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2. Proof of Theorem 1.3

Proof. The proof is naturally divided into two parts.

I. Weakly contractive ⇒ Rakotch contractive

Let the mapping A satisfy (1.2), where the continuous and increasing function
ψ : R+ → R+ satisfies (1.1).

Let ν : R+ → R+ be the modulus of continuity of A, that is, let

ν(t) := sup{d(Ax,Ay) : x, y ∈ X, d(x, y) ≤ t}.
It is clear that the function ν is increasing and upper semicontinuous, has a

bounded range, and that ν(t) ≤ t for all t ∈ R+.

Claim 1. ν(t) < t for t > 0.

Indeed, suppose that ν(s) = s for some s > 0. Then we could find sequences
(xn)

∞
n=1, (yn)

∞
n=1 ⊂ X such that

d(xn, yn) ≤ s and d(Axn, Ayn) → s,

which together with

d(Axn, Ayn) ≤ d(xn, yn)− ψ(d(xn, yn)) ≤ d(xn, yn) ≤ s

would imply that d(xn, yn) → s and ψ(d(xn, yn)) → 0. Thus ψ(s) = 0 and by (1.1),
s = 0, a conclusion which contradicts our choice of s > 0. This completes the proof
of Claim 1.

Let ω : R+ → R+ be the smallest envelope of all the affine majorants of ν, that
is, let

ω(t) := inf{α(t) : α is affine, α(s) ≥ ν(s) for all s ∈ R+}.
The function ω is concave and ν(t) ≤ ω(t) ≤ t for all t ∈ R+ by definition.

Claim 2. ω(t) < t for t > 0.

Indeed, let s be positive. For t ≥ s, the real function t 7→ t− ν(t) is positive by
Claim 1, lower semicontinuous and tends to ∞ as t tends to ∞. Therefore there
exists ϵ > 0 such that

(∗) t− ν(t) ≥ ϵ ∀t ≥ s.

On the other hand, since ν is bounded from above, there exists r > s such that

(∗∗) ν(t) < r − ϵ ∀t ≥ s.

Let α : R+ → R+ be the affine function given by

α(t) := λt+ (1− λ)(s− ϵ), where λ =
r − s

r − s+ ϵ
< 1 .

The function α is a majorant of ν. To see this, we divide the half-line R+ into four
intervals:

• if t ∈ [0, s− ϵ], then

α(t) ≥ λt+ (1− λ)t = t ≥ ν(t);
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• if t ∈ [s− ϵ, s], then

α(t) ≥ α(s− ϵ) = s− ϵ
by (∗)
≥ ν(s) ≥ ν(t)

because both α and ν are increasing functions;
• if t ∈ [s, r], then

α(t) = (t− ϵ) + [(1− λ)(s− ϵ− t) + ϵ]

= (t− ϵ) + ϵ
r − t

r − s+ ϵ
≥ t− ϵ

by (∗)
≥ ν(t);

• if t ≥ r, then

α(t) = s− ϵ+ λ(t− s+ ϵ) ≥ s− ϵ+ λ(r − s+ ϵ) = r − ϵ
by (∗∗)
> ν(t).

Thus we see that α is indeed an affine majorant of ν. Hence

s > s+ (λ− 1)ϵ = α(s) ≥ ω(s),

as claimed.

Now define the function ϕ : R+ → [0, 1] by

ϕ(t) :=
ω(t)

t
for t > 0, ϕ(0) := 1.

Then ϕ(t) < 1 ∀t > 0 by Claim 2, and ϕ is decreasing because

ω(s) ≥
(
1− s

t

)
ω(0) +

s

t
ω(t) =

s

t
ω(t) ∀ 0 ≤ s < t

by the concavity of ω.

Combining all this, we obtain

d(Ax,Ay) ≤ ν(d(x, y)) ≤ ω(d(x, y)) = ϕ(d(x, y))d(x, y) ∀x, y ∈ X,

which means that A is, in fact, Rakotch contractive, as claimed.

II. Rakotch contractive ⇒ weakly contractive

We first assert that when A is Rakotch contractive and has a bounded range,
then we can always find a decreasing function ϕ̃ : R+ → [0, 1] satisfying (1.3) and
(1.4) that is also continuous. As a matter of fact, we can use the same construction
we employed in the proof of the first implication above. However, defining ν as the
modulus of continuity of such a mapping A, that is,

ν(t) := sup{d(Ax,Ay) : x, y ∈ X, d(x, y) ≤ t},

we prove the analogue of Claim 1 in a slightly different way than before.

