First,
the competing effect of the non-local term with the nonlinear term in the functional
Iλ gives rise to some difficulties, and Iλ is defined in Section 2. Second, it is not
difficult to find that every (PS) sequence is bounded when 3 < q < 5 in [8] because
a variant of global Ambrosetti-Rabinowitz condition is satisfied when 3 < q < 5 (see
[12]). However, for the asymptotically linear case, we have to find another method
to verify the boundedness of (PS) sequence. Third, since the embedding H1(R3)
into Lq(R3), q ∈ [2, 6), is not compact, in order to recover the compactness, we
establish a compactness lemma different from the one in [8]. In fact, this difficulty
can be avoided, when autonomous problems are considered, restricting Iλ to the
subspace of H1(R3) consisting of radially symmetric functions, or, when one is
looking for semi-classical states, by using perturbation methods or a reduction to a
finite dimension by the projections method.
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We state our main result.

Theorem 1.1. Suppose that K(x) ≡ λ ∈ (0,+∞) is a parameter and (A1), (A2)
hold. Moreover, assume that the following conditions hold:

(V1) V ∈ C(R3,R)
∩
L∞(R3,R) and V (x) ≥ V0 > 0 for all x ∈ R3;

(A3) q ∈ L2(R3)\{0}, q(x) ≥ 0 for all x ∈ R3;
(A4)

l > Λ := inf

{∫
R3

(|∇u|2 + V (x)u2)dx : u ∈ H1(R3),

∫
R3

q(x)u2dx = 1

}
.

Then there exists λ0 > 0 such that system (1.2) has a positive ground state solution
for any λ ∈ (0, λ0).

Remark 1.2. Indeed, there are many functions V and q satisfying the conditions
of Theorem 1.1.

Remark 1.3. Theorem 1.1 is different from Theorem A (see [22]). In fact, in
our paper q(x) can be unbounded in R3. However, in [22], from the conditions
(A2) and (K1), we obtain q(x) must be bounded in R3.

The remainder of this paper is organized as follow. In Section 2, some preliminary
results are presented. In Section 3, we give several important lemmas and the proof
of Theorem 1.1.

2. Preliminaries

In this section, we give the variant version of the Mountain Pass Theorem, which
allows us to find a so-called Cerami-type (PS) sequence, the properties of this kind
of (PS) sequence are very helpful in showing the boundedness of the sequence in
the asymptotically linear case.

Lemma 2.1 ([13, Mountain Pass Theorem]). Let E be a real Banach space with its
dual space E∗, and suppose that I ∈ C1(E,R) satisfies

max{I(0), I(e)} ≤ µ < η ≤ inf
∥u∥=ρ

I(u),

for some µ < η, ρ > 0 and e ∈ E with ∥e∥ > ρ. Let c ≥ η be characterized by

c = inf
γ∈Γ

max
0≤τ≤1

I(γ(τ)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e} is the set of continuous paths
joining 0 and e; then there exists a sequence {un} ⊂ E such that

I(un) −→ c ≥ η and (1 + ∥un∥)∥I
′
(un)∥E∗ −→ 0, as n −→ ∞.

This kind of sequence is usually called a Cerami sequence.
Hereafter we use the following notations:

• H1(R3) is the usual Sobolev space endowed with the scalar product and norm

⟨u, v⟩ =
∫
R3

(∇u · ∇v + V (x)uv)dx; ∥u∥2 =
∫
R3

(|∇u|2 + V (x)u2)dx
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under (V1). Specially, ∥u∥2H1(Ω) =

∫
Ω
(|∇u|2 + V (x)u2)dx, where Ω ⊂ R3.

• D1,2(R3) =

{
u ∈ L6(R3) :

∂u

∂xi
∈ L2(R3), i = 1, 2, 3

}
. And the norm of

D1,2(R3) is defined by

∥u∥2D =

∫
R3

|∇u|2dx.

• Lq(Ω)(1 ≤ q ≤ ∞,Ω ⊂ R3), denotes a Lebesgue space, the norm in Lq(Ω) is
denoted by ∥u∥Lq(Ω).

• For any ρ > 0 and z ∈ H1(R3), Bρ(z) denotes the ball of radius ρ centered at
z and Bc

ρ(z) := R3 \Bρ(z).

