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In the present work, we introduce a new contractive condition of integral type
known as α-ψ-contractive type mappings of integral type. Also, we study the exis-
tence and uniqueness of fixed points for such mappings. Our results improve, extend
and generalize the results derived by Samet et al. in [21] and various other related
results in the literature. Moreover, from our fixed point theorems, we will derive
various fixed point results on metric spaces endowed with a partial order.

2. Preliminaries

First we introduce some notations and definitions that will be used subsequently.
Let Ψ be the family of functions ψ : [0,∞) → [0,∞) satisfying the following condi-
tions:

(i) ψ is nondecreasing.

(ii)
+∞∑
n=1

ψn(t) <∞ for all t > 0, where ψn is the nth iterate of ψ.

These functions are known as (c)-comparison functions in the literature. It can be
easily verified that if ψ is a (c)-comparison function, then ψ(t) < t for any t > 0.

Recently, Samet et al. [21] introduced the following new concepts of α-ψ-contractive
type mappings and α-admissible mappings:

Definition 2.1. Let (X, d) be a metric space and T : X → X be a given self
mapping. T is said to be an α-ψ-contractive mapping if there exist two functions
α : X ×X → [0,+∞) and ψ ∈ Ψ such that

α(x, y)d(Tx, Ty) ≤ ψ(d(x, y))

for all x, y ∈ X.

Definition 2.2. Let T : X → X and α : X × X → [0,+∞). T is said to be
α-admissible if

x, y ∈ X, α(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1.

The following fixed point theorems are the main results in [21]:

Theorem 2.3. Let (X, d) be a complete metric space and T : X → X be an α-ψ-
contractive mapping satisfying the following conditions:

(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) T is continuous.

Then, T has a fixed point, that is, there exists x∗ ∈ X such that Tx∗ = x∗.

Theorem 2.4. Let (X, d) be a complete metric space and T : X → X be an α-ψ-
contractive mapping satisfying the following conditions:

(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn →

x ∈ X as n→ +∞, then α(xn, x) ≥ 1 for all n.

Then, T has a fixed point.
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Samet et al. [21] added the following condition to the hypotheses of Theorem 2.3
and Theorem 2.4 to assure the uniqueness of the fixed point:

(C): For all x, y ∈ X, there exists z ∈ X such that α(x, z) ≥ 1 and α(y, z) ≥ 1.

Further, Samet et al. [21] derived the following coupled fixed point theorems in
complete metric spaces using the previous obtained results.

Theorem 2.5. Let (X, d) be a complete metric space and F : X×X → X be a given
mapping. Suppose that there exists ψ ∈ Ψ and a function α : X2 ×X2 → [0,+∞)
such that

α((x, y), (u, v))d(F (x, y), F (u, v)) ≤ 1

2
ψ(d(x, u) + d(y, v)),

for all (x, y), (u, v) ∈ X ×X. Suppose also that

(i) for all (x, y), (u, v) ∈ X ×X, we have

α((x, y), (u, v)) ≥ 1 ⇒ α((F (x, y), F (y, x)), (F (u, v), F (v, u)) ≥ 1;

(ii) there exists (x0, y0) ∈ X ×X such that α((x0, y0), (F (x0, y0), F (y0, x0)) ≥ 1
and α((F (y0, x0), F (x0, y0)), (y0, x0)) ≥ 1.

(iii) F is continuous.

Then, F has a coupled fixed point, that is, there exists (x∗, y∗) ∈ X ×X such that
x∗ = F (x∗, y∗) and y∗ = F (y∗, x∗).

Theorem 2.6. Let (X, d) be a complete metric space and F : X×X → X be a given
mapping. Suppose that there exists ψ ∈ Ψ and a function α : X2 ×X2 → [0,+∞)
such that

α((x, y), (u, v))d(F (x, y), F (u, v)) ≤ 1

2
ψ(d(x, u) + d(y, v)),

for all (x, y), (u, v) ∈ X ×X. Suppose also that

(i) for all (x, y), (u, v) ∈ X ×X, we have

α((x, y), (u, v)) ≥ 1 ⇒ α((F (x, y), F (y, x)), (F (u, v), F (v, u)) ≥ 1;

(ii) there exists (x0, y0) ∈ X ×X such that α((x0, y0), (F (x0, y0), F (y0, x0)) ≥ 1
and α((F (y0, x0), F (x0, y0)), (y0, x0)) ≥ 1.

