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2. Tools

In this section we intend to collect the geometrical tools we will be making use
of in the further sections in order to prove our advances on the Banach-Mazur
Conjecture for Rotations.

2.1. Inner structure. We will strongly rely on the concept of inner point. We
refer the reader to [4] for a wider perspective on this relatively new geometrical
concept.

Definition 2.1 (Garćıa-Pacheco, [4]). Let X be a real vector space and consider
M a non-empty subset of X. Let x ∈ X.

(1) We will say that x is an inner point of M provided that the following hap-
pens: Let S be a bounded or unbounded maximal segment of M such that
x ∈ S, then x ∈ int (S).

(2) We will say that x is an outer point of M provided that the following hap-
pens: There exists a bounded or unbounded maximal segment S of M such
that x ∈ ext (S).

The set of inner and outer points of M will be denoted by inn (M) and out (M),
respectively. The reader may observe that {inn (M) , out (M) ∩M} is always a
partition of M . Even more, if M is convex, then

• out (M) = out (X \M), and
• {inn (M) , out (M) , inn (X \M)} is a partition of X.

In case M is not convex, then the previous two items do not hold as shown in
the next example.

Example 2.2. Let X := R2 and consider

M := (−∞, 0)× {0} ∪
{(

1

n
, 0

)
∈ R2 : n ∈ N

}
.

It is pretty clear that 0 ∈ out (M) \ M . However, the only maximal segments of
X \ M that contain 0 are the straight lines {(x,mx) : x ∈ R} with m ̸= 0. As a
consequence, 0 ∈ inn (X \M).

In case X is endowed with a vector topology, then the relation between the inner
and outer points and the topological interior and closure is the following for convex
subsets (see [4, Chapter 1]):

• int (M) ⊆ inn (M).
• If int (M) ̸= ∅, then int (M) = inn (M).
• out (M) ⊆ bd (M).

Finally, it is worth mentioning that all the extreme points of a convex set are
trivially outer points, however the converse to the previous assertion is not true.
For this it suffices to consider the unit ball BX of any non-rotund Banach space.
Indeed, all points in the unit sphere SX of X will be outer points of BX , however
not all of these points will be extreme points of BX due to the fact that X is not
rotund.
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2.2. Extremal structure. The extremal structure of convex sets will also be cru-
cial towards accomplishing the main results in this paper. In this subsection we
collect all we need.

Definition 2.3. Let X be a real vector space. Consider a convex subset M of X.
We say that a convex subset C of M is a face of M exactly when the extremal
condition is verified, that is, if m,n ∈ M and there exists t ∈ (0, 1) such that
tm+ (1− t)n ∈ C, then m,n ∈ C.

The next two lemmas are the tools we will be making use of in order to prove
the main result in this manuscript.

Lemma 2.4. Let X be a real vector space. Let M be a convex subset of X. If D is
a face of M and C is a convex subset of M such that D∩ inn (C) ̸= ∅, then C ⊆ D.

Proof. Let c ∈ C and d ∈ D ∩ inn (C). By definition of inner point, there must exit
e ∈ C such that d ∈ (c, e) ⊂ C. Since D is a face of M , by the extremal condition
we deduce that c, e ∈ D. �
Lemma 2.5. Let X be a real Banach space. Let M be a bounded closed convex
subset of X. If C is a face of M , then C \ inn (C) ̸= ∅.

Proof. We may assume C is not a singleton since otherwise inn (C) = ∅. Let S be
any non-trivial maximal segment of C. Since M is bounded and closed, there are
m ̸= n ∈ M such that [m,n] is a maximal segment of M containing S. Since C is a
face of M we deduce that S = [m,n]. Finally observe that m,n ∈ C \ inn (C). �

The next theorem will also be crucial toward our goals.

Theorem 2.6. Let X be a real vector space. Let M be a non-singleton convex
subset of X. If x ∈ out (M) ∩M , then there exists a proper face of M containing
x.

Proof. Notice that we can assume without any loss of generality that x = 0. Con-
sider the set

C =
∪

{S ⊂ M : S is a maximal segment of M whose interior contains 0} .

Notice that if C = ∅, then 0 is an extreme point of M . On the other hand, since
0 ∈ M \ inn (M) there exists a maximal segment in M one of its endpoints is 0,
thus C ̸= M . To see that C is convex, we take x, y ∈ C and t ∈ [0, 1]. There exists
α < 0 such that αx, αy ∈ M . Then,

α (tx+ (1− t) y) = t (αx) + (1− t) (αy) ∈ M.

