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∂iC and ∂iQ are the subdifferentials of the indicator functions iC of C and iQ of
Q, respectively. Defining U = T ∗(I − PQ)T in the split feasibility peoblem, we
have that U : H1 → H1 is an inverse strongly monotone operator, where T ∗ is the
adjoint operator of T and PQ is the metric projection of H2 onto Q. Furthermore,
if C ∩ T−1Q is non-empty, then z ∈ C ∩ T−1Q is equivalent to z = PC(I − λU)z,
where λ > 0 and PC is the metric projection of H1 onto C.

In this paper, motivated by these definitions and results, we establish a Haplern-
type strong convergence theorem for finding a solution of the split common null point
problem for three maximal monotone mappings which is characterized as a unique
solution of the variational inequality of a nonlinear operator. As applications, we get
two new strong convergence theorems which are connected with the split common
null point problem and an equilibrium problem.

2. Preliminaries

Throughout this paper, let N and R be the sets of positive integers and real
numbers, respectively. Let H be a real Hilbert space with inner product ⟨ · , · ⟩ and
norm ∥ · ∥. When {xn} is a sequence in H, we denote the strong convergence of
{xn} to x ∈ H by xn → x and the weak convergence by xn ⇀ x. We have from [20]
that for any x, y ∈ H and λ ∈ R

(2.1) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩

and

(2.2) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.

Furthermore, we have that for x, y, u, v ∈ H

(2.3) 2⟨x− y, u− v⟩ = ∥x− v∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − v∥2.

Let C be a non-empty, closed and convex subset of a Hilbert space H and let
T : C → H be a mapping. We denote by F (T ) be the set of fixed points for T . A
mapping T : C → H is called nonexpansive if ∥Tx−Ty∥ ≤ ∥x− y∥ for all x, y ∈ C.
A mapping T : C → H is called firmly nonexpansive if ∥Tx−Ty∥2 ≤ ⟨Tx−Ty, x−y⟩
for all x, y ∈ C. If a mapping T is firmly nonexpansive, then it is nonexpansive. If
T : C → H is nonexpansive, then F (T ) is closed and convex; see [20]. For a non-
empty, closed and convex subset C of H, the nearest point projection of H onto C
is denoted by PC , that is, ∥x− PCx∥ ≤ ∥x− y∥ for all x ∈ H and y ∈ C. Such PC

is called the metric projection of H onto C. We know that the metric projection
PC is firmly nonexpansive; ∥PCx− PCy∥2 ≤ ⟨PCx − PCy, x − y⟩ for all x, y ∈ H.
Furthermore, ⟨x− PCx, y − PCx⟩ ≤ 0 holds for all x ∈ H and y ∈ C; see [18].

Let B be a mapping of H into 2H . The effective domain of B is denoted by
dom(B), that is, dom(B) = {x ∈ H : Bx ̸= ∅}. A multi-valued mapping B is said
to be a monotone operator on H if ⟨x− y, u− v⟩ ≥ 0 for all x, y ∈ dom(B), u ∈ Bx,
and v ∈ By. A monotone operator B on H is said to be maximal if its graph is
not properly contained in the graph of any other monotone operator on H. For
a maximal monotone operator B on H and r > 0, we may define a single-valued
operator Jr = (I + rB)−1 : H → dom(B), which is called the resolvent of B for
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r > 0. We denote by Ar =
1
r (I − Jr) the Yosida approximation of B for r > 0. We

know from [19] that

(2.4) Arx ∈ BJrx, ∀x ∈ H, r > 0.

Let B be a maximal monotone operator on H and let B−10 = {x ∈ H : 0 ∈
Bx}. It is known that B−10 = F (Jr) for all r > 0 and the resolvent Jr is firmly
nonexpansive, i.e.,

(2.5) ∥Jrx− Jry∥2 ≤ ⟨x− y, Jrx− Jry⟩, ∀x, y ∈ H.

Furthermore, we have that for s, r ∈ R with s ≥ r > 0 and x ∈ H

(2.6) ∥x− Jsx∥ ≥ ∥x− Jrx∥.

See [1] for a simpler proof of (2.6); see also [22] for a more general result. We also
know the following lemma from [17].

Lemma 2.1. Let H be a real Hilbert space and let B be a maximal monotone
operator on H. For r > 0 and x ∈ H, define the resolvent Jrx. Then the following
holds:

s− t

s
⟨Jsx− Jtx, Jsx− x⟩ ≥ ∥Jsx− Jtx∥2

for all s, t > 0 and x ∈ H.

From Lemma 2.1, we have that

∥Jλx− Jµx∥ ≤ (|λ− µ| /λ) ∥x− Jλx∥

for all λ, µ > 0 and x ∈ H; see also [9,18]. Let B be a maximal monotone mapping
on H such that B−10 is non-empty. Let Jλ be the resolvent of B for λ > 0. Then

(2.7) ⟨x− Jλx, Jλx− y⟩ ≥ 0

for all x ∈ H and y ∈ B−10. In fact, since Jλ is firmly nonexpansive and Jλy = y
for all y ∈ B−10, we have that for all x ∈ H and y ∈ B−10

⟨x−Jλx, Jλx− y⟩
= ⟨x− y + y − Jλx, Jλx− y⟩
= ⟨x− y, Jλx− y⟩+ ⟨y − Jλx, Jλx− y⟩
≥ ∥Jλx− y∥2 − ∥Jλx− y∥2

= 0.

