THE SPLIT COMMON NULL POINT PROBLEM AND HALPERN-TYPE STRONG CONVERGENCE THEOREM IN HILBERT SPACES

A. S. ALOFI, SAUD M. ALSULAMI, AND W. TAKAHASHI

Abstract

Based on recent works by Byrne-Censor-Gibali-Reich [C. Byrne, Y. Censor, A. Gibali and S. Reich, The split common null point problem, J. Nonlinear Convex Anal. 13 (2012), 759-775] and third author [W. Takahashi, Strong convergence theorems for maximal and inverse-strongly monotone mappings in Hilbert spaces and applications, J. Optim. Theory Appl. 157 (2013), 781-802], we obtain a Halpern-type strong convergence theorem for finding a solution of the split common null point problem for three maximal monotone mappings which is related to the split feasibility problem by Censor and Elfving [Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms 8 (1994), 221-239]. The solution of the split common null point problem is characterized as a unique solution of the variational inequality of a nonlinear operator. As applications, we get two new strong convergence theorems which are connected with the split common null point problem and an equilibrium problem.

1. Introduction

Let H be a real Hilbert space and let C be a non-empty, closed and convex subset of H. A mapping $U: C \rightarrow H$ is called inverse strongly monotone if there exists $\alpha>0$ such that

$$
\langle x-y, U x-U y\rangle \geq \alpha\|U x-U y\|^{2}, \quad \forall x, y \in C
$$

Such a mapping U is called α-inverse strongly monotone. Let H_{1} and H_{2} be two real Hilbert spaces. Given set-valued mappings $A_{i}: H_{1} \rightarrow 2^{H_{1}}, 1 \leq i \leq m$, and $B_{j}: H_{2} \rightarrow 2^{H_{2}}, 1 \leq j \leq n$, respectively, and bounded linear operators $T_{j}: H_{1} \rightarrow$ $H_{2}, 1 \leq j \leq n$, the split common null point problem [6] is to find a point $z \in H_{1}$ such that

$$
z \in\left(\cap_{i=1}^{m} A_{i}^{-1} 0\right) \cap\left(\cap_{j=1}^{n} T_{j}^{-1}\left(B_{j}^{-1} 0\right)\right)
$$

where $A_{i}^{-1} 0$ and $B_{j}^{-1} 0$ are null point sets of A_{i} and B_{j}, respectively. Let C and Q be non-empty, closed and convex subsets of H_{1} and H_{2}, respectively. Let $T: H_{1} \rightarrow H_{2}$ be a bounded linear operator. Then the split feasibility problem [7] is to find $z \in H_{1}$ such that $z \in C \cap T^{-1} Q$. Putting $A_{i}=\partial i_{C}$ for all $i, B_{j}=\partial i_{Q}$ for all j and

[^0]∂i_{C} and ∂i_{Q} are the subdifferentials of the indicator functions i_{C} of C and i_{Q} of Q, respectively. Defining $U=T^{*}\left(I-P_{Q}\right) T$ in the split feasibility peoblem, we have that $U: H_{1} \rightarrow H_{1}$ is an inverse strongly monotone operator, where T^{*} is the adjoint operator of T and P_{Q} is the metric projection of H_{2} onto Q. Furthermore, if $C \cap T^{-1} Q$ is non-empty, then $z \in C \cap T^{-1} Q$ is equivalent to $z=P_{C}(I-\lambda U) z$, where $\lambda>0$ and P_{C} is the metric projection of H_{1} onto C.

In this paper, motivated by these definitions and results, we establish a Haplerntype strong convergence theorem for finding a solution of the split common null point problem for three maximal monotone mappings which is characterized as a unique solution of the variational inequality of a nonlinear operator. As applications, we get two new strong convergence theorems which are connected with the split common null point problem and an equilibrium problem.

2. Preliminaries

Throughout this paper, let \mathbb{N} and \mathbb{R} be the sets of positive integers and real numbers, respectively. Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$. When $\left\{x_{n}\right\}$ is a sequence in H, we denote the strong convergence of $\left\{x_{n}\right\}$ to $x \in H$ by $x_{n} \rightarrow x$ and the weak convergence by $x_{n} \rightharpoonup x$. We have from [20] that for any $x, y \in H$ and $\lambda \in \mathbb{R}$

$$
\begin{equation*}
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2} . \tag{2.2}
\end{equation*}
$$

Furthermore, we have that for $x, y, u, v \in H$

$$
\begin{equation*}
2\langle x-y, u-v\rangle=\|x-v\|^{2}+\|y-u\|^{2}-\|x-u\|^{2}-\|y-v\|^{2} . \tag{2.3}
\end{equation*}
$$