• The measure of a set E ⊂ R3 is denoted by |E|.
• H∗ denotes the dual space of H1(R3).
• Ci denotes various positive constants which can change from line to line.
• For any u ∈ H1(R3), the linear operator Tu : D1,2(R3) −→ R defined as

Tu(ν) =

∫
R3

λu2νdx

is continuous. The Hölder inequality and the Sobolev inequality imply

(2.1) |Tu(ν)| ≤ λ∥u2∥L6/5∥ν∥L6 ≤ C̃λ∥u∥2∥ν∥D, where C̃ > 0.

Then by the Lax-Milgram theorem there exists Φ[u] = ϕu ∈ D1,2(R3) such that for
any ν ∈ D1,2(R3)

(2.2)

∫
R3

∇ϕu · ∇νdx =

∫
R3

λu2νdx.

Therefore, −∆ϕu = λu2 in a weak sense. We can write an integral expression for
ϕu in the form

ϕu(x) =
1

4π

∫
R3

λu2(y)

|x− y|
dy.

In addition, by (2.1) and (2.2), we easily obtain that ∥ϕu∥D ≤ C̃λ∥u∥2. Hence, we
have ∫

R3

ϕuu
2dx ≤ ∥u∥2

L12/5(R3)
∥ϕu∥L6(R3) ≤ C̃1λ∥u∥4, where C̃1 > 0.

Lemma 2.2 ([10]). For any u ∈ H1(R3), we have

(i) ϕu ≥ 0;
(ii) ϕtu = t2ϕu, for any t > 0;
(iii) if un ⇀ u in H1(R3), then ϕun ⇀ ϕu in D1,2(R3) and∫

R3

ϕuu
2dx ≤ lim inf

n−→∞

∫
R3

ϕunu
2
ndx.

To find a weak solution (u, ϕ) ∈ H1(R3) × D1,2(R3), it is sufficient to seek a
solution of the first equation of system (1.2) with ϕ = ϕu. We define a functional
Iλ : H1(R3) −→ R by, for all u ∈ H1(R3)

(2.3) Iλ(u) =
1

2
∥u∥2 + 1

4
λ

∫
R3

ϕu(x)u
2dx−

∫
R3

q(x)F (u)dx,
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where F (u) =

∫ u

0
f(s)ds. It is easy to show that Iλ ∈ C1(H1(R3),R), and for all

u, φ ∈ H1(R3)

⟨I ′
λ(u), φ⟩

=

∫
R3

(∇u · ∇φ+ V (x)uφ)dx+ λ

∫
R3

ϕu(x)uφdx−
∫
R3

q(x)f(u)φdx.(2.4)

Hence if u ∈ H1(R3) is a critical point of Iλ, then the pair (u, ϕ) is a solution of
system (1.2).

3. Proof of Theorem

In what follows, we ensure that the functional Iλ has what is called the mountain
pass geometry.

Lemma 3.1. Suppose that (V1) and (A1)−(A3) hold, then there exist ρ > 0 and η >
0 such that

inf{Iλ(u) : u ∈ H1(R3) with ∥u∥ = ρ} > η.

Proof. For any ε > 0, it follows from (A1) and (A2) that there exists Cε > 0 such
that, for all s ∈ R

(3.1) |f(s)| ≤ ε|s|+ Cεs
2,

and, for all s ∈ R then

|F (s)| ≤ ε

2
s2 +

Cε

3
|s|3.

From (A3), the Hölder inequality and the Sobolev inequality, we obtain∣∣∣∣ ∫
R3

q(x)F (u)dx

∣∣∣∣ ≤
∫
R3

ε

2
q(x)u2dx+

∫
R3

Cε

3
q(x)|u|3dx

≤ C1ε

2
∥u∥2 + Cε∥u∥3

for all u ∈ H1(R3).
By Lemma 2.2, this yields

Iλ(u) =
1

2
∥u∥2 + 1

4
λ

∫
R3

ϕu(x)u
2dx−

∫
R3

q(x)F (u)dx

≥ 1− C1ε

2
∥u∥2 − Cε∥u∥3.(3.2)

So, by fixing ε ∈ (0, 1
C1

), letting ∥u∥ = ρ > 0, small enough, it is easy to see that
there is η > 0 such that this lemma holds. □

Lemma 3.2. Suppose that (V1) and (A1)−(A4) hold , then there exist u0 ∈ H1(R3)
with ∥u0∥ > ρ and λ0 > 0 such that Iλ(u0) < 0 for λ ∈ (0, λ0), where ρ is given by
Lemma 3.1.
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Proof. By (A4), there is ξ ∈ H1(R3) such that ξ ≥ 0,