We use this result for proving Lemma 3.1 in Section 3. Let C be a non-empty,
closed and convex subset of H. If a mapping T : C → H is firmly nonexpansive,
then I − T : C → H is firmly nonexpansive. In fact, put S = I − T . Since T is
firmly nonexpansive, we have that

∥(I − S)x− (I − S)y∥2 ≤ ⟨x− y, (I − S)x− (I − S)y⟩

for all x, y ∈ C. This implies that

∥x− y∥2 − 2⟨x− y, Sx− Sy⟩+ ∥Sx− Sy∥2 ≤ ∥x− y∥2 − ⟨x− y, Sx− Sy⟩

and hence ∥Sx− Sy∥2 ≤ ⟨x− y, Sx− Sy⟩.
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Let C be a non-empty, closed and convex subset of a Hilbert space H. Let α > 0
and let A be an α-inverse-strongly monotone mapping of C into H. If 0 < λ ≤ 2α,
then I − λA : C → H is nonexpansive. In fact, we have that for all x, y ∈ C

∥(I − λA)x− (I − λA)y∥2 = ∥x− y − λ(Ax−Ay)∥2

= ∥x− y∥2 − 2λ⟨x− y,Ax−Ay⟩+ (λ)2∥Ax−Ay∥2

≤ ∥x− y∥2 − 2λα∥Ax−Ay∥2 + (λ)2∥Ax−Ay∥2

= ∥x− y∥2 + λ(λ− 2α)∥Ax−Ay∥2

≤ ∥x− y∥2.
Thus I − λA : C → H is nonexpansive. A mapping g : C → H is a contraction
if there exists k ∈ (0, 1) such that∥g(x) − g(y)∥ ≤ k∥x − y∥ for all x, y ∈ C. We
also call such a mapping g a k-contraction. A linear bounded self-adjoint operator
G : H → H is called strongly positive if there exists γ > 0 such that ⟨Gx, x⟩ ≥ γ∥x∥2
for all x ∈ H. We know the following lemmas from [21]; see also [1].

Lemma 2.2. Let H be a Hilbert space. Let g be a k-contraction of H into itself and
let G be a strongly positive bounded linear self-adjoint operator on H with coefficient
γ > 0. Take γ > 0 with γ < γ

k and t > 0 with t(∥G∥ + γ k)2 < 2(γ − γ k) and
2t(γ − γ k) < 1. Then

0 < 1− t{2(γ − γ k)− t(∥G∥+ γ k)2} < 1

and I − t(G− γg) is a contraction of H into itself.

Lemma 2.3. Let H be a Hilbert space and let C be a non-empty, closed and convex
subset of H. Let g be a k-contraction of H into itself and let G be a strongly positive
bounded linear self-adjoint operator on H with coefficient γ > 0. Take γ > 0 with
γ < γ

k and t > 0 with t(∥G∥+ γ k)2 < 2(γ − γ k) and 2t(γ − γ k) < 1. Let w ∈ C.
Then the following are equivalent:

(1) w = PC(I − t(G− γg))w;
(2) ⟨(G− γg)w,w − q⟩ ≤ 0, ∀q ∈ C;
(3) w = PC(I −G+ γg)w.

Such w ∈ C exists always and is unique.

The following lemma was proved by Marino and Xu [12].

Lemma 2.4. Let H be a Hilbert space and let G be a strongly positive bounded
linear self-adjoint operator on H with coefficient γ > 0. If 0 < γ ≤ ∥G∥−1, then
∥I − γG∥ ≤ 1− γγ.

To prove our main result, we need the following lemma:

Lemma 2.5 ( [3]; see also [25]). Let {sn} be a sequence of nonnegative real numbers,
let {αn} be a sequence of [0, 1] with

∑∞
n=1 αn = ∞, let {βn} be a sequence of

nonnegative real numbers with
∑∞

n=1 βn < ∞, and let {γn} be a sequence of real
numbers with lim supn→∞ γn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αnγn + βn

for all n = 1, 2, .... Then limn→∞ sn = 0.
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3. Strong Convergence Theorem

In this section, we prove a Halpern-type strong convergence theorem [10] for
finding a solution of the split common null point problem in Hilbert spaces; see
also [24]. Before proving the theorem, we need the following lemmas which were
obtained by [1].