Let C be a non-empty, closed and convex subset of a Hilbert space H and let $T: C \rightarrow H$ be a mapping. We denote by $F(T)$ be the set of fixed points for T. A mapping $T: C \rightarrow H$ is called nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in C$. A mapping $T: C \rightarrow H$ is called firmly nonexpansive if $\|T x-T y\|^{2} \leq\langle T x-T y, x-y\rangle$ for all $x, y \in C$. If a mapping T is firmly nonexpansive, then it is nonexpansive. If $T: C \rightarrow H$ is nonexpansive, then $F(T)$ is closed and convex; see [20]. For a nonempty, closed and convex subset C of H, the nearest point projection of H onto C is denoted by P_{C}, that is, $\left\|x-P_{C} x\right\| \leq\|x-y\|$ for all $x \in H$ and $y \in C$. Such P_{C} is called the metric projection of H onto C. We know that the metric projection P_{C} is firmly nonexpansive; $\left\|P_{C} x-P_{C} y\right\|^{2} \leq\left\langle P_{C} x-P_{C} y, x-y\right\rangle$ for all $x, y \in H$. Furthermore, $\left\langle x-P_{C} x, y-P_{C} x\right\rangle \leq 0$ holds for all $x \in H$ and $y \in C$; see [18].

Let B be a mapping of H into 2^{H}. The effective domain of B is denoted by $\operatorname{dom}(B)$, that is, $\operatorname{dom}(B)=\{x \in H: B x \neq \emptyset\}$. A multi-valued mapping B is said to be a monotone operator on H if $\langle x-y, u-v\rangle \geq 0$ for all $x, y \in \operatorname{dom}(B), u \in B x$, and $v \in B y$. A monotone operator B on H is said to be maximal if its graph is not properly contained in the graph of any other monotone operator on H. For a maximal monotone operator B on H and $r>0$, we may define a single-valued operator $J_{r}=(I+r B)^{-1}: H \rightarrow \operatorname{dom}(B)$, which is called the resolvent of B for
$r>0$. We denote by $A_{r}=\frac{1}{r}\left(I-J_{r}\right)$ the Yosida approximation of B for $r>0$. We know from [19] that

$$
\begin{equation*}
A_{r} x \in B J_{r} x, \quad \forall x \in H, r>0 . \tag{2.4}
\end{equation*}
$$

Let B be a maximal monotone operator on H and let $B^{-1} 0=\{x \in H: 0 \in$ $B x\}$. It is known that $B^{-1} 0=F\left(J_{r}\right)$ for all $r>0$ and the resolvent J_{r} is firmly nonexpansive, i.e.,

$$
\begin{equation*}
\left\|J_{r} x-J_{r} y\right\|^{2} \leq\left\langle x-y, J_{r} x-J_{r} y\right\rangle, \quad \forall x, y \in H \tag{2.5}
\end{equation*}
$$

Furthermore, we have that for $s, r \in \mathbb{R}$ with $s \geq r>0$ and $x \in H$

$$
\begin{equation*}
\left\|x-J_{s} x\right\| \geq\left\|x-J_{r} x\right\| . \tag{2.6}
\end{equation*}
$$

See [1] for a simpler proof of (2.6); see also [22] for a more general result. We also know the following lemma from [17].
Lemma 2.1. Let H be a real Hilbert space and let B be a maximal monotone operator on H. For $r>0$ and $x \in H$, define the resolvent $J_{r} x$. Then the following holds:

$$
\frac{s-t}{s}\left\langle J_{s} x-J_{t} x, J_{s} x-x\right\rangle \geq\left\|J_{s} x-J_{t} x\right\|^{2}
$$

for all $s, t>0$ and $x \in H$.
From Lemma 2.1, we have that

$$
\left\|J_{\lambda} x-J_{\mu} x\right\| \leq(|\lambda-\mu| / \lambda)\left\|x-J_{\lambda} x\right\|
$$

for all $\lambda, \mu>0$ and $x \in H$; see also [9,18]. Let B be a maximal monotone mapping on H such that $B^{-1} 0$ is non-empty. Let J_{λ} be the resolvent of B for $\lambda>0$. Then

$$
\begin{equation*}
\left\langle x-J_{\lambda} x, J_{\lambda} x-y\right\rangle \geq 0 \tag{2.7}
\end{equation*}
$$

for all $x \in H$ and $y \in B^{-1} 0$. In fact, since J_{λ} is firmly nonexpansive and $J_{\lambda} y=y$ for all $y \in B^{-1} 0$, we have that for all $x \in H$ and $y \in B^{-1} 0$

$$
\begin{aligned}
&\langle x-\left.J_{\lambda} x, J_{\lambda} x-y\right\rangle \\
& \quad=\left\langle x-y+y-J_{\lambda} x, J_{\lambda} x-y\right\rangle \\
& \quad=\left\langle x-y, J_{\lambda} x-y\right\rangle+\left\langle y-J_{\lambda} x, J_{\lambda} x-y\right\rangle \\
& \quad \geq\left\|J_{\lambda} x-y\right\|^{2}-\left\|J_{\lambda} x-y\right\|^{2} \\
& \quad=0 .
\end{aligned}
$$

We use this result for proving Lemma 3.1 in Section 3. Let C be a non-empty, closed and convex subset of H. If a mapping $T: C \rightarrow H$ is firmly nonexpansive, then $I-T: C \rightarrow H$ is firmly nonexpansive. In fact, put $S=I-T$. Since T is firmly nonexpansive, we have that

$$
\|(I-S) x-(I-S) y\|^{2} \leq\langle x-y,(I-S) x-(I-S) y\rangle
$$

for all $x, y \in C$. This implies that

$$
\|x-y\|^{2}-2\langle x-y, S x-S y\rangle+\|S x-S y\|^{2} \leq\|x-y\|^{2}-\langle x-y, S x-S y\rangle
$$

and hence $\|S x-S y\|^{2} \leq\langle x-y, S x-S y\rangle$.