∫
R3

q(x)ξ2dx = 1 and Λ ≤

∥ξ∥2 < l. Then from (A1), (A2) and the Dominated Convergence Theorem, we
obtain

lim
t−→+∞

I0(tξ)

t2
=

1

2
∥ξ∥2 − lim

t−→+∞

∫
R3

q(x)
F (tξ)

t2
dx

=
1

2
∥ξ∥2 − lim

t−→+∞

∫
{x∈R3:ξ(x) ̸=0}

q(x)
F (tξ)

(tξ)2
ξ2dx

=
1

2
∥ξ∥2 − l

2

∫
{x∈R3:ξ(x) ̸=0}

q(x)ξ2dx

=
1

2
∥ξ∥2 − l

2

∫
R3

q(x)ξ2dx

=
1

2
(∥ξ∥2 − l) < 0.

So, if I0(tξ) −→ −∞ as t −→ +∞, then there exists u0 ∈ H1(R3) with ∥u0∥ > ρ
such that I0(u0) < 0. Since Iλ(u0) −→ I0(u0) as λ −→ 0+, there exists λ0 > 0 such
that Iλ(u0) < 0, for all λ ∈ (0, λ0). □

By Lemmas 3.1, 3.2 and Lemma 2.1, there is a sequence {un} ⊂ H1(R3) such
that

(3.3) Iλ(un) −→ c > 0 and (1 + ∥un∥)∥I
′
λ(un)∥H∗ −→ 0, as n −→ ∞.

Lemma 3.3. Suppose that (V1) and (A1)−(A4) hold, then the sequence {un} defined
in (3.3) is bounded in H1(R3).

Proof. By (A1) and (A2), it is sufficient to define L0 = sups>0

f(s)

s
∈ (0,+∞) such

that

(3.4) 0 ≤ f(s)

s
≤ L0

for all s ∈ R. From (3.3), we obtain ⟨I ′
λ(un), un⟩ ≤ ∥un∥, i·e·∫

R3

(|∇un|2 + V (x)u2n + λϕunu
2
n − q(x)f(un)un)dx ≤ ∥un∥,

which implies that∫
R3

(|∇un|2 + V (x)u2n + λϕunu
2
n)dx ≤ ∥un∥+

∫
R3

q(x)f(un)undx

≤ ∥un∥+ L0

∫
R3

q(x)u2ndx(3.5)

by (A3) and (3.4).
Since −∆ϕun = λu2n and (2.2), by the Young inequality, we have

λ

∫
R3

|un|3dx =

∫
R3

∇ϕun · ∇|un|dx

≤
∫
R3

|∇ϕun ||∇un|dx



ASYMPTOTICALLY LINEAR SCHRÖDINGER-POISSON SYSTEMS 737

≤ 1

2

∫
R3

(|∇un|2 + |∇ϕun |2)dx

=
1

2

∫
R3

(|∇un|2 + λϕunu
2
n)dx.(3.6)

From (3.5) and (3.6), we obtain

1

2

∫
R3

(|∇un|2 + V (x)u2n)dx ≤ ∥un∥ −
∫
R3

g(x, un)dx,

i·e·

1

2
∥un∥2 ≤ ∥un∥ −

∫
R3

g(x, un)dx,(3.7)

where g(x, un) = λ|un|3 − L0q(x)u
2
n, x ∈ R3. From q ∈ L2(R3), we can conclude

that for every ε > 0, there exist Rε > 0,Mε > 0 such that∫
|x|≥Rε

q2(x)dx < ε and

∫
{x∈R3:|x|≤Rε,q(x)≥Mε}

q2(x)dx < ε.

So, if we fix ε small enough, we can obtain

L0

∫
|x|≥Rε

q(x)u2ndx ≤ L0

(∫
|x|≥Rε

q2(x)dx

) 1
2
(∫

|x|≥Rε

u4ndx

) 1
2

≤ C2

(∫
|x|≥Rε

q2(x)dx

) 1
2

∥un∥2

≤ 1

8
∥un∥2,(3.8)

and

L0

∫
{x∈R3:|x|≤Rε,q(x)≥Mε}

q(x)u2ndx ≤ 1

8
∥un∥2,

which implies that

L0

∫
|x|≤Rε

q(x)u2ndx = L0

∫
{x∈R3:|x|≤Rε,q(x)≤Mε}

q(x)u2ndx

+L0

∫
{x∈R3:|x|≤Rε,q(x)≥Mε}

q(x)u2ndx

≤
∫
|x|≤Rε

L0Mεu
2
ndx+

1

8
∥un∥2.(3.9)