(iii) if {xn} and {yn} are sequences in X such that α((xn, yn), (xn+1, yn+1)) ≥ 1
and α((yn+1, xn+1), (yn, xn)) ≥ 1, xn → x ∈ X and yn → y ∈ X as n →
+∞, then α((xn, yn), (x, y)) ≥ 1 and α((y, x), (yn, xn)) ≥ 1 for all n ∈ N.

Then, F has a coupled fixed point.

Samet et al. [21] added the following condition to the hypotheses of Theorem 2.5
and Theorem 2.6 to assure the uniqueness of the coupled fixed point:

(C
′
): For all (x, y), (u, v) ∈ X ×X, there exists (z1, z2) ∈ X ×X such that

α((x, y), (z1, z2)) ≥ 1, α((z2, z1), (y, x)) ≥ 1

and

α((u, v), (z1, z2)) ≥ 1, α((z2, z1), (v, u)) ≥ 1.
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Recently, Berzig and Rus [7] introduced the notion of α-contractive mapping of
Meir-Keeler type in complete metric spaces and proved the related theorems for this
type of contraction. Berzig and Rus [7] introduced the following definitions:

Definition 2.7 ([7]). Let N ∈ N. We say that α is N -transitive (on X) if

x0, x1, ..., xN+1 ∈ X : α(xi, xi+1) ≥ 1

for all i ∈ {0, 1, ..., N} ⇒ α(x0, xN+1) ≥ 1.
In particular, we say that α is transitive if it is 1-transitive, i.e.,

x, y, z ∈ X : α(x, y) ≥ 1 and α(y, z) ≥ 1 ⇒ α(x, z) ≥ 1.

As consequences of the Definition 2.7, we obtain the following remarks:

Remark 2.8 ([7]). Any function α : X ×X → [0,+∞) is 0-transitive.

Remark 2.9 ([7]). If α is N transitive, then it is kN -transitive for all k ∈ N

Remark 2.10 ([7]). If α is transitive, then it is N -transitive for all N ∈ N

Remark 2.11 ([7]). If α is N -transitive, then it is not necessarily transitive for all
N ∈ N

3. Main results

In this section, we present our main results.
Define Φ = {φ : φ : R+ → R} such that φ is nonnegative, Lebesgue integrable, and
satisfy

(3.1)

∫ ϵ

0
φ(t)dt > 0 foreach ϵ > 0.

We introduce here a new concept of α-ψ-contractive type mappings of integral type
as follows:

Definition 3.1. Let (X, d) be a metric space and T : X → X be a given mapping.
We say that T is an α-ψ-contractive mapping of integral type if there exist two
functions α : X ×X → [0,+∞) and ψ ∈ Ψ such that for each x, y ∈ X

(3.2) α(x, y)

∫ d(Tx,Ty)

0
φ(t)dt ≤ ψ

(∫ d(x,y)

0
φ(t)dt

)
where φ ∈ Φ.

Remark 3.2. If T : X → X is an α-ψ-contractive mapping, then T is an α-ψ-
contractive mapping of integral type, where φ(t) = 1 for each t ≥ 0.

We now present our main results.

Theorem 3.3. Let (X, d) be a complete metric space and α : X ×X → [0,+∞) be
a transitive mapping. Suppose that T : X → X be an α-ψ-contractive mapping of
integral type and satisfies the following conditions:

(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) T is continuous.
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Then T has a fixed point, that is, there exists z ∈ X such that Tz = z.

Proof. Let x0 ∈ X such that α(x0, Tx0) ≥ 1. Define the sequence {xn} in X by
xn+1 = Txn for all n ≥ 0. If xn = xn+1 for some n, then x∗ = xn is a fixed point of
T . So, we can assume that xn ̸= xn+1 for all n. Since T is α-admissible, we have

(3.3) α(x0, x1) = α(x0, Tx0) ≥ 1 ⇒ α(Tx0, Tx1) = α(x1, x2) ≥ 1.

By induction, we get α(xn, xn+1) ≥ 1, for all n ≥ 0. On applying the inequality
(3.2) with x = xn−1 and y = xn and using (3.3), we obtain∫ d(xn,xn+1)

0
φ(t)dt =

∫ d(Txn−1,Txn)

0
φ(t)dt ≤ α(xn−1, xn)

∫ d(Txn−1,Txn)

0
φ(t)dt

≤ ψ

(∫ d(xn−1,xn)

0
φ(t)dt

)
.

Therefore, by induction, we get for all n ∈ N

(3.4)

∫ d(xn,xn+1)

0
φ(t)dt ≤ ψn

(∫ d(x0,x1)

0
φ(t)dt

)
= ψn(d)

where d =

∫ d(x0,x1)

0
φ(t)dt.