Lemma 3.1. Let H1 and H2 be Hilbert spaces and let A and B be maximal mono-
tone mappings on H1 and H2 such that A−10 and B−10 are non-empty, respectively.
Let T : H1 → H2 be a bounded linear operator such that A−10∩ T−1(B−10) is non-
empty and let T ∗ be the adjoint operator of T . Let Jλ and Qµ be the resolvents of
A and B for λ > 0 and µ > 0, respectively. Let λ, µ, ν, r > 0 and z ∈ H. Then the
following are equivalent:

(i) z = Jλ(I − rT ∗(I −Qµ)T )z;
(ii) 0 ∈ T ∗(I −Qν)Tz +Az;
(iii) z ∈ A−10 ∩ T−1(B−10).

Lemma 3.2. Let H1 and H2 be Hilbert spaces and let B be a maximal monotone
mapping on H2. Let T : H1 → H2 be a bounded linear operator such that T ̸= 0.
Let Qµ be the resolvent of B for µ > 0. Then a mapping T ∗(I −Qµ)T : H1 → H1

is 1
∥TT ∗∥ -inverse strongly monotone.

Theorem 3.3. Let H1 and H2 be Hilbert spaces. Let A and F be maximal monotone
mappings on H1 and let B be a maximal monotone mapping on H2 such that A−10,
F−10 and B−10 are non-empty. Let T : H1 → H2 be a bounded linear operator such
that A−10 ∩ T−1(B−10) ∩ F−10 is non-empty. Let T ∗ be the adjoint operator of T .
Let Jλ and Tr be the resolvents of A for λ > 0 and of F for r > 0, respectively and
let Qµ be the resolvent of B for µ > 0. Let 0 < k < 1 and let g be a k-contraction
of H1 into itself. Let G be a strongly positive bounded linear self-adjoint operator
on H1 with coefficient γ > 0. Let 0 < γ < γ

k . Let x1 = x ∈ H1 and let {xn} ⊂ H1

be a sequence generated by

xn+1 = αnγg(xn) + (I − αnG)Jλn(I − λnT
∗(I −Qµn)T )Trnxn

for all n ∈ N, where {αn} ⊂ (0, 1) and {λn}, {µn}, {rn} ⊂ (0,∞) satisfy

αn → 0,
∞∑
n=1

αn = ∞,
∞∑
n=1

|αn − αn+1| < ∞,

0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
2

∥TT ∗∥
,

∞∑
n=1

|λn − λn+1| < ∞,

lim inf
n→∞

µn > 0,

∞∑
n=1

|µn − µn+1| < ∞, lim inf
n→∞

rn > 0 and

∞∑
n=1

|rn − rn+1| < ∞.

Then {xn} converges strongly to z0 ∈ A−10 ∩ T−1(B−10) ∩ F−10, where z0 is a
unique fixed point of PA−10∩T−1(B−10)∩F−10(I − G + γg). This point z0 is also a
unique solution of the variational inequality

⟨(G− γg)z0, q − z0⟩ ≥ 0, ∀q ∈ A−10 ∩ T−1(B−10) ∩ F−10.
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Proof. Define An = T ∗(I − Qµn)T for all n ∈ N. Put un = Trnxn and yn =
Jλn(I − λnAn)Trnxn for all n ∈ N. Let z ∈ A−10 ∩ T−1(B−10) ∩ F−10. Then we
have z = Trnz, z = Jλnz, (I −Qµn)Tz = 0 and z = Jλn(I − λnAn)z. Since I −Qµn

is 1-inverse strongly monotone, we have from 0 < lim supn→∞ λn < 2
∥TT ∗∥ that

∥yn − z∥2 = ∥Jλn(I − λnAn)un − Jλn(I − λnAn)z∥2

≤ ∥(I − λnAn)un − (I − λnAn)z∥2

= ∥un − z − λnAnun∥2

= ∥un − z∥2 − 2λn⟨un − z,Anun⟩+ (λn)
2∥Anun∥2(3.1)

= ∥un − z∥2 − 2λn⟨Tun − Tz, (I −Qµn)Tun⟩+ (λn)
2⟨Anun, Anun⟩

≤ ∥un − z∥2 − 2λn∥(I −Qµn)Tun∥2 + (λn)
2∥TT ∗∥∥(I −Qµn)Tun∥2

= ∥un − z∥2 + λn(λn∥TT ∗∥ − 2)∥(I −Qµn)Tun∥2

≤ ∥un − z∥2

≤ ∥xn − z∥2.

Since xn+1 = αnγg(xn) + (I − αnG)yn and z = αnGz + z − αnGz, we have that

∥xn+1 − z∥ = ∥αn(γg(xn)−Gz) + (I − αnG)(yn − z)∥
≤ αn ∥γg(xn)−Gz∥+ ∥I − αnG∥ ∥xn − z∥
≤ αnγ k ∥xn − z∥+ αn ∥γg(z)−Gz∥+ (1− αnγ) ∥xn − z∥
= {1− αn(γ − γ k)} ∥xn − z∥+ αn ∥γg(z)−Gz∥

= {1− αn(γ − γ k)} ∥xn − z∥+ αn(γ − γ k)
∥γg(z)−Gz∥

γ − γ k
.

Putting K = max{∥γg(z)−Gz∥
γ−γ k , ∥x1 − z∥}, we have that ∥xn − z∥ ≤ K for all n ∈ N.