Let C be a non-empty, closed and convex subset of a Hilbert space H. Let $\alpha>0$ and let A be an α-inverse-strongly monotone mapping of C into H. If $0<\lambda \leq 2 \alpha$, then $I-\lambda A: C \rightarrow H$ is nonexpansive. In fact, we have that for all $x, y \in C$

$$
\begin{aligned}
\|(I-\lambda A) x & -(I-\lambda A) y\left\|^{2}=\right\| x-y-\lambda(A x-A y) \|^{2} \\
& =\|x-y\|^{2}-2 \lambda\langle x-y, A x-A y\rangle+(\lambda)^{2}\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2}-2 \lambda \alpha\|A x-A y\|^{2}+(\lambda)^{2}\|A x-A y\|^{2} \\
& =\|x-y\|^{2}+\lambda(\lambda-2 \alpha)\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2} .
\end{aligned}
$$

Thus $I-\lambda A: C \rightarrow H$ is nonexpansive. A mapping $g: C \rightarrow H$ is a contraction if there exists $k \in(0,1)$ such that $\|g(x)-g(y)\| \leq k\|x-y\|$ for all $x, y \in C$. We also call such a mapping g a k-contraction. A linear bounded self-adjoint operator $G: H \rightarrow H$ is called strongly positive if there exists $\bar{\gamma}>0$ such that $\langle G x, x\rangle \geq \bar{\gamma}\|x\|^{2}$ for all $x \in H$. We know the following lemmas from [21]; see also [1].
Lemma 2.2. Let H be a Hilbert space. Let g be a k-contraction of H into itself and let G be a strongly positive bounded linear self-adjoint operator on H with coefficient $\bar{\gamma}>0$. Take $\gamma>0$ with $\gamma<\frac{\bar{\gamma}}{k}$ and $t>0$ with $t(\|G\|+\gamma k)^{2}<2(\bar{\gamma}-\gamma k)$ and $2 t(\bar{\gamma}-\gamma k)<1$. Then

$$
0<1-t\left\{2(\bar{\gamma}-\gamma k)-t(\|G\|+\gamma k)^{2}\right\}<1
$$

and $I-t(G-\gamma g)$ is a contraction of H into itself.
Lemma 2.3. Let H be a Hilbert space and let C be a non-empty, closed and convex subset of H. Let g be a k-contraction of H into itself and let G be a strongly positive bounded linear self-adjoint operator on H with coefficient $\bar{\gamma}>0$. Take $\gamma>0$ with $\gamma<\frac{\bar{\gamma}}{k}$ and $t>0$ with $t(\|G\|+\gamma k)^{2}<2(\bar{\gamma}-\gamma k)$ and $2 t(\bar{\gamma}-\gamma k)<1$. Let $w \in C$. Then the following are equivalent:
(1) $w=P_{C}(I-t(G-\gamma g)) w$;
(2) $\langle(G-\gamma g) w, w-q\rangle \leq 0, \quad \forall q \in C$;
(3) $w=P_{C}(I-G+\gamma g) w$.

Such $w \in C$ exists always and is unique.
The following lemma was proved by Marino and Xu [12].
Lemma 2.4. Let H be a Hilbert space and let G be a strongly positive bounded linear self-adjoint operator on H with coefficient $\bar{\gamma}>0$. If $0<\gamma \leq\|G\|^{-1}$, then $\|I-\gamma G\| \leq 1-\gamma \bar{\gamma}$.

To prove our main result, we need the following lemma:
Lemma 2.5 ([3]; see also [25]). Let $\left\{s_{n}\right\}$ be a sequence of nonnegative real numbers, let $\left\{\alpha_{n}\right\}$ be a sequence of $[0,1]$ with $\sum_{n=1}^{\infty} \alpha_{n}=\infty$, let $\left\{\beta_{n}\right\}$ be a sequence of nonnegative real numbers with $\sum_{n=1}^{\infty} \beta_{n}<\infty$, and let $\left\{\gamma_{n}\right\}$ be a sequence of real numbers with $\lim _{\sup _{n \rightarrow \infty}} \gamma_{n} \leq 0$. Suppose that

$$
s_{n+1} \leq\left(1-\alpha_{n}\right) s_{n}+\alpha_{n} \gamma_{n}+\beta_{n}
$$

for all $n=1,2, \ldots$. Then $\lim _{n \rightarrow \infty} s_{n}=0$.