Letting n→ +∞, we obtain from the property of ψ that∫ d(xn,xn+1)

0
φ(t)dt = 0

which, from (3.1), implies that

(3.5) d(xn, xn+1) → 0 as n→ ∞.

We shall now show that {xn} is a Cauchy sequence. Suppose that it is not. Then
there exists an ϵ > 0 and subsequences {m(p)} and {n(p)} such that m(p) < n(p) <
m(p+ 1) with

(3.6) d(xm(p), xn(p)) ≥ ϵ, d(xm(p), xn(p)−1) < ϵ.

From (3.5), (3.6) and the triangular inequality, we have

ϵ ≤ d(xm(p), xn(p)) ≤ d(xm(p), xn(p)−1) + d(xn(p)−1, xn(p))

< ϵ+ d(xn(p)−1, xn(p)).

Taking the limit as p→ ∞, we get

lim
p
d(xm(p), xn(p)) = ϵ.

Due to the fact that α is transitive, we infer from (3.3) that

α(xm(p)−1, xn(p)−1) ≥ 1.

Now, from (3.2) and the above inequality, we obtain∫ d(xm(p),xn(p))

0
φ(t)dt =

∫ d(Txm(p)−1,Txn(p)−1)

0
φ(t)dt
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≤ α(xm(p)−1, xn(p)−1)

∫ d(Txm(p)−1,Txn(p)−1)

0
φ(t)dt

≤ ψ

(∫ d(xm(p)−1,xn(p)−1)

0
φ(t)dt

)
.

Letting p→ ∞ in the above equation, we get∫ ϵ

0
φ(t)dt ≤ ψ

(∫ ϵ

0
φ(t)dt

)
<

∫ ϵ

0
φ(t)dt,

which is a contradiction. Therefore, {xn} is a Cauchy sequence in (X, d). Since
(X, d) is complete, there exists z ∈ X such that xn → z as n→ +∞. We infer from
the continuity of T that Txn → Tz as n → +∞, that is, xn+1 → Tz as n → +∞.
By the uniqueness of the limit, we obtain z = Tz. Therefore, z is a fixed point of
T . �

In the next theorem, we exclude the continuity hypothesis of T .

Theorem 3.4. Let (X, d) be a complete metric space and α : X ×X → [0,+∞) be
a transitive mapping. Suppose that T : X → X be an α-ψ-contractive mapping of
integral type and satisfies the following conditions:

(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) If {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn →
x ∈ X as n→ ∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k.

Then T has a fixed point, that is, there exists z ∈ X such that Tz = z.

Proof. From the proof of Theorem 3.3, we infer that the sequence {xn} defined by
xn+1 = Txn for all n ≥ 0 converges to z ∈ X. We obtain, from hypothesis (iii) and
(3.3), that there exists a subsequence {xn(k)} of xn such that α(xn(k), z) ≥ 1 for all
k. Now applying the inequality (3.2) we obtain for all k,∫ d(xn(k)+1,T z)

0
φ(t)dt =

∫ d(Txn(k),T z)

0
φ(t)dt ≤ α(xn(k), z)

∫ d(Txn(k),T z)

0
φ(t)dt

≤ ψ

(∫ d(xn(k),z)

0
φ(t)dt

)
.

Suppose that d(z, Tz) > 0. Letting k → +∞, since ψ is continuous at t = 0, we
obtain ∫ d(z,Tz)

0
φ(t)dt = 0,

which, from (3.1), implies that d(z, Tz) = 0, or Tz = z. �

The following example shows that hypotheses of Theorem 3.3 and Theorem 3.4
do not guarantee the uniqueness of the fixed point.
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Example 3.5. Let X = {(1, 0), (0, 1)} ⊂ R2 endowed with the Euclidean distance
d((x, y), (u, v)) = |x − u| + |y − v| for all (x, y), (u, v) ∈ X. Clearly, (X, d) is a
complete metric space. Let us define the mapping α : X ×X → [0,+∞) by

α((x, y), (u, v)) =

{
1 if (x, y) = (u, v),
0 if (x, y) ̸= (u, v).

Clearly, α is transitive.
The mapping T (x, y) = (x, y) is trivially a continuous mapping and satisfies for

any ψ ∈ Ψ and φ ∈ Φ

α((x, y), (u, v))

∫ d(T (x,y),T (u,v))

0
φ(t)dt ≤ ψ

(∫ d((x,y),(u,v))

0
φ(t)dt

)
for all (x, y), (u, v) ∈ X. Thus, T is an α-ψ-contractive mapping of integral type.