In fact, it is obvious that ∥x1 − z∥ ≤ K. Suppose that ∥xm − z∥ ≤ K for some
m ∈ N. Then we have that

∥xm+1 − z∥ ≤ {1− αm(γ − γ k)} ∥xm − z∥+ αm(γ − γ k)
∥γg(z)−Gz∥

γ − γ k

≤ {1− αm(γ − γ k)}K + αm(γ − γ k)K

= K.

By induction, we obtain that ∥xn − z∥ ≤ K for all n ∈ N. Then {xn} is bounded.
Furthermore, {un} and {yn} are bounded. Since

xn+2 − xn+1 = αn+1γg(xn+1) + (I − αn+1G)yn+1 − (αnγg(xn) + (I − αnG)yn)

= αn+1γg(xn+1)− αn+1γg(xn) + αn+1γg(xn)− αnγg(xn)

+ (I − αn+1G)yn+1 − (I − αn+1G)yn

+ (I − αn+1G)yn − (I − αnG)yn,

we have that

∥xn+2 − xn+1∥ ≤ αn+1γ k∥xn+1 − xn∥+ |αn+1 − αn|γ∥g(xn)∥
+ (1− αn+1γ)∥yn+1 − yn∥+ |αn+1 − αn|∥Gyn∥
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≤ αn+1γ k∥xn+1 − xn∥+ (1− αn+1γ)∥yn+1 − yn∥
+ |αn+1 − αn|M1,

where M1 = sup{γ∥g(xn)∥ + ∥Gyn∥ : n ∈ N}. Putting zn = (I − λnAn)Trnxn, we
have from Lemma 2.1 that

∥yn+1 − yn∥ = ∥Jλn+1(I − λn+1An+1)Trn+1xn+1 − Jλn(I − λnAn)Trnxn∥
≤ ∥Jλn+1(I − λn+1An+1)Trn+1xn+1 − Jλn+1(I − λn+1An+1)Trnxn∥

+ ∥Jλn+1(I − λn+1An+1)Trnxn − Jλn+1(I − λnAn)Trnxn∥
+ ∥Jλn+1(I − λnAn)Trnxn − Jλn(I − λnAn)Trnxn∥

≤ ∥Trn+1xn+1 − Trnxn∥
+ ∥(I − λn+1An+1)Trnxn − (I − λnAn)Trnxn∥
+ ∥Jλn+1zn − Jλnzn∥

≤ ∥Trn+1xn+1 − Trnxn∥
+ ∥λn+1An+1Trnxn − λnAnTrnxn∥+ ∥Jλn+1zn − Jλnzn∥

≤ ∥Trn+1xn+1 − Trn+1xn∥+ ∥Trn+1xn − Trnxn∥
+ ∥λn+1An+1Trnxn − λnAn+1Trnxn∥
+ ∥λnAn+1Trnxn − λnAnTrnxn∥+ ∥Jλn+1zn − Jλnzn∥

≤ ∥xn+1 − xn∥+ ∥Trn+1xn − Trnxn∥+ |λn+1 − λn|∥An+1Trnxn∥
+ λn∥T∥∥(I −Qµn+1)TTrnxn − (I −Qµn)TTrnxn∥
+ ∥Jλn+1zn − Jλnzn∥

≤ ∥xn+1 − xn∥+
|rn+1 − rn|

rn+1
∥Trn+1xn − xn∥

+ |λn+1 − λn|∥An+1Trnxn∥+ λn∥T∥∥Qµn+1TTrnxn −QµnTTrnxn∥

+
|λn+1 − λn|

λn+1
∥Jλn+1zn − zn∥

≤ ∥xn+1 − xn∥+
|rn+1 − rn|

rn+1
∥Trn+1xn − xn∥

+ |λn+1 − λn|∥An+1Trnxn∥

+ λn∥T∥
|µn+1 − µn|

µn+1
∥Qµn+1TTrnxn − TTrnxn∥

+
|λn+1 − λn|

λn+1
∥Jλn+1zn − zn∥

≤ ∥xn+1 − xn∥+ |rn+1 − rn|M2 + |λn+1 − λn|M2

+ |µn+1 − µn|M2 + |λn+1 − λn|M2,

where M2 is the maximum value of supn∈N
∥Trn+1xn−xn∥

rn+1
, supn∈N ∥An+1Trnxn∥,

supn∈N
λn∥T∥∥Qµn+1TTrnxn−TTrnxn∥

µn+1
and supn∈N

∥Jλn+1
zn−zn∥

λn+1
. Then we have that

∥xn+2 − xn+1∥ ≤ αn+1γ k∥xn+1 − xn∥+ |αn+1 − αn| M1
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+ (1− αn+1γ)∥yn+1 − yn∥
≤ αn+1γ k∥xn+1 − xn∥+ |αn+1 − αn| M1

+ (1− αn+1γ){∥xn+1 − xn∥+ |rn+1 − rn|M2

+ 2|λn+1 − λn|M2 + |µn+1 − µn|M2}
≤ {1− αn+1(γ − γ k)}∥xn+1 − xn∥+ |αn+1 − αn| M3

+ |rn+1 − rn|M3 + |λn+1 − λn|M3 + |µn+1 − µn|M3,

where M3 = M1 + 2M2. Using Lemma 2.5, we obtain that

(3.2) ∥xn+2 − xn+1∥ → 0.