3. Strong Convergence Theorem

In this section, we prove a Halpern-type strong convergence theorem [10] for finding a solution of the split common null point problem in Hilbert spaces; see also [24]. Before proving the theorem, we need the following lemmas which were obtained by [1].

Lemma 3.1. Let H_{1} and H_{2} be Hilbert spaces and let A and B be maximal monotone mappings on H_{1} and H_{2} such that $A^{-1} 0$ and $B^{-1} 0$ are non-empty, respectively. Let $T: H_{1} \rightarrow H_{2}$ be a bounded linear operator such that $A^{-1} 0 \cap T^{-1}\left(B^{-1} 0\right)$ is nonempty and let T^{*} be the adjoint operator of T. Let J_{λ} and Q_{μ} be the resolvents of A and B for $\lambda>0$ and $\mu>0$, respectively. Let $\lambda, \mu, \nu, r>0$ and $z \in H$. Then the following are equivalent:
(i) $z=J_{\lambda}\left(I-r T^{*}\left(I-Q_{\mu}\right) T\right) z$;
(ii) $0 \in T^{*}\left(I-Q_{\nu}\right) T z+A z$;
(iii) $z \in A^{-1} 0 \cap T^{-1}\left(B^{-1} 0\right)$.

Lemma 3.2. Let H_{1} and H_{2} be Hilbert spaces and let B be a maximal monotone mapping on H_{2}. Let $T: H_{1} \rightarrow H_{2}$ be a bounded linear operator such that $T \neq 0$. Let Q_{μ} be the resolvent of B for $\mu>0$. Then a mapping $T^{*}\left(I-Q_{\mu}\right) T: H_{1} \rightarrow H_{1}$ is $\frac{1}{\left\|T T^{*}\right\|^{-}}$-inverse strongly monotone.

Theorem 3.3. Let H_{1} and H_{2} be Hilbert spaces. Let A and F be maximal monotone mappings on H_{1} and let B be a maximal monotone mapping on H_{2} such that $A^{-1} 0$, $F^{-1} 0$ and $B^{-1} 0$ are non-empty. Let $T: H_{1} \rightarrow H_{2}$ be a bounded linear operator such that $A^{-1} 0 \cap T^{-1}\left(B^{-1} 0\right) \cap F^{-1} 0$ is non-empty. Let T^{*} be the adjoint operator of T. Let J_{λ} and T_{r} be the resolvents of A for $\lambda>0$ and of F for $r>0$, respectively and let Q_{μ} be the resolvent of B for $\mu>0$. Let $0<k<1$ and let g be a k-contraction of H_{1} into itself. Let G be a strongly positive bounded linear self-adjoint operator on H_{1} with coefficient $\bar{\gamma}>0$. Let $0<\gamma<\frac{\bar{\gamma}}{k}$. Let $x_{1}=x \in H_{1}$ and let $\left\{x_{n}\right\} \subset H_{1}$ be a sequence generated by

$$
x_{n+1}=\alpha_{n} \gamma g\left(x_{n}\right)+\left(I-\alpha_{n} G\right) J_{\lambda_{n}}\left(I-\lambda_{n} T^{*}\left(I-Q_{\mu_{n}}\right) T\right) T_{r_{n}} x_{n}
$$

for all $n \in \mathbb{N}$, where $\left\{\alpha_{n}\right\} \subset(0,1)$ and $\left\{\lambda_{n}\right\},\left\{\mu_{n}\right\},\left\{r_{n}\right\} \subset(0, \infty)$ satisfy

$$
\begin{gathered}
\alpha_{n} \rightarrow 0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \sum_{n=1}^{\infty}\left|\alpha_{n}-\alpha_{n+1}\right|<\infty \\
0<\liminf _{n \rightarrow \infty} \lambda_{n} \leq \limsup _{n \rightarrow \infty} \lambda_{n}<\frac{2}{\left\|T T^{*}\right\|}, \sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+1}\right|<\infty \\
\liminf _{n \rightarrow \infty} \mu_{n}>0, \sum_{n=1}^{\infty}\left|\mu_{n}-\mu_{n+1}\right|<\infty, \liminf _{n \rightarrow \infty} r_{n}>0 \text { and } \sum_{n=1}^{\infty}\left|r_{n}-r_{n+1}\right|<\infty
\end{gathered}
$$

Then $\left\{x_{n}\right\}$ converges strongly to $z_{0} \in A^{-1} 0 \cap T^{-1}\left(B^{-1} 0\right) \cap F^{-1} 0$, where z_{0} is a unique fixed point of $P_{A^{-1} 0 \cap T^{-1}\left(B^{-1} 0\right) \cap F^{-1} 0}(I-G+\gamma g)$. This point z_{0} is also a unique solution of the variational inequality

$$
\left\langle(G-\gamma g) z_{0}, q-z_{0}\right\rangle \geq 0, \quad \forall q \in A^{-1} 0 \cap T^{-1}\left(B^{-1} 0\right) \cap F^{-1} 0
$$