Now, we have to prove that T is α-admissible. For this, let α((x, y), (u, v)) ≥ 1
for all (x, y), (u, v) ∈ X. It implies from the definition of α that (x, y) = (u, v) which
further implies that T (x, y) = T (u, v). Again from the definition of α we obtain
that α((T (x, y), T (u, v))) = 1. Thus, T is α-admissible.

Also, for all (x, y) ∈ X, we have α((x, y), T (x, y)) ≥ 1. Thus, all the hypotheses
of Theorem 3.3 are satisfied.

Indeed, if {(xn, yn)} is a sequence in X that converges to some point (x, y) ∈ X
with α((xn, yn), (xn+1, yn+1)) ≥ 1 for all n, then we have from the definition of α
that (xn, yn) = (xn+1, yn+1) for all n. This implies that (xn, yn) = (x, y) for all n
implying thereby α((xn, yn), (x, y)) = 1 for all n.

Now, all the hypotheses of Theorem 3.4 are also satisfied. Consequently, T has a
fixed point. In this example, T has two fixed points.

To guarantee the uniqueness of the fixed point, we will consider the following
hypothesis:

(H): For all a, b ∈ Fix(T ), there exists c ∈ X such that α(a, c) ≥ 1 and α(b, c) ≥
1. Here, Fix(T) denotes the set of fixed points of T .

Theorem 3.6. Adding condition (H) to the hypotheses of Theorem 3.3(resp. The-
orem 3.4), we obtain uniqueness of the fixed point of T .

Proof. Suppose that a and b are two fixed points of T . From (H), there exists c ∈ X
such that

(3.7) α(a, c) ≥ 1 and α(b, c) ≥ 1.

Due to the fact that T is α-admissible, we obtain from (3.7) that

(3.8) α(a, Tn(c)) ≥ 1 and α(b, Tn(c)) ≥ 1 forall n ∈ N.

Using the inequalities (3.2) and (3.8), we get∫ d(a,Tn(c))

0
φ(t)dt =

∫ d(Ta,T (Tn−1(c)))

0
φ(t)dt

≤ α(a, Tn−1(c))

∫ d(T (a),T (Tn−1(c)))

0
φ(t)dt
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≤ ψ

(∫ d(a,Tn−1(c))

0
φ(t)dt

)
.

By induction, we obtain for all n ∈ N∫ d(a,Tn(c))

0
φ(t)dt ≤ ψn

(∫ d(a,c)

0
φ(t)dt

)
.

Letting n→ ∞ in the above inequality, the property (ii) of the function ψ implies∫ d(a,Tn(c))

0
φ(t)dt = 0,

which, from (3.1), implies that

(3.9) Tnc→ a as n→ ∞.

Similarly, from (3.2) and (3.8), one can show that

(3.10) Tnc→ b as n→ ∞.

From (3.9) and (3.10), we find a = b due to the uniqueness of the limit. This proves
that a is the unique fixed point of T . �

The following example shows that our Theorem 3.6 is generalization of Theorem
2.3 of [21].

Example 3.7. Suppose that X =

{
1

n
|n ∈ N

}
∪{0} with the usual metric induced

by R. Since X is a closed subset of R, it is a complete metric space. We consider a
mapping f : X → X defined by

f(x) =

{ 1

n+ 1
if x = 1

n ,

0 if x = 0.

Define the mapping α : X ×X → [0,+∞) by

α(x, y) =

{
1 y = 0,
0 otherwise.

Clearly, α is transitive.
Define φ ∈ Φ by φ(t) = t1/t−2[1 − logt] for t > 0 and φ(0) = 0. Then, for any

a > 0, we have ∫ a

0
φ(t)dt = a1/a.

Let us define ψ ∈ Ψ by ψ(t) = t
2 for all t ≥ 0.

We observe that this case is not applicable to α-ψ-contractive mappings since we
have

d(f(12), f(0)) =
1
3 >

1
4 = 1

2(d(
1
2 , 0)) = ψ(d(x, y)).

Using ([9], Example 3.6), we have for x = 1
n and y = 0;∫ d(fx,f0)

0
φ(t)dt = d(fx, f0)1/d(fx,f0)
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=

∣∣∣∣ 1

n+ 1
− 0

∣∣∣∣1/|(1/n+1)−0|

≤ 1

2

∣∣∣∣ 1n
∣∣∣∣1/|(1/n)|

=
1

2
d(x, y)1/d(x,y) =

1

2

∫ d(x,y)

0
φ(t)dt.