Denote g0(t) = λ|t|3 − L0Mεt
2. Let µ = inf

t∈R
g0(t), then µ ∈ (−∞, 0). Now from

(3.9) and (3.8), we obtain∫
R3

g(x, un)dx =

∫
|x|≤Rε

g(x, un)dx+

∫
|x|≥Rε

g(x, un)dx

≥
∫
|x|≤Rε

g0(un)dx− 1

8
∥un∥2 +

∫
|x|≥Rε

g(x, un)dx
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≥ µ|BRε(0)| −
1

8
∥un∥2 −

∫
|x|≥Rε

L0q(x)u
2
ndx

≥ µ|BRε(0)| −
1

4
∥un∥2.(3.10)

Using (3.7) and (3.10), we have

1

2
∥un∥2 ≤ ∥un∥+

1

4
∥un∥2 + |µ||BRε(0)|,

which yields that ∥un∥ is bounded. □

To prove that the Cerami sequence {un} in (3.3) converges to a nonzero critical
point of Iλ, the following compactness lemma is useful.

Lemma 3.4. Assume that (V1) and (A1)− (A4) hold, then for any ε > 0 and there

exist Rε > 0 and Nε > 0 such that

∫
|x|≥R

(|∇un|2 + V (x)u2n)dx ≤ ε, if R ≥ Rε, n ≥

Nε.

Proof. Let ξR : R3 −→ [0, 1] be a smooth function such that

ξR(x) =

{
0, 0 ≤ |x| ≤ R,

1, |x| ≥ 2R,

and, for some constant C > 0 (independent of R)

|∇ξR(x)| ≤
C

R
, for all x ∈ R3.(3.11)

Then for any ε > 0 (ε < 1
2), there exists R

′
ε > 0 such that

C2

R2
≤ 4ε2V0, for any R ≥ R

′
ε.(3.12)

From the Young inequality, (3.11), (3.12) and (V1), we get, for all n ∈ N and R ≥ R
′
ε∫

R3

|∇un · ∇ξRunξR|dx =

∫
R3

∣∣∣(√2εξR∇un) ·
( 1√

2ε
un∇ξR

)∣∣∣dx
≤ ε

∫
R3

|∇un|2ξ2Rdx+
1

4ε

∫
R3

u2n|∇ξR|2dx

≤ ε

∫
R3

|∇un|2dx+
1

4ε

∫
|x|≤2R

u2n
C2

R2
dx

≤ ε

∫
R3

|∇un|2dx+ ε

∫
|x|≤2R

V0u
2
ndx

≤ ε

∫
R3

|∇un|2dx+ ε

∫
R3

V (x)u2ndx

= ε∥un∥2,(3.13)

which implies that∫
R3

|∇(unξR)|2dx =

∫
R3

|∇un|2ξ2Rdx+

∫
R3

u2n|∇ξR|2dx
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+2

∫
R3

|∇un · ∇ξRunξR|dx

≤
∫
R3

|∇un|2dx+

∫
R3

C2

R2
u2ndx+ 2ε∥un∥2

≤
∫
R3

|∇un|2dx+

∫
R3

V0u
2
ndx+ 2ε∥un∥2

≤ ∥un∥2 + 2ε∥un∥2

≤ 2∥un∥2.
Hence we have

∥unξR∥ ≤
√
3∥un∥(3.14)

for all n ∈ N and R ≥ R
′
ε. By (3.3), one has ∥I ′

λ(un)∥H∗∥un∥ −→ 0, as n −→ ∞.
Then for ε > 0 above, there exists Nε > 0 such that

∥I ′
λ(un)∥H∗∥un∥ ≤ ε√

3
, for all n ≥ Nε.(3.15)

It follows from (3.14) and (3.15) that, for all n ≥ Nε and R ≥ R
′
ε

|⟨I ′
λ(un), unξR⟩| ≤ ∥I ′

λ(un)∥H∗∥unξR∥ ≤ ε.(3.16)

Similar to (3.13), we get, for all n ∈ N and R ≥ R
′
ε∫

R3

|∇un · ∇ξRun|dx ≤ ε∥un∥2.