Proof. Define $A_{n}=T^{*}\left(I-Q_{\mu_{n}}\right) T$ for all $n \in \mathbb{N}$. Put $u_{n}=T_{r_{n}} x_{n}$ and $y_{n}=$ $J_{\lambda_{n}}\left(I-\lambda_{n} A_{n}\right) T_{r_{n}} x_{n}$ for all $n \in \mathbb{N}$. Let $z \in A^{-1} 0 \cap T^{-1}\left(B^{-1} 0\right) \cap F^{-1} 0$. Then we have $z=T_{r_{n}} z, z=J_{\lambda_{n}} z,\left(I-Q_{\mu_{n}}\right) T z=0$ and $z=J_{\lambda_{n}}\left(I-\lambda_{n} A_{n}\right) z$. Since $I-Q_{\mu_{n}}$ is 1-inverse strongly monotone, we have from $0<\limsup _{n \rightarrow \infty} \lambda_{n}<\frac{2}{\left\|T T^{*}\right\|}$ that

$$
\begin{aligned}
\left\|y_{n}-z\right\|^{2} & =\left\|J_{\lambda_{n}}\left(I-\lambda_{n} A_{n}\right) u_{n}-J_{\lambda_{n}}\left(I-\lambda_{n} A_{n}\right) z\right\|^{2} \\
& \leq\left\|\left(I-\lambda_{n} A_{n}\right) u_{n}-\left(I-\lambda_{n} A_{n}\right) z\right\|^{2} \\
& =\left\|u_{n}-z-\lambda_{n} A_{n} u_{n}\right\|^{2} \\
& =\left\|u_{n}-z\right\|^{2}-2 \lambda_{n}\left\langle u_{n}-z, A_{n} u_{n}\right\rangle+\left(\lambda_{n}\right)^{2}\left\|A_{n} u_{n}\right\|^{2} \\
& =\left\|u_{n}-z\right\|^{2}-2 \lambda_{n}\left\langle T u_{n}-T z,\left(I-Q_{\mu_{n}}\right) T u_{n}\right\rangle+\left(\lambda_{n}\right)^{2}\left\langle A_{n} u_{n}, A_{n} u_{n}\right\rangle \\
& \leq\left\|u_{n}-z\right\|^{2}-2 \lambda_{n}\left\|\left(I-Q_{\mu_{n}}\right) T u_{n}\right\|^{2}+\left(\lambda_{n}\right)^{2}\left\|T T^{*}\right\|\left\|\left(I-Q_{\mu_{n}}\right) T u_{n}\right\|^{2} \\
& =\left\|u_{n}-z\right\|^{2}+\lambda_{n}\left(\lambda_{n}\left\|T T^{*}\right\|-2\right)\left\|\left(I-Q_{\mu_{n}}\right) T u_{n}\right\|^{2} \\
& \leq\left\|u_{n}-z\right\|^{2} \\
& \leq\left\|x_{n}-z\right\|^{2} .
\end{aligned}
$$

Since $x_{n+1}=\alpha_{n} \gamma g\left(x_{n}\right)+\left(I-\alpha_{n} G\right) y_{n}$ and $z=\alpha_{n} G z+z-\alpha_{n} G z$, we have that

$$
\begin{aligned}
\left\|x_{n+1}-z\right\| & =\left\|\alpha_{n}\left(\gamma g\left(x_{n}\right)-G z\right)+\left(I-\alpha_{n} G\right)\left(y_{n}-z\right)\right\| \\
& \leq \alpha_{n}\left\|\gamma g\left(x_{n}\right)-G z\right\|+\left\|I-\alpha_{n} G\right\|\left\|x_{n}-z\right\| \\
& \leq \alpha_{n} \gamma k\left\|x_{n}-z\right\|+\alpha_{n}\|\gamma g(z)-G z\|+\left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-z\right\| \\
& =\left\{1-\alpha_{n}(\bar{\gamma}-\gamma k)\right\}\left\|x_{n}-z\right\|+\alpha_{n}\|\gamma g(z)-G z\| \\
& =\left\{1-\alpha_{n}(\bar{\gamma}-\gamma k)\right\}\left\|x_{n}-z\right\|+\alpha_{n}(\bar{\gamma}-\gamma k) \frac{\|\gamma g(z)-G z\|}{\bar{\gamma}-\gamma k} .
\end{aligned}
$$

Putting $K=\max \left\{\frac{\|\gamma g(z)-G z\|}{\bar{\gamma}-\gamma k},\left\|x_{1}-z\right\|\right\}$, we have that $\left\|x_{n}-z\right\| \leq K$ for all $n \in \mathbb{N}$. In fact, it is obvious that $\left\|x_{1}-z\right\| \leq K$. Suppose that $\left\|x_{m}-z\right\| \leq K$ for some $m \in \mathbb{N}$. Then we have that

$$
\begin{aligned}
\left\|x_{m+1}-z\right\| & \leq\left\{1-\alpha_{m}(\bar{\gamma}-\gamma k)\right\}\left\|x_{m}-z\right\|+\alpha_{m}(\bar{\gamma}-\gamma k) \frac{\|\gamma g(z)-G z\|}{\bar{\gamma}-\gamma k} \\
& \leq\left\{1-\alpha_{m}(\bar{\gamma}-\gamma k)\right\} K+\alpha_{m}(\bar{\gamma}-\gamma k) K \\
& =K
\end{aligned}
$$