Therefore, f is an α-ψ-contractive mapping of integral type with α as defined above
and ψ(t) = t

2 for all t ≥ 0. In fact, for all x, y ∈ X, we have

α(x, y)

∫ d(fx,fy)

0
φ(t)dt ≤ ψ

(∫ d(x,y)

0
φ(t)dt

)
.

There exists x0 ∈ X such that α(x0, fx0) ≥ 1. In fact, for x0 = 0, we obtain

α(0, f0) = α(0, 0) = 1

Now, let x, y ∈ X such that α(x, y) ≥ 1. This implies that y = 0 and by the
definition of f and α, we have fy = 0, that is, α(fx, fy) = 1. Thus, f is α-
admissible.

Let {xn} be a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x as
n → +∞ for some x ∈ X. From the definition of α, for all n, we have xn = 0 for
all n. Consequently, x = 0 and α(xn, x) = 1 for all n ∈ N.

Let (x, y) ∈ X × X. It is easy to show that, for z = 0, we have α(x, z) =
α(y, z) = 1. So, condition (H) is satisfied. Now, all the hypotheses of Theorem 3.6
are satisfied; thus T has a unique fixed point u ∈ X. In this case, we have u = 0.

4. Coupled fixed point theorems

In this section, we derive coupled fixed point theorems in complete metric spaces
from our previous obtained results. For this, we recollect the following definition:

Definition 4.1. (Bhaskar and Lakshmikantham [8]) Let F : X × X → X be a
given mapping. We say that (x, y) ∈ X ×X is a coupled fixed point of F if

F (x, y) = x and F (y, x) = y.

Samet et al. [21] gave the following useful lemma which states that a coupled
fixed point is a fixed point:

Lemma 4.2. Let F : X × X → X be a given mapping. Define the mapping
T : X ×X → X ×X by

(4.1) T (x, y) = (F (x, y), F (y, x)), forall (x, y) ∈ X ×X.

Then, (x, y) is a coupled fixed point of F if and only if (x, y) is a fixed point of T .

We now prove the following coupled fixed point theorems:

Theorem 4.3. Let (X, d) be a complete metric space and F : X×X → X be a given
mapping. Suppose that there exists ψ ∈ Ψ and a function α : X2 ×X2 → [0,+∞)
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such that for all (x, y), (u, v) ∈ X ×X, we have

(4.2) α((x, y), (u, v))

∫ d(F (x,y),F (u,v))

0
φ(t)dt ≤ 1

2
ψ

(∫ d(x,u)+d(y,v)

0
φ(t)dt

)
,

where φ ∈ Φ. Suppose also that

(i) for all (x, y), (u, v) ∈ X ×X, we have

α((x, y), (u, v)) ≥ 1 ⇒ α((F (x, y), F (y, x)), (F (u, v), F (v, u)))) ≥ 1

(ii) there exists (x0, y0) ∈ X ×X such that

α((x0, y0), (F (x0, y0), F (y0, x0))) ≥ 1 and α((F (y0, x0), F (x0, y0)), (y0, x0)) ≥ 1.

(iii) F is continuous.

(iv)

∫ a+b

0
φ(t)dt ≤

∫ a

0
φ(t)dt+

∫ b

0
φ(t)dt.

Then, F has a coupled fixed point, that is, there exists (u, v) ∈ X × X such that
u = F (u, v) and v = F (v, u).

Proof. We convert this problem to the complete metric space (Y, δ), where Y =
X ×X and δ((x, y), (u, v)) = d(x, u) + d(y, v) for all (x, y), (u, v) ∈ X ×X. From
(4.2), we obtain

(4.3) α((x, y), (u, v))

∫ d(F (x,y),F (u,v))

0
φ(t)dt ≤ 1

2
ψ

(∫ δ((x,y),(u,v))

0
φ(t)dt

)
,

and

(4.4) α((v, u), (y, x))

∫ d(F (v,u),F (y,x))

0
φ(t)dt ≤ 1

2
ψ

(∫ δ((x,y),(u,v))

0
φ(t)dt

)
.

Adding equations (4.3) and (4.4), we have

(4.5) β((x, y), (u, v))

(∫ d(F (x,y),F (u,v))

0
φ(t)dt+

∫ d(F (v,u),F (y,x))

0
φ(t)dt

)

≤ ψ

(∫ δ((x,y),(u,v))

0
φ(t)dt

)
,

where β : Y × Y → [0,+∞) is the function defined by

β((x, y), (u, v)) = min{α((x, y), (u, v)), α((v, u), (y, x))},
which further implies from hypothesis (iv) that
(4.6)

β((x, y), (u, v))

(∫ d(F (x,y),F (u,v))+d(F (v,u),F (y,x))

0
φ(t)dt

)
≤ ψ

(∫ δ((x,y),(u,v))

0
φ(t)dt

)
.