We also have from xn+1 = αnγg(xn) + (I − αnG)yn that

∥xn − yn∥ ≤ ∥xn − xn+1∥+ ∥xn+1 − yn∥
= ∥xn − xn+1∥+ αn∥γg(xn)−Gyn∥.

From αn → 0 and ∥xn+1 − xn∥ → 0, we get

(3.3) yn − xn → 0.

For z ∈ A−10 ∩ T−1(B−10) ∩ F−10, we have from (2.5) that

2∥un − z∥2 = 2∥Trnxn − Trnz∥2

≤ 2⟨xn − z, un − z⟩
= ∥xn − z∥2 + ∥un − z∥2 − ∥un − xn∥2

and hence

(3.4) ∥un − z∥2 ≤ ∥xn − z∥2 − ∥un − xn∥2.

Then we have from (2.1), (3.1) and (3.4) that

∥xn+1 − z∥2 = ∥(I − αnG)(yn − z) + αn(γg(xn)−Gz)∥2

≤ (1− αnγ)
2 ∥yn − z∥2 + 2αn⟨γg(xn)−Gz, xn+1 − z⟩

≤ (1− αnγ)
2(∥un − z∥2 + λn(λn∥TT ∗∥ − 2)∥(I −Qµn)Tun∥2)

+ 2αn⟨γg(xn)−Gz, xn+1 − z⟩
≤ (1− αnγ)

2(∥xn − z∥2 − ∥xn − un∥2)
+ (1− αnγ)

2λn(λn∥TT ∗∥ − 2)∥(I −Qµn)Tun∥2

+ 2αn⟨γg(xn)−Gz, xn+1 − z⟩

≤ (1− αnγ)
2(∥xn − z∥2 − ∥xn − un∥2)

+ (1− αnγ)
2λn(λn∥TT ∗∥ − 2)∥(I −Qµn)Tun∥2

+ 2αnγ k∥xn − z∥∥xn+1 − z∥+ 2αn∥γg(z)−Gz∥∥xn+1 − z∥

≤ ∥xn − z∥2 − (1− αnγ)
2∥xn − un∥2

+ (1− αnγ)
2λn(λn∥TT ∗∥ − 2)∥(I −Qµn)Tun∥2

+ 2αnγ k∥xn − z∥∥xn+1 − z∥+ 2αn∥γg(z)−Gz∥∥xn+1 − z∥
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and hence

(1− αnγ)
2λn(2− λn∥TT ∗∥)∥(I −Qµn)Tun∥2 + (1− αnγ)

2∥xn − un∥2

≤ ∥xn − z∥2 − ∥xn+1 − z∥2

+ 2αnγ k∥xn − z∥∥xn+1 − z∥+ 2αn∥γg(z)−Gz∥∥xn+1 − z∥.

Then we have that

(1− αnγ)
2λn(2− λn∥TT ∗∥)∥(I −Qµn)Tun∥2

≤ ∥xn − z∥2 − ∥xn+1 − z∥2

+ 2αnγ k∥xn − z∥∥xn+1 − z∥+ 2αn∥γg(z)−Gz∥∥xn+1 − z∥

and

(1− αnγ)
2∥xn − un∥2 ≤ ∥xn − z∥2 − ∥xn+1 − z∥2

+ 2αnγ k∥xn − z∥∥xn+1 − z∥+ 2αn∥γg(z)−Gz∥∥xn+1 − z∥.

From αn → 0, ∥xn+1 − xn∥ → 0 and 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 2
∥TT ∗∥ ,

we have that

(3.5) ∥(I −Qµn)Tun∥ → 0 and ∥xn − un∥ →0.

Then we have from (3.3) and (3.5) that

(3.6) ∥yn − un∥ ≤ ∥yn − xn∥+ ∥xn − un∥ → 0.

From
∑∞

n=1 |λn − λn+1| < ∞, we have that {λn} is a Cauchy sequence. Then we

have λn → λ0 ∈ (0, 2
∥TT ∗∥). Put Aµ = T ∗(I −Qµ)T , where 0 < µ < lim infn→∞ µn.