This means that tx + (1− t) y ∈ C. Finally, to see that C is a face of M we take
x, y ∈ M and t ∈ (0, 1) such that tx + (1− t) y ∈ C. There exists α < 0 such that
α (tx+ (1− t) y) ∈ M . Then,

αt

1− α (1− t)
x =

−α (1− t)

1− α (1− t)
y +

1

1− α (1− t)
α (tx+ (1− t) y) ∈ M

and
α (1− t)

1− αt
y =

−αt

1− αt
x+

1

1− αt
α (tx+ (1− t) y) ∈ M.

This proves that x, y ∈ C. �
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3. The main result

The idea is to look for geometrical invariants in order to reach a contradiction.
In this case, our geometrical invariants will be the invariant faces.

Definition 3.1. Let X be a real Banach space. Let C be a proper face of BX .
We say that C is an invariant face of BX exactly when for every T ∈ GX such that
C ⊆ T (C) we have that T (C) = C.

We would like to point out that by GX we mean the set of all surjective linear
isometries on X. On the other hand, trivial examples of invariant faces are maximal
faces and extreme points.

Theorem 3.2. Let X be a transitive real Banach space. If C is an invariant face
of BX , then inn (C) = ∅.

Proof. Assume that there exists c ∈ inn (C). By Lemma 2.5, we can find d ∈
C \ inn (C). Let T ∈ GX such that T (d) = c. Note that T (C)∩ inn (C) ̸= ∅, so by
Lemma 2.4 we have that C ⊆ T (C). Since C is an invariant face, we deduce that
C = T (C). Finally,

c = T (d)

∈ T (C \ inn (C))

= T (C) \ T (inn (C))

= T (C) \ inn (T (C))

= C \ inn (C) ,

which is impossible. Thus, inn (C) = ∅. �
Corollary 3.3. Let X be a transitive real Banach space. If all proper faces of BX

are invariant, then X is rotund.

Proof. Assume that X is not rotund and take x ∈ SX \ ext (BX). By the separation
theorem, there is a closed hyperplane supporting BX at x. In particular, x is
contained in a proper face of BX . Consider the minimal face of BX containing x,
that is,

Cx :=
∩

{C ⊂ BX : C is a proper face of BX and x ∈ C} .
We will show now that x ∈ inn (Cx), which is already a contradiction in virtue of
Theorem 3.2. So, suppose that x ∈ out (Cx) ∩ Cx. Since x is not an extreme point
of BX we are entitled to apply Theorem 2.6 to deduce the existence of a proper face
D of Cx containing x. Notice that D is also a face of BX which contains x and is
strictly contained in Cx. This contradicts the fact that Cx is the minimal face of
BX containing x. As a consequence, x ∈ inn (Cx). �

4. Complementary results

Let us first introduce a bit of notation. Let X be a real Banach space. We define
the following sets for n ∈ N:

(1) If n = 1 then

C1 := {C ⊂ SX : C is a maximal face of BX} .
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(2) If n > 1 then

Cn := {C ⊂ SX : C is a maximal face of some element of Cn−1} .
As mentioned before, all elements in C1 are invariant faces. The next theorem shows
that under certain conditions all elements in C2 are also invariant faces.

Theorem 4.1. Let X be a real Banach space. If all elements in C1 are pairwise
disjoint, then all elements in C2 are invariant faces.

Proof. Assume that C ∈ C2 and let T ∈ GX such that C ⊆ T (C). There exists
D ∈ C1 such that C is a maximal face ofD. Look at the following chain of inclusions:

C ⊆ T (C) ⊆ T (D) .

This implies that T (D) ∩D ̸= ∅. Since T (D) ∈ C1, by hypothesis we deduce that
T (D) = D. Since C is maximal in D, we deduce that C = T (C). �

Examples of real Banach spaces in which all elements in C1 are pairwise disjoint
include all rotund spaces and smooth spaces. Notice that the proof of Theorem 4.2
can be adapted to prove the following more general result:

Theorem 4.2. Let X be a real Banach space. If all elements in Cn are pairwise
disjoint, then all elements in Cn+1 are invariant faces.

Since every transitive and separable Banach space must be smooth in virtue of a
result of Mazur (see [5]), we have the following partial positive solution to the weak
form of the Banach-Mazur Conjecture for Rotations.

Corollary 4.3. Let X be a transitive and separable real Banach space. Then all
faces in C1∪C2 are invariant. Hence if all other faces in the unit ball are invariant,
then X is rotund.
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