Henceforth, for all (x, y), (u, v) ∈ X ×X, we have

(4.7) β((x, y), (u, v))

∫ δ(T (x,y),T (u,v))

0
φ(t)dt ≤ ψ

(∫ δ((x,y),(u,v))

0
φ(t)dt

)
,
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where T : Y → Y is given by (4.1).
Therefore, for all µ = (µ1, µ2), ν = (ν1, ν2) ∈ X ×X, we get

(4.8) β(µ, ν)

∫ δ(T (µ),T (ν))

0
φ(t)dt ≤ ψ

(∫ δ(µ,ν)

0
φ(t)dt

)
.

Consequently, from (4.8) and condition(iii) of the hypotheses, we obtain that T is
continuous and β-ψ-contractive mapping of integral type.

Let µ = (µ1, µ2), ν = (ν1, ν2) ∈ Y such that β(µ, ν) ≥ 1. Using condition (i), we
obtain immediately that β(Tµ, Tν) ≥ 1. Then T is β-admissible. From hypotheses
(ii), we infer that there exists (x0, y0) ∈ Y such that β((x0, y0), T (x0, y0)) ≥ 1. All
the hypotheses of Theorem 3.3 are satisfied and so we deduce the existence of a
fixed point of T . Thus, we obtain the existence of a coupled fixed point of F from
Lemma 4.2. �

In the next theorem, we omit the continuity hypotheses of F .

Theorem 4.4. Let (X, d) be a complete metric space and F : X×X → X be a given
mapping. Suppose that there exists ψ ∈ Ψ and a function α : X2 ×X2 → [0,+∞)
such that for all (x, y), (u, v) ∈ X ×X, we have

(4.9) α((x, y), (u, v))

∫ d(F (x,y),F (u,v))

0
φ(t)dt ≤ 1

2
ψ

(∫ d(x,u)+d(y,v)

0
φ(t)dt

)
,

where φ ∈ Φ. Suppose also that

(i) for all (x, y), (u, v) ∈ X ×X, we have

α((x, y), (u, v)) ≥ 1 ⇒ α((F (x, y), F (y, x)), (F (u, v), F (v, u)))) ≥ 1

(ii) there exists (x0, y0) ∈ X ×X such that

α((x0, y0), (F (x0, y0), F (y0, x0))) ≥ 1 and α((F (y0, x0), F (x0, y0)), (y0, x0)) ≥ 1.

(iii) if {xn} and {yn} are sequences in X such that α((xn, yn), (xn+1, yn+1)) ≥ 1
and α((yn+1, xn+1), (yn, xn)) ≥ 1 for all n ∈ N. xn → x ∈ X and yn → y ∈
X as n → +∞, then α((xn, yn), (x, y)) ≥ 1 and α((y, x), (yn, xn)) ≥ 1 for
all n ∈ N.

Then, F has a coupled fixed point.

Proof. Using the same notations of the proof of previous theorem, let {(xn, yn)} be
a sequence in Y such that β((xn, yn), (xn+1, yn+1)) ≥ 1 and (xn, yn) → (x, y) as n→
+∞. From hypotheses (iii), we obtain that β((xn, yn), (x, y)) ≥ 1. Consequently,
all the hypotheses of Theorem 3.4 are satisfied. Thus, we deduce the existence of
a fixed point of T that gives us from Lemma 4.2 the existence of a coupled fixed
point of F . �

For the uniqueness of the coupled fixed point, we will consider the following
hypothesis.

(H
′
): For all (a, b), (c, d) ∈ X ×X, there exists (u1, u2) ∈ X ×X such that

α((a, b), (u1, u2)) ≥ 1, α((u2, u1), (b, a)) ≥ 1,
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and

α((c, d), (u1, u2)) ≥ 1, α((u2, u1), (d, c)) ≥ 1.

Theorem 4.5. Adding condition (H
′
) to the hypotheses of Theorem 4.3(resp. The-

orem 4.4) we obtain the uniqueness of the coupled fixed point of F .