For un = Trnxn, zn = (I − λnAn)Trnxn and yn = Jλn(I − λnAn)Trnxn, we have
from Lemma 2.1 and (2.6) that

∥Jλ0(I−λ0Aµ)un − yn∥
≤ ∥Jλ0(I − λ0Aµ)un − Jλ0(I − λnAn)un∥+ ∥Jλ0(I − λnAn)un − yn∥
≤ ∥(I − λ0Aµ)un − (I − λnAn)un∥+ ∥Jλ0zn − Jλnzn∥
= ∥λ0Aµun − λnAnun∥+ ∥Jλ0zn − Jλnzn∥
= ∥λ0Aµun − λ0Anun + λ0Anun − λnAnun∥+ ∥Jλ0zn − Jλnzn∥
≤ λ0∥T∥∥(I −Qµ)Tun − (I −Qµn)Tun∥(3.7)

+ ∥λ0Anun − λnAnun∥+ ∥Jλ0zn − Jλnzn∥
≤ λ0∥T∥(∥(I −Qµ)Tun∥+ ∥(I −Qµn)Tun∥)

+ ∥λ0Anun − λnAnun∥+ ∥Jλ0zn − Jλnzn∥
≤ 2λ0∥T∥∥(I −Qµn)Tun∥+ ∥λ0Anun − λnAnun∥+ ∥Jλ0zn − Jλnzn∥

≤ 2λ0∥T∥∥(I −Qµn)Tun∥+ |λn − λ0|∥Anun∥+
|λn − λ0|

λ0
∥Jλ0zn − zn∥.

We also have from (3.6) and (3.7) that

(3.8) ∥un − Jλ0(I − λ0Aµ)un∥ ≤ ∥un − yn∥+ ∥yn − Jλ0(I − λ0Aµ)un∥.
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We will use (3.7) and (3.8) later. From Lemma 2.3, we can take a unique solution
z0 ∈ A−10 ∩ T−1(B−10) ∩ F−10 of the variational inequality

⟨(G− γg)z0, q − z0⟩ ≥ 0, ∀q ∈ A−10 ∩ T−1(B−10) ∩ F−10.

We show that lim supn→∞ ⟨(G− γg)z0, xn − z0⟩ ≥ 0. Put

l = lim sup
n→∞

⟨(G− γg)z0, xn − z0⟩ .

Without loss of generality, there exists a subsequence {xni} of {xn} such that l =
limi→∞ ⟨(G− γg)z0, xni − z0⟩ and {xni} converges weakly to some point w ∈ H1.
From ∥xn − un∥ → 0, we also have that {uni} converges weakly to w ∈ H1. On
the other hand, from λn → λ0 ∈ (0, 2

∥TT ∗∥), we have λni → λ0 ∈ (0, 2
∥TT ∗∥). Using

(3.7), we have that

∥Jλ0(I − λ0Aµ)uni − yni∥ → 0.

Furthermore, using (3.8), we have that

∥uni − Jλ0(I − λ0Aµ)uni∥ → 0.

Since Jλ0(I − λ0Aµ) is nonexpansive, we have from [20, p. 114] that w = Jλ0(I −
λ0Aµ)w. From Lemma 3.1 we have that w ∈ A−10 ∩ T−1(B−10). We show w ∈
F−10. Since F is a maximal monotone operator, we have from (2.4) that Arni

xni ∈
FTrni

xni . Furthermore, we have that for any (u, v) ∈ F

⟨u− uni , v −
xni − uni

rni

⟩ ≥ 0.

Since lim infn→∞ rn > 0, uni ⇀ w and xni − uni → 0, we have

⟨u− w, v⟩ ≥ 0.

Since F is a maximal monotone operator, we have 0 ∈ Fw and hence w ∈ F−10.
Thus we have w ∈ A−10 ∩ T−1(B−10) ∩ F−10. Then we have

l = lim
i→∞

⟨(G− γg)z0, xni − z0⟩ = ⟨(G− γg)z0, w − z0⟩ ≥ 0.

Since xn+1 − z0 = αn(γg(xn)−Gz0) + (I − αnG)(yn − z0), we have from (2.1) that

∥xn+1 − z0∥2 ≤ (1− αnγ)
2 ∥yn − z0∥2 + 2⟨αn(γg(xn)−Gz0), xn+1 − z0⟩

≤ (1− αnγ)
2 ∥xn − z0∥2 + 2αn⟨γg(xn)−Gz0, xn+1 − z0⟩

≤ (1− αnγ)
2 ∥xn − z0∥2 + 2αnγ k∥xn − z0∥∥xn+1 − z0∥

+ 2αn⟨γg(z0)−Gz0, xn+1 − z0⟩

≤ (1− αnγ)
2 ∥xn − z0∥2 + αnγ k(∥xn − z0∥2 + ∥xn+1 − z0∥2)

+ 2αn⟨γg(z0)−Gz0, xn+1 − z0⟩

= {(1− αnγ)
2 + αnγ k} ∥xn − z0∥2

+ αnγ k∥xn+1 − z0∥2 + 2αn⟨γg(z0)−Gz0, xn+1 − z0⟩
and hence

∥xn+1 − z0∥2 ≤
1− 2αnγ + (αnγ)

2 + αnγ k

1− αnγ k
∥xn − z0∥2
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+
2αn

1− αnγ k
⟨γg(z0)−Gz0, xn+1 − z0⟩

=

(
1− 2(γ − γ k)αn

1− αnγ k

)
∥xn − z0∥2 +

(αnγ)
2

1− αnγ k
∥xn − z0∥2

+
2αn

1− αnγ k
⟨γg(z0)−Gz0, xn+1 − z0⟩(3.9)