Claim 1′. ν(t) < t for t > 0.
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If ν(s) = s for some s > 0, we could find sequences (xn)
∞
n=1, (yn)

∞
n=1 ⊂ X

satisfying

d(xn, yn) ≤ s and d(Axn, Ayn) → s,

which when combined with

d(Axn, Ayn) ≤ ϕ(d(xn, yn))d(xn, yn) ≤ d(xn, yn) ≤ s,

would imply that d(xn, yn) → s > 0 and ϕ(d(xn, yn)) → 1, contradicting (1.3). So
Claim 1′ is proved.

From here we can continue by defining ω as the infimum of the affine majorants
of ν. The analogue of Claim 2 is then proved just as before, and next we define the
function ϕ̃ : R+ → [0, 1] that will satisfy all the conditions stated in Definition 1.2
by

ϕ̃(t) :=
ω(t)

t
for t > 0, ϕ̃(0) := lim

t→0+

ω(t)

t
.

Note that continuity away from zero is a consequence of the concavity of ω, while
continuity at zero is just by definition.

Thus

d(Ax,Ay) ≤ ϕ̃(d(x, y))d(x, y).

Returning to our assertion, we now note that

d(Ax,Ay) ≤ ϕ̃(d(x, y))d(x, y) = d(x, y)− (1− ϕ̃(d(x, y)))d(x, y) ∀x, y ∈ X.

The function t 7→ (1− ˜ϕ(t))t is the function ψ(t) for which we were looking. �

3. Discussion

In this section we discuss several issues which concern Theorem 1.3 and its proof.

The boundedness assumption regarding the range of A plays a crucial role in Part
I (weakly contractive ⇒ Rakotch contractive) of the proof of Theorem 3.1. This is
brought out by the following example of a weakly contractive mapping which is not
Rakotch contractive (cf. [3, page 134]).

Example 3.1. Let (X, d) := (R+, d), where

d(x, y) :=

{
max(x, y) if x ̸= y
0 if x = y

for x, y ∈ X,

and A : x ∈ X 7→ Ax := x2

1+x ∈ X, an increasing and unbounded function.
Then it is easy to see that

d(Ax,Ay) = d(x, y)− ψ(d(x, y)),

where ψ : t ∈ R+ 7→ t
1+t ∈ R+ satisfies all the conditions specified in Definition 1.1,

so A is weakly contractive.
If there were a function ϕ : R+ → [0, 1] satisfying the conditions required in

Definition 1.2, then we would have

Ay ≤ ϕ(y)y ∀ y > 0,
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or equivalently,
y

1 + y
≤ ϕ(y) ∀ y > 0,

which in turn would imply that
y

1 + y
≤ ϕ(y) ≤ ϕ(1) ∀ y ≥ 1.

Thus, taking the limit as y → ∞, we would obtain

1 ≤ ϕ(1),

which contradicts (1.3).

Returning to the proof of Theorem 1.3, we see that for this specific example,

ν(t) = t2

1+t ≈ t as t → ∞, so ω(t) = t. Hence Claim 2 is not true and we cannot
proceed farther.

From the proof of Theorem 1.3 we can infer that when a weakly contractive
self-mapping A of a metric space has a bounded range, then the function ψ in the
definition of weak contractivity can be chosen to satisfy

(3.1) ψ(t) → ∞ as t→ ∞.

Condition (3.1) is, in fact, part of the original definition of weakly contractive
mappings as introduced by Alber and Guerre-Delabrière in [1]. Alber’s and Guerre-
Delabrière’s objective in [1] was to extend the classical Banach fixed point theorem
for strictly contractive mappings to weakly contractive mappings defined on closed
convex subsets of a Hilbert space. They established convergence of sequences gen-
erated by various iterative algorithms to the unique fixed point of such a mapping,
estimated the rates of convergence, and proved stability of convergence under cer-
tain perturbations. Krasnosel’skii et al. had also extended the Banach fixed point
theorem to a more general class of mappings (see Theorem 3.4 on page 52 of [4]).
Weakly contractive mappings in our sense are covered by this result. In this con-
nection see also [9, Theorem 1, page 2684].