Proof. Under hypotheses (H
′
) it is easy to show that T and β satisfy the hypotheses

(H). Therefore, our result follows from Theorem 3.6 and Lemma 4.2. �

5. Consequences

In this section, we will show that many existing results in the literature can be
deduced easily from our Theorem 3.6

5.1. Standard fixed point theorems. By taking α(x, y) = 1 for all x, y ∈ X and
ψ(t) = kt for k ∈ [0, 1) in Theorem 3.6, we obtain the following corollary:

Corollary 5.1 ([9, Branciari]). Let (X, d) be a complete metric space, k ∈ [0, 1),
and let T : X → X be a mapping such that for each x, y ∈ X,∫ d(Tx,Ty)

0
φ(t)dt ≤ k

∫ d(x,y)

0
φ(t)dt,

where φ ∈ Φ. Then T has a unique fixed point a ∈ X such that for each x ∈ X,
lim

n→+∞
Tnx = a.

By taking y = Tx in Corollary 5.1, we obtain the following corollary:

Corollary 5.2 ([19, Rhoades and Abbas]). Let T be a self map of a complete metric
space (X, d) satisfying∫ d(Tx,T 2x)

0
φ(t)dt ≤ k

∫ d(x,Tx)

0
φ(t)dt,

for all x ∈ X and k ∈ [0, 1), where φ ∈ Φ. Then T has a unique fixed point a ∈ X.

By taking φ(t) = 1 for all t ≥ 0 in Theorem 3.3, we obtain the following fixed
point theorem:

Corollary 5.3 ([21, Samet et al.]). . Let (X, d) be a complete metric space and
T : X → X be an α-ψ-contractive mapping satisfying the following conditions:

(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) T is continuous.

Then, T has a fixed point, that is, there exists x∗ ∈ X such that Tx∗ = x∗.

By taking α(x, y) = 1 for all x, y ∈ X and φ(t) = 1 for all t ≥ 0 in Theorem 3.6,
we obtain the following:

Corollary 5.4 ([4, Berinde]). Let (X, d) be a complete metric space and T : X → X
be a given mapping. Suppose that there exists a function ψ ∈ Ψ such that

d(Tx, Ty) ≤ ψ(d(x, y)),

for all x, y ∈ X. Then, T has a unique fixed point.
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Clearly, we also obtain the following corollary:

Corollary 5.5 ([3, Banach]). Let (X, d) be a complete metric space and T : X → X
be a given mapping satisfying

d(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X.

where k ∈ [0, 1). Then T has a unique fixed point.

5.2. Fixed point theorems on ordered metric spaces. Recently, authors have
initiated a new trend in fixed point theory by considering the existence and unique-
ness of a fixed point in partially ordered sets. The first result in this direction
was given by Turinici [22], where he extended the Banach contraction principle in
partially ordered sets. Some applications of Turinici’s theorem to matrix equations
were presented by Ran and Reurings [17]. After this fascinating paper, many useful
results have been obtained in this direction(see, for example, [1, 6, 5, 8, 13, 14, 15, 16]
and the references cited therein). In this section, we will derive various fixed point
results on a metric space endowed with a partial order. For this, we require the
following concepts:

Definition 5.6. Let (X,≼) be a partially ordered set and T : X → X be a given
mapping. We say that T is nondecreasing with respect to ≼ if

x, y ∈ X,x ≼ y ⇒ Tx ≼ Ty.

Definition 5.7. Let (X,≼) be a partially ordered set. A sequence {xn} ⊂ X is
said to be nondecreasing with respect to ≼ if xn ≼ xn+1 for all n.

Definition 5.8 ([12]). Let (X,≼) be a partially ordered set and d be a metric on
X. We say that (X,≼, d) is regular if for every nondecreasing sequence {xn} ⊂ X
such that xn → x ∈ X as n → ∞, there exists a subsequence {xn(k)} of {xn} such
that xn(k) ≼ x for all k.

Now, we have the following result.

Corollary 5.9. Let (X,≼) be a partially ordered set and d be a metric on X such
that (X, d) is complete. Let T : X → X be a nondecreasing mapping with respect
to ≼. Suppose that there exists a function ψ ∈ Ψ such that for all x, y ∈ X with
x ≼ y, we have ∫ d(Tx,Ty)

0
φ(t)dt ≤ ψ

(∫ d(x,y)

0
φ(t)dt

)
,

where φ ∈ Φ. Suppose also that the following conditions hold:

(i) there exists x0 ∈ X such that x0 ≼ Tx0;
(ii) T is continuous or (X,≼, d) is regular.

Then, T has a fixed point. Moreover, if for all x, y ∈ X there exists z ∈ X such
that x ≼ z and y ≼ z, we have uniqueness of the fixed point.