=

(
1− 2(γ − γ k)αn

1− αnγ k

)
∥xn − z0∥2 +

αn · αnγ
2

1− αnγ k
∥xn − z0∥2

+
2αn

1− αnγ k
⟨γg(z0)−Gz0, xn+1 − z0⟩

= (1− βn) ∥xn − z0∥2

+ βn

(
αnγ

2 ∥xn − z0∥2

2(γ − γ k)
+

1

γ − γ k
⟨γg(z0)−Gz0, xn+1 − z0⟩

)
,

where βn = 2(γ−γ k)αn

1−αnγ k . Since
∑∞

n=1 βn = ∞, we have from Lemma 2.5 and (3.9) we

have that xn → z0, where z0 = PA−10∩T−1(B−10)∩F−10(I−G+γg)z0. This completes
the proof. □

4. Applications

In this section, using Theorem 3.3, we can obtain well-known and new strong
convergence theorems which are related to the split common null point problem
and an equilibrium problem in Hilbert spaces. Let H be a Hilbert space and let f
be a proper, lower semicontinuous and convex function of H into (−∞,∞]. Then
the subdifferential ∂f of f is defined as follows:

∂f(x) = {z ∈ H : f(x) + ⟨z, y − x⟩ ≤ f(y), ∀y ∈ H}
for all x ∈ H. From Rockafellar [15], we know that ∂f is a maximal monotone
operator. Let C be a non-empty, closed and convex subset of H and let iC be the
indicator function of C, i.e.,

iC(x) =

{
0, x ∈ C,

∞, x /∈ C.

Then iC is a proper, lower semicontinuous and convex function on H and then the
subdifferential ∂iC of iC is a maximal monotone operator. Thus we can define the
resolvent Jλ of ∂iC for λ > 0, i.e.,

Jλx = (I + λ∂iC)
−1x

for all x ∈ H. We have that for any x ∈ H and u ∈ C

u =Jλx ⇐⇒ x ∈ u+ λ∂iCu ⇐⇒ x ∈ u+ λNCu

⇐⇒ x− u ∈ λNCu

⇐⇒ 1

λ
⟨x− u, v − u⟩ ≤ 0, ∀v ∈ C

⇐⇒ ⟨x− u, v − u⟩ ≤ 0, ∀v ∈ C
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⇐⇒ u = PCx,

where NCu is the normal cone to C at u, i.e.,

NCu = {z ∈ H : ⟨z, v − u⟩ ≤ 0, ∀v ∈ C}.

Theorem 4.1. Let H1 and H2 be Hilbert spaces. Let C and D be non-empty, closed
and convex subsets of H1 and let Q be a non-empty, closed and convex subset of H2.
Let T : H1 → H2 be a bounded linear operator such that C∩T−1Q∩D is non-empty.
Let T ∗ be the adjoint operator of T . Let PC and PD be the metric projections of H1

onto C and D, respectively and let PQ be the metric projection of H2 onto Q. Let
0 < k < 1 and let g be a k-contraction of H1 into itself. Let G be a strongly positive
bounded linear self-adjoint operator on H1 with coefficient γ > 0. Let 0 < γ < γ

k .
Let x1 = x ∈ H1 and let {xn} ⊂ H1 be a sequence generated by

xn+1 = αnγg(xn) + (I − αnG)PC(I − λnT
∗(I − PQ)T )PDxn

for all n ∈ N, where {αn} ⊂ (0, 1) and {λn} ⊂ (0,∞) satisfy

αn → 0,
∞∑
n=1

αn = ∞,
∞∑
n=1

|αn − αn+1| < ∞,

0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
2

∥TT ∗∥
,

∞∑
n=1

|λn − λn+1| < ∞.

Then {xn} converges strongly to z0 ∈ C ∩ T−1Q ∩ D, where z0 is a unique fixed
point of PC∩T−1Q∩D(I − G + γg). This point z0 is also a unique solution of the
variational inequality

⟨(G− γg)z0, q − z0⟩ ≥ 0, ∀q ∈ C ∩ T−1Q ∩D.

Proof. Put A = ∂iC , F = ∂iD and B = ∂iQ in Theorem 3.3. Then we have that
for λn > 0, rn > 0 and µn > 0, Jλn = PC , Trn = PD and Qµn = PQ. Furthermore,
we have (∂iC)

−10 = C, (∂iD)
−10 = D and (∂iQ)

−10 = Q. Taking µn = rn = 1, we
obtain the desired result by Theorem 3.3. □

Let H be a Hilbert space and let C be a non-empty, closed and convex subset of
H. Let f : C ×C → R be a bifunction. Then an equilibrium problem (with respect
to C) is to find x̂ ∈ C such that

f(x̂, y) ≥ 0, ∀y ∈ C.(4.1)

The set of such solutions x̂ is denoted by EP (f), i.e.,

EP (f) = {x̂ ∈ C : f(x̂, y) ≥ 0, ∀y ∈ C}.
For solving the equilibrium problem, let us assume that the bifunction f : C×C → R
satisfies the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for all x, y, z ∈ C,

lim sup
t↓0

f(tz + (1− t)x, y) ≤ f(x, y);

(A4) for all x ∈ C, f(x, ·) is convex and lower semicontinuous.
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We know the following lemma which appears implicitly in Blum and Oettli [5].