By induction, we obtain that $\left\|x_{n}-z\right\| \leq K$ for all $n \in \mathbb{N}$. Then $\left\{x_{n}\right\}$ is bounded. Furthermore, $\left\{u_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded. Since

$$
\begin{aligned}
x_{n+2}-x_{n+1}= & \alpha_{n+1} \gamma g\left(x_{n+1}\right)+\left(I-\alpha_{n+1} G\right) y_{n+1}-\left(\alpha_{n} \gamma g\left(x_{n}\right)+\left(I-\alpha_{n} G\right) y_{n}\right) \\
= & \alpha_{n+1} \gamma g\left(x_{n+1}\right)-\alpha_{n+1} \gamma g\left(x_{n}\right)+\alpha_{n+1} \gamma g\left(x_{n}\right)-\alpha_{n} \gamma g\left(x_{n}\right) \\
& +\left(I-\alpha_{n+1} G\right) y_{n+1}-\left(I-\alpha_{n+1} G\right) y_{n} \\
& +\left(I-\alpha_{n+1} G\right) y_{n}-\left(I-\alpha_{n} G\right) y_{n},
\end{aligned}
$$

we have that

$$
\begin{aligned}
\left\|x_{n+2}-x_{n+1}\right\| \leq & \alpha_{n+1} \gamma k\left\|x_{n+1}-x_{n}\right\|+\left|\alpha_{n+1}-\alpha_{n}\right| \gamma\left\|g\left(x_{n}\right)\right\| \\
& +\left(1-\alpha_{n+1} \bar{\gamma}\right)\left\|y_{n+1}-y_{n}\right\|+\left|\alpha_{n+1}-\alpha_{n}\right|\left\|G y_{n}\right\|
\end{aligned}
$$

$$
\begin{aligned}
\leq & \alpha_{n+1} \gamma k\left\|x_{n+1}-x_{n}\right\|+\left(1-\alpha_{n+1} \bar{\gamma}\right)\left\|y_{n+1}-y_{n}\right\| \\
& +\left|\alpha_{n+1}-\alpha_{n}\right| M_{1}
\end{aligned}
$$

where $M_{1}=\sup \left\{\gamma\left\|g\left(x_{n}\right)\right\|+\left\|G y_{n}\right\|: n \in \mathbb{N}\right\}$. Putting $z_{n}=\left(I-\lambda_{n} A_{n}\right) T_{r_{n}} x_{n}$, we have from Lemma 2.1 that