By Lemma 2.2, (A3) and (3.4), for all n ∈ N and R ≥ R
′
ε, we have

⟨I ′
λ(un), unξR⟩ ≥

∫
R3

|∇un|2ξRdx+

∫
R3

V (x)u2nξRdx

+

∫
R3

∇un · ∇ξRundx−
∫
R3

q(x)f(un)unξRdx

≥
∫
R3

|∇un|2ξRdx+

∫
R3

V (x)u2nξRdx

−ε∥un∥2 −
∫
R3

L0q(x)ξRu
2
ndx.(3.17)

From the Hölder inequality, we obtain∫
R3

L0q(x)ξRu
2
ndx ≤ L0

∫
|x|≥R

q(x)u2ndx

≤ L0

(∫
|x|≥R

q2(x)dx

) 1
2
(∫

|x|≥R
u4ndx

) 1
2

≤ C3

(∫
|x|≥R

q2(x)dx

) 1
2

∥un∥2.

So, for ε > 0 above, there exists R
′′
ε > 0 such that∫

R3

L0q(x)ξRu
2
ndx ≤ ε∥un∥2, for any R ≥ R

′′
ε .(3.18)
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Choose Rε = max{R′
ε, R

′′
ε}, by (3.16)− (3.18) and Lemma 3.3, there exists C0 > 0

such that, for all n ≥ Nε and R ≥ Rε∫
R3

|∇un|2ξRdx+

∫
R3

V (x)u2nξRdx ≤ C0ε,

which complete the proof. □
Lemma 3.5. Let (V1) and (A1)−(A4) hold. Then un −→ u in H1(R3), as n −→ ∞,
for some u ∈ H1(R3)\{0}.

Proof. By Lemma 3.3, {un} is bounded in H1(R3). Subject to a subsequence, we
can assume that, there exists u ∈ H1(R3) such that

un ⇀ u in H1(R3); un −→ u a.e. in R3;

un −→ u in Ls(B), with B ⊂ R3 is bounded and s = 2, 3.

Note that,

⟨I ′
λ(un), un⟩ =

∫
R3

(|∇un|2 + V (x)u2n)dx

+λ

∫
R3

ϕunu
2
ndx−

∫
R3

q(x)f(un)undx

= o(1),(3.19)

and

⟨I ′
λ(un), u⟩ =

∫
R3

(∇un · ∇u+ V (x)unu)dx

+λ

∫
R3

ϕununudx−
∫
R3

q(x)f(un)udx

= o(1).(3.20)

Since un ⇀ u in H1(R3), we can see∫
R3

(∇un · ∇u+ V (x)unu)dx =

∫
R3

(|∇u|2 + V (x)u2)dx+ o(1).(3.21)

By Lemma 3.4, for any ε > 0, we can findNε ∈ N andRε > 0 such that for any n ∈ N
with n ≥ Nε and R ≥ Rε, one has ∥un∥H1(Bc

R(0)) ≤ ε, and ∥un − u∥Ls(BR(0)) ≤ ε for

s = 2, 3. It follows that

∥un − u∥Ls(R3) ≤ ∥un − u∥Ls(BR(0)) + ∥un − u∥Ls(Bc
R(0))

≤ ∥un − u∥Ls(BR(0)) + ∥un∥Ls(Bc
R(0)) + ∥u∥Ls(Bc

R(0))

≤ ε+ C4(∥un∥H1(Bc
R(0)) + ∥u∥H1(Bc

R(0)))

≤ (1 + 2C4)ε,

for any n ∈ N with n ≥ Nε and s = 2, 3. Therefore, for s = 2, 3, we have

un −→ u in Ls(R3), as n −→ ∞.(3.22)

By (3.4), (A3), the Hölder inequality and (3.22), one has∣∣∣∣ ∫
R3

q(x)f(un)(un − u)dx

∣∣∣∣ ≤
∫
R3

|q(x)f(un)||un − u|dx
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≤
∫
R3

L0|q(x)un||un − u|dx

≤ L0∥q∥L2(R3)∥un∥L6(R3)∥un − u∥L3(R3)

−→ 0, as n −→ ∞.(3.23)

From the Hölder inequality and (3.22), we get∣∣∣∣ ∫
R3

ϕunun(un − u)dx

∣∣∣∣ ≤
∫
R3

|ϕunun||un − u|dx

≤ ∥ϕun∥L6(R3)∥un∥L3(R3)∥un − u∥L2(R3)

−→ 0, as n −→ ∞.(3.24)

By (3.19), (3.20), (3.23) and (3.24), we have∫
R3

(|∇un|2 + V (x)u2n)dx =

∫
R3

(∇un · ∇u+ V (x)unu)dx+ o(1),

which implies that∫
R3

(|∇un|2 + V (x)u2n)dx =

∫
R3

(|∇u|2 + V (x)u2)dx+ o(1)

by (3.21). i.e., ∥un∥ −→ ∥u∥, as n −→ ∞. This together with un ⇀ u in H1(R3),
shows that un −→ u in H1(R3), as n −→ ∞.