Any Rakotch contractive self-mapping of a complete metric space has a unique
fixed point and its power iterates converge to this fixed point [6]. As far as we
know, this was the first significant generalization of Banach’s fixed point theorem.
We also recall that most (in the sense of Baire’s categories) nonexpansive (that is,
1-Lipschitz) mappings are Rakotch contractive [7]. Moreover, the complement of
the set of contractive mappings is, in fact, σ-porous in the space of all nonexpansive
mappings [8].

In the proof of our main result we employed some ideas which had already been
used in the proof of an extension theorem of Kirszbraun-Valentine type which was
established by de Blasi and Pianigiani [2] for the class of contractive mappings
defined on compact subsets of a Hilbert space with values in a (possibly different)
Hilbert space (see also [5, Theorem 5.2, page 90]). However, the range [s − ϵ, s] in
the proof of Claim 2 above was not covered by the argument presented in [2].
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At this point we recall that when (X1, d1) and (X2, d2) are metric spaces, and D
is a subset of (X1, d1), then a mapping A : D → (X2, d2) is contractive in the sense
of [2] if

d2(Ax,Ay) < d1(x, y) for all x ̸= y in D.

The following simple proposition shows that the de Blasi-Pianigiani extension theo-
rem follows from [5, Theorem 5.2] (which concerns extensions of Rakotch contractive
mappings in Hilbert space).

Proposition 3.2. If D ⊂ (X1, d1) is compact and A : D → (X2, d2) satisfies

(3.2) d2(Ax,Ay) < d1(x, y) for all x ̸= y in D,

then A is, in fact, Rakotch contractive.

Proof. Let M be the diameter of D and define the function φ : [0,M ] → [0, 1] by
φ(0) := 1 and

φ(t) := sup{d2(Ax,Ay)/d1(x, y) : d1(x, y) ≥ t}
for t > 0. It is clear that φ is increasing and the mapping A satisfies

d2(Ax,Ay) ≤ φ(d1(x, y))d1(x, y) for all x and y in D.

To see that φ(t) < 1 for all 0 < t ≤ M , assume to the contrary that φ(s) = 1 for
some s > 0. Then D would contain sequences {xn : n ∈ N} and {yn : n ∈ N} which
converge to x and y, respectively, such that

d(xn, yn) ≥ s > 0 for all n ∈ N
and

d2(Axn, Ayn)/d1(xn, yn) → 1 as n→ ∞.

Thus d2(Ax,Ay) = d1(x, y). The contradiction we have just reached shows that
φ(s) < 1, as claimed. �

This proposition is no longer true if D is not compact. To see this, consider, for
instance, the function f : [1,∞) → [1,∞) defined by f(t) := t+ 1/t.

De Blasi and Pianigiani also showed that a contractive mapping defined on the
boundary of a nonempty, open and bounded subset Ω of a Euclidean space RN has an
extension to all of Ω which has special properties. They used this result to establish
existence of solutions to certain vectorial Dirichlet problems. We take this oppor-
tunity to note that the de Blasi-Pianigiani result regarding the special properties of
extensions can be generalized, by using the same reasoning, to contractive mappings
defined on the boundary of a nonempty and relatively open set in a compact subset
of a Hilbert space H. The precise statement of this extension is as follows. For
subsets S1 and S2 of H, we set d(S1, S2) := inf{∥x− y∥ : x ∈ S1, y ∈ S2}.

Theorem 3.3. Let H and L be Hilbert spaces, Ω be a nonempty and relatively open
set in a compact subset C of H, and let A : ∂Ω → L be Rakotch contractive. Then
there exist a Rakotch contractive extension B : Ω → L of A to all of Ω, and two
sequences {Ωn} and {λn} with the following properties:

(1) For each n ∈ N, Ωn ⊂ Ω is a nonempty and relatively open subset of C, and
λn ∈ [0, 1).
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(2) Ωn ⊂ Ωn+1 for all n ∈ N,
∪

n∈NΩn = Ω.
(3) d(∂Ωn, ∂Ωn+1) = ρn > 0, n ∈ N, and limn→∞ ρn = 0.
(4) ∥B(x)−B(y)∥ ≤ λn∥x− y∥ for every x, y ∈ Ωn, n ∈ N.
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