$$
\begin{aligned}
& \left\|y_{n+1}-y_{n}\right\|=\left\|J_{\lambda_{n+1}}\left(I-\lambda_{n+1} A_{n+1}\right) T_{r_{n+1}} x_{n+1}-J_{\lambda_{n}}\left(I-\lambda_{n} A_{n}\right) T_{r_{n}} x_{n}\right\| \\
& \leq\left\|J_{\lambda_{n+1}}\left(I-\lambda_{n+1} A_{n+1}\right) T_{r_{n+1}} x_{n+1}-J_{\lambda_{n+1}}\left(I-\lambda_{n+1} A_{n+1}\right) T_{r_{n}} x_{n}\right\| \\
& +\left\|J_{\lambda_{n+1}}\left(I-\lambda_{n+1} A_{n+1}\right) T_{r_{n}} x_{n}-J_{\lambda_{n+1}}\left(I-\lambda_{n} A_{n}\right) T_{r_{n}} x_{n}\right\| \\
& +\left\|J_{\lambda_{n+1}}\left(I-\lambda_{n} A_{n}\right) T_{r_{n}} x_{n}-J_{\lambda_{n}}\left(I-\lambda_{n} A_{n}\right) T_{r_{n}} x_{n}\right\| \\
& \leq\left\|T_{r_{n+1}} x_{n+1}-T_{r_{n}} x_{n}\right\| \\
& +\left\|\left(I-\lambda_{n+1} A_{n+1}\right) T_{r_{n}} x_{n}-\left(I-\lambda_{n} A_{n}\right) T_{r_{n}} x_{n}\right\| \\
& +\left\|J_{\lambda_{n+1}} z_{n}-J_{\lambda_{n}} z_{n}\right\| \\
& \leq\left\|T_{r_{n+1}} x_{n+1}-T_{r_{n}} x_{n}\right\| \\
& +\left\|\lambda_{n+1} A_{n+1} T_{r_{n}} x_{n}-\lambda_{n} A_{n} T_{r_{n}} x_{n}\right\|+\left\|J_{\lambda_{n+1}} z_{n}-J_{\lambda_{n}} z_{n}\right\| \\
& \leq\left\|T_{r_{n+1}} x_{n+1}-T_{r_{n+1}} x_{n}\right\|+\left\|T_{r_{n+1}} x_{n}-T_{r_{n}} x_{n}\right\| \\
& +\left\|\lambda_{n+1} A_{n+1} T_{r_{n}} x_{n}-\lambda_{n} A_{n+1} T_{r_{n}} x_{n}\right\| \\
& +\left\|\lambda_{n} A_{n+1} T_{r_{n}} x_{n}-\lambda_{n} A_{n} T_{r_{n}} x_{n}\right\|+\left\|J_{\lambda_{n+1}} z_{n}-J_{\lambda_{n}} z_{n}\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\left\|T_{r_{n+1}} x_{n}-T_{r_{n}} x_{n}\right\|+\left|\lambda_{n+1}-\lambda_{n}\right|\left\|A_{n+1} T_{r_{n}} x_{n}\right\| \\
& +\lambda_{n}\|T\|\left\|\left(I-Q_{\mu_{n+1}}\right) T T_{r_{n}} x_{n}-\left(I-Q_{\mu_{n}}\right) T T_{r_{n}} x_{n}\right\| \\
& +\left\|J_{\lambda_{n+1}} z_{n}-J_{\lambda_{n}} z_{n}\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\frac{\left|r_{n+1}-r_{n}\right|}{r_{n+1}}\left\|T_{r_{n+1}} x_{n}-x_{n}\right\| \\
& +\left|\lambda_{n+1}-\lambda_{n}\right|\left\|A_{n+1} T_{r_{n}} x_{n}\right\|+\lambda_{n}\|T\|\left\|Q_{\mu_{n+1}} T T_{r_{n}} x_{n}-Q_{\mu_{n}} T T_{r_{n}} x_{n}\right\| \\
& +\frac{\left|\lambda_{n+1}-\lambda_{n}\right|}{\lambda_{n+1}}\left\|J_{\lambda_{n+1}} z_{n}-z_{n}\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\frac{\left|r_{n+1}-r_{n}\right|}{r_{n+1}}\left\|T_{r_{n+1}} x_{n}-x_{n}\right\| \\
& +\left|\lambda_{n+1}-\lambda_{n}\right|\left\|A_{n+1} T_{r_{n}} x_{n}\right\| \\
& +\lambda_{n}\|T\| \frac{\left|\mu_{n+1}-\mu_{n}\right|}{\mu_{n+1}}\left\|Q_{\mu_{n+1}} T T_{r_{n}} x_{n}-T T_{r_{n}} x_{n}\right\| \\
& +\frac{\left|\lambda_{n+1}-\lambda_{n}\right|}{\lambda_{n+1}}\left\|J_{\lambda_{n+1}} z_{n}-z_{n}\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\left|r_{n+1}-r_{n}\right| M_{2}+\left|\lambda_{n+1}-\lambda_{n}\right| M_{2} \\
& +\left|\mu_{n+1}-\mu_{n}\right| M_{2}+\left|\lambda_{n+1}-\lambda_{n}\right| M_{2},
\end{aligned}
$$

 $\sup _{n \in \mathbb{N}} \frac{\lambda_{n}\|T\|\left\|Q_{\mu_{n+1}} T T_{r_{n}} x_{n}-T T_{r_{n}} x_{n}\right\|}{\mu_{n+1}}$ and $\sup _{n \in \mathbb{N}} \frac{\left\|J_{\lambda_{n+1}} z_{n}-z_{n}\right\|}{\lambda_{n+1}}$. Then we have that

$$
\left\|x_{n+2}-x_{n+1}\right\| \leq \alpha_{n+1} \gamma k\left\|x_{n+1}-x_{n}\right\|+\left|\alpha_{n+1}-\alpha_{n}\right| M_{1}
$$

$$
\begin{aligned}
& \quad+\left(1-\alpha_{n+1} \bar{\gamma}\right)\left\|y_{n+1}-y_{n}\right\| \\
& \leq \alpha_{n+1} \gamma k\left\|x_{n+1}-x_{n}\right\|+\left|\alpha_{n+1}-\alpha_{n}\right| M_{1} \\
& \quad+\left(1-\alpha_{n+1} \bar{\gamma}\right)\left\{\left\|x_{n+1}-x_{n}\right\|+\left|r_{n+1}-r_{n}\right| M_{2}\right. \\
& \left.\quad+2\left|\lambda_{n+1}-\lambda_{n}\right| M_{2}+\left|\mu_{n+1}-\mu_{n}\right| M_{2}\right\} \\
& \leq\left\{1-\alpha_{n+1}(\bar{\gamma}-\gamma k)\right\}\left\|x_{n+1}-x_{n}\right\|+\left|\alpha_{n+1}-\alpha_{n}\right| M_{3} \\
& \quad+\left|r_{n+1}-r_{n}\right| M_{3}+\left|\lambda_{n+1}-\lambda_{n}\right| M_{3}+\left|\mu_{n+1}-\mu_{n}\right| M_{3}
\end{aligned}
$$

where $M_{3}=M_{1}+2 M_{2}$. Using Lemma 2.5, we obtain that

$$
\begin{equation*}
\left\|x_{n+2}-x_{n+1}\right\| \rightarrow 0 \tag{3.2}
\end{equation*}
$$