Lemma 4.2 (Blum and Oettli). Let C be a nonempty, closed and convex subset of
H and let f be a bifunction of C ×C into R satisfying (A1)− (A4). Let r > 0 and
x ∈ H. Then, there exists z ∈ C such that

f(z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C.

The following lemma was also given in Combettes and Hirstoaga [8].

Lemma 4.3. Assume that f : C × C → R satisfies (A1) − (A4). For r > 0 and
x ∈ H, define a mapping Tr : H → C as follows:

Trx =

{
z ∈ C : f(z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
.

Then, the following hold:

(1) Tr is single-valued;
(2) Tr is a firmly nonexpansive mapping, i.e., for all x, y ∈ H

∥Trx− Try∥2 ≤ ⟨Trx− Try, x− y⟩;
(3) F (Tr) = EP (f);
(4) EP (f) is closed and convex.

We call such Tr the resolvent of f for r > 0. Using Lemmas 4.2 and 4.3, Takahashi,
Takahashi and Toyoda [17] obtained the following lemma. See [2] for a more general
result.

Lemma 4.4. Let H be a Hilbert space and let C be a non-empty, closed and convex
subset of H. Let f : C×C → R satisfy (A1)−(A4). Let Af be a set-valued mapping
of H into itself defined by

Afx =

{
{z ∈ H : f(x, y) ≥ ⟨y − x, z⟩, ∀y ∈ C}, ∀x ∈ C,

∅, ∀x /∈ C.

Then, EP (f) = A−1
f 0 and Af is a maximal monotone operator with dom(Af ) ⊂ C.

Furthermore, for any x ∈ H and r > 0, the resolvent Tr of f coincides with the
resolvent of Af , i.e.,

Trx = (I + rAf )
−1x.

Using Theorem 3.3, we can also prove a strong convergence theorem for finding
solutions of equilibrium problems in Hilbert spaces.

Theorem 4.5. Let H1 and H2 be Hilbert spaces. Let C and D be non-empty, closed
and convex subsets of H1 and let Q be a non-empty, closed and convex subset of
H2. Let f1 and f2 be bifunctions of C × C into R and D × D into R satisfying
(A1) − (A4). Let f3 be a bifunction of Q × Q into R satisfying (A1) − (A4) such
that EP (f1), EP (f2) and EP (f3) are non-empty. Let T : H1 → H2 be a bounded
linear operator such that EP (f1) ∩ T−1EP (f3) ∩ EP (f2) is non-empty. Let T ∗ be
the adjoint operator of T . Let Jλ and Tr be the resolvents of f1 for λ > 0 and of f2
for r > 0, respectively and let Qµ be the resolvent of f3 for µ > 0. Let 0 < k < 1 and
let g be a k-contraction of H1 into itself. Let G be a strongly positive bounded linear
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self-adjoint operator on H1 with coefficient γ > 0. Let 0 < γ < γ
k . Let x1 = x ∈ H1

and let {xn} ⊂ H1 be a sequence generated by

xn+1 = αnγg(xn) + (I − αnG)Jλn(I − λnT
∗(I −Qµn)T )Trnxn

for all n ∈ N, where {αn} ⊂ (0, 1) and {λn}, {µn}, {rn} ⊂ (0,∞) satisfy

αn → 0,

∞∑
n=1

αn = ∞,

∞∑
n=1

|αn − αn+1| < ∞,

0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
2

∥TT ∗∥
,

∞∑
n=1

|λn − λn+1| < ∞,

lim inf
n→∞

µn > 0,

∞∑
n=1

|µn − µn+1| < ∞, lim inf
n→∞

rn > 0 and

∞∑
n=1

|rn − rn+1| < ∞.

Then {xn} converges strongly to z0 ∈ EP (f1) ∩ T−1EP (f3) ∩ EP (f2), where z0 is
a unique fixed point of PEP (f1)∩T−1EP (f3)∩EP (f2)(I −G+ γg). This point z0 is also
a unique solution of the variational inequality

⟨(G− γg)z0, q − z0⟩ ≥ 0, ∀q ∈ EP (f1) ∩ T−1EP (f3) ∩ EP (f2).

Proof. For the bifunctions f1 : C × C → R, f2 : D ×D → R and f3 : Q ×Q → R,
we can define Af1 , Af2 and Af3 in Lemma 4.4. Putting A = Af1 , F = Af2 and
B = Af3 in Theorem 3.3, we obtain from Lemma 4.4 that Jλn = (I + λnAf1)

−1,
Trn = (I + rnAf2)

−1 and Qµn = (I + µnAf3)
−1 for all λn > 0, rn > 0 and µn > 0,

respectively. Thus we obtain the desired result by Theorem 3.3. □
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