From un −→ u in H1(R3) and (3.3), we obtain Iλ(u) = c > 0. So u ∈
H1(R3)\{0}. □

Now we give the proof of the main result.

Proof of Theorem 1 .1 . Set the Nehari manifold

N := {u ∈ H1(R3)\{0} : ⟨I ′
λ(u), u⟩ = 0}.

From Lemma 3.5, N is nonempty. For any u ∈ N , by Lemma 2.2, we have

0 = ⟨I ′
λ(u), u⟩

= ∥u∥2 + λ

∫
R3

ϕuu
2dx−

∫
R3

q(x)f(u)udx

≥ ∥u∥2 −
∫
R3

q(x)f(u)udx.(3.25)

Now, choose ε ∈ (0, 1
C1

) in the proof of Lemma 3.1 and use (3.1) to get∣∣∣∣ ∫
R3

q(x)f(u)udx

∣∣∣∣ ≤
∫
R3

(εq(x)u2 + Cεq(x)|u|3)dx

≤ C1ε∥u∥2 + Cε

∫
R3

q(x)|u|3dx

≤ C1ε∥u∥2 + Cε∥u∥3.(3.26)

Therefore, by (3.25) and (3.26), for every u ∈ N , we have

0 ≥ ∥u∥2 − C1ε∥u∥2 − Cε∥u∥3,
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which implies that

∥u∥ ≥ 1− C1ε

Cε
> 0, for any u ∈ N .

Hence any limit point of a sequence in the Nehari manifold is different from zero.
We claim that Iλ is bounded from below on N , i·e·, there exists M1 > 0 such

that Iλ(u) ≥ −M1, for any u ∈ N . Otherwise, there exists {un} ⊂ N such that

Iλ(un) < −n, for any n ∈ N.(3.27)

From (3.2), we obtain

Iλ(un) ≥
1− C1ε

2
∥un∥2 − Cε∥un∥3.

This and (3.27) imply that ∥un∥ −→ +∞, as n −→ ∞. Because {un} ⊂ N , as in the
proof of Lemma 3.3, we obtain that {un} is bounded in H1(R3), so ∥un∥ −→ +∞
is impossible. Then, Iλ is bounded from below on N . So we may define

c̄ = inf{Iλ(u) : u ∈ N}, and c̄ ≥ −M1, where M1 > 0.

Let {ūn} ⊂ N , such that Iλ(ūn) −→ c̄ as n −→ ∞. Following the same procedures
as the proof of Lemmas 3.3, 3.4 and Lemma 3.5, we can show that {ūn} is bounded
in H1(R3) and it has a convergent subsequence, strongly to ū ∈ H1(R3)\{0}. Thus
Iλ(ū) = c̄ and I

′
λ(ū) = 0. Therefore (ū, ϕū) ∈ H1(R3)×D1,2(R3) is a ground state

solution of system (1.2).
If we denote ū± = max{±ū, 0} the positive (negative) part of ū and by (A1), we

have

0 = ⟨I ′
λ(ū), ū

−⟩ = −∥ū−∥2 − λ

∫
R3

ϕū−(ū−)2dx−
∫
R3

q(x)f(ū)ū−dx

= −∥ū−∥2 − λ

∫
R3

ϕū−(ū−)2dx,

i.e.

∥ū−∥2 + λ

∫
R3

ϕū−(ū−)2dx = 0

and therefore, ū ≥ 0 in R3. By the standard arguments, see [6, 23], we have

ū ∈ L∞(R3), and ū ∈ C1,α
loc (R

3) with 0 < α < 1. Moreover, by the Harnack’s
inequality, see [24], ū(x) > 0 for all x ∈ R3.

So (ū, ϕū) ∈ H1(R3)×D1,2(R3) is a positive ground state solution of system (1.2).
□
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