Proof. Let us define the mapping α : X ×X → [0,∞) by

α(x, y) =

{
1 if x ≼ y,
0 otherwise.

Clearly, α is transitive. Also, from the definition of α, we obtain that T is an
α-ψ-contractive mapping of integral type, that is,
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α(x, y)

∫ d(Tx,Ty)

0
φ(t)dt ≤ ψ

(∫ d(x,y)

0
φ(t)dt

)
,

for all x, y ∈ X. From condition (i), we have α(x0, Tx0) ≥ 1. Now, we have to
prove that T is α-admissible. For this, let α(x, y) ≥ 1 for all x, y ∈ X. Moreover,
from the monotone property of T , we have for all x, y ∈ X

α(x, y) ≥ 1 ⇒ x ≼ y ⇒ Tx ≼ Ty ⇒ α(Tx, Ty) ≥ 1.

Thus, T is α-admissible. Now, if T is continuous, the existence of a fixed point
follows from Theorem 3.3. Suppose now that (X,≼, d) is regular. Let {xn} be a
sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n→ ∞. Due
to the fact that the space (X,≼, d) is regular, there exists a subsequence {xn(k)} of
{xn} such that xn(k) ≼ x for all k. Now, from the definition of α, we obtain that
α(xn(k), x) ≥ 1 for all k. In this case, we obtain the existence of a fixed point from
Theorem 3.4. Now, we have to prove the uniqueness of the fixed point. For this,
let x, y ∈ X. By hypothesis, there exists z ∈ X such that x ≼ z and y ≼ z which
implies from the definition of α that α(x, z) ≥ 1 and α(y, z) ≥ 1. Therefore, we
deduce the uniqueness of the fixed point from Theorem 3.6. �

We can now easily derive the following results from Corollary 5.9.

Corollary 5.10 ([12, Karapinar and Samet]). Let (X,≼) be a partially ordered
set and d be a metric on X such that (X, d) is complete. Let T : X → X be
a nondecreasing mapping with respect to ≼. Suppose that there exists a function
ψ ∈ Ψ such that

d(Tx, Ty) ≤ ψ(d(x, y)),

for all x, y ∈ X with x ≼ y. Suppose also that the following conditions hold:

(i) there exists x0 ∈ X such that x0 ≼ Tx0;
(ii) T is continuous or (X,≼, d) is regular.

Then, T has a fixed point. Moreover, if for all x, y ∈ X there exists z ∈ X such
that x ≼ z and y ≼ z, we have uniqueness of the fixed point.

Proof. By taking φ(t) = 1 for all t ≥ 0 in Corollary 5.9, we get the proof of this
corollary. �

Corollary 5.11. Let (X,≼) be a partially ordered set and d be a metric on X such
that (X, d) is complete. Let T : X → X be a nondecreasing mapping with respect
to ≼. Suppose that there exists a function ψ ∈ Ψ such that for all x, y ∈ X with
x ≼ y, we have ∫ d(Tx,Ty)

0
φ(t)dt ≤ k

∫ d(x,y)

0
φ(t)dt,

where φ ∈ Φ. Suppose also that the following conditions hold:

(i) there exists x0 ∈ X such that x0 ≼ Tx0;
(ii) T is continuous or (X,≼, d) is regular.

Then, T has a fixed point. Moreover, if for all x, y ∈ X there exists z ∈ X such
that x ≼ z and y ≼ z, we have uniqueness of the fixed point.
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Proof. By taking ψ(t) = kt for all t ≥ 0 and some k ∈ [0, 1) in Corollary 5.9, we get
the proof of this corollary. �
Corollary 5.12 ([17, Ran and Reurings], [16, Nieto and Lopez]). Let (X,≼) be
a partially ordered set and d be a metric on X such that (X, d) is complete. Let
T : X → X be a nondecreasing mapping with respect to ≼. Suppose that there exists
a constant k ∈ (0, 1) such that

d(Tx, Ty) ≤ kd(x, y),

for all x, y ∈ X with x ≼ y. Suppose also that the following conditions hold:

(i) there exists x0 ∈ X such that x0 ≼ Tx0;
(ii) T is continuous or (X,≼, d) is regular.

Then, T has a fixed point. Moreover, if for all x, y ∈ X there exists z ∈ X such
that x ≼ z and y ≼ z, we have uniqueness of the fixed point.

Proof. Taking φ(t) = 1 for all t ≥ 0 in Corollary 5.11, we get the proof of this
corollary. �
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