We also have from $x_{n+1}=\alpha_{n} \gamma g\left(x_{n}\right)+\left(I-\alpha_{n} G\right) y_{n}$ that

$$
\begin{aligned}
\left\|x_{n}-y_{n}\right\| & \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}\right\| \\
& =\left\|x_{n}-x_{n+1}\right\|+\alpha_{n}\left\|\gamma g\left(x_{n}\right)-G y_{n}\right\| .
\end{aligned}
$$

From $\alpha_{n} \rightarrow 0$ and $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$, we get

$$
\begin{equation*}
y_{n}-x_{n} \rightarrow 0 \tag{3.3}
\end{equation*}
$$

For $z \in A^{-1} 0 \cap T^{-1}\left(B^{-1} 0\right) \cap F^{-1} 0$, we have from (2.5) that

$$
\begin{aligned}
2\left\|u_{n}-z\right\|^{2} & =2\left\|T_{r_{n}} x_{n}-T_{r_{n}} z\right\|^{2} \\
& \leq 2\left\langle x_{n}-z, u_{n}-z\right\rangle \\
& =\left\|x_{n}-z\right\|^{2}+\left\|u_{n}-z\right\|^{2}-\left\|u_{n}-x_{n}\right\|^{2}
\end{aligned}
$$

and hence

$$
\begin{equation*}
\left\|u_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}-\left\|u_{n}-x_{n}\right\|^{2} \tag{3.4}
\end{equation*}
$$

Then we have from (2.1), (3.1) and (3.4) that

$$
\begin{aligned}
\left\|x_{n+1}-z\right\|^{2}= & \left\|\left(I-\alpha_{n} G\right)\left(y_{n}-z\right)+\alpha_{n}\left(\gamma g\left(x_{n}\right)-G z\right)\right\|^{2} \\
\leq & \left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|y_{n}-z\right\|^{2}+2 \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-G z, x_{n+1}-z\right\rangle \\
\leq & \left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left(\left\|u_{n}-z\right\|^{2}+\lambda_{n}\left(\lambda_{n}\left\|T T^{*}\right\|-2\right)\left\|\left(I-Q_{\mu_{n}}\right) T u_{n}\right\|^{2}\right) \\
& \quad+2 \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-G z, x_{n+1}-z\right\rangle \\
\leq & \left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left(\left\|x_{n}-z\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}\right) \\
& \quad+\left(1-\alpha_{n} \bar{\gamma}\right)^{2} \lambda_{n}\left(\lambda_{n}\left\|T T^{*}\right\|-2\right)\left\|\left(I-Q_{\mu_{n}}\right) T u_{n}\right\|^{2} \\
& \quad+2 \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-G z, x_{n+1}-z\right\rangle \\
\leq & \left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left(\left\|x_{n}-z\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}\right) \\
& \quad+\left(1-\alpha_{n} \bar{\gamma}\right)^{2} \lambda_{n}\left(\lambda_{n}\left\|T T^{*}\right\|-2\right)\left\|\left(I-Q_{\mu_{n}}\right) T u_{n}\right\|^{2} \\
& \quad+2 \alpha_{n} \gamma k\left\|x_{n}-z\right\|\left\|x_{n+1}-z\right\|+2 \alpha_{n}\|\gamma g(z)-G z\|\left\|x_{n+1}-z\right\| \\
\leq \| & x_{n}-z\left\|^{2}-\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\right\| x_{n}-u_{n} \|^{2} \\
& \quad+\left(1-\alpha_{n} \bar{\gamma}\right)^{2} \lambda_{n}\left(\lambda_{n}\left\|T T^{*}\right\|-2\right)\left\|\left(I-Q_{\mu_{n}}\right) T u_{n}\right\|^{2} \\
& \quad+2 \alpha_{n} \gamma k\left\|x_{n}-z\right\|\left\|x_{n+1}-z\right\|+2 \alpha_{n}\|\gamma g(z)-G z\|\left\|x_{n+1}-z\right\|
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \left(1-\alpha_{n} \bar{\gamma}\right)^{2} \lambda_{n}\left(2-\lambda_{n}\left\|T T^{*}\right\|\right)\left\|\left(I-Q_{\mu_{n}}\right) T u_{n}\right\|^{2}+\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-u_{n}\right\|^{2} \\
& \quad \leq\left\|x_{n}-z\right\|^{2}-\left\|x_{n+1}-z\right\|^{2} \\
& \quad+2 \alpha_{n} \gamma k\left\|x_{n}-z\right\|\left\|x_{n+1}-z\right\|+2 \alpha_{n}\|\gamma g(z)-G z\|\left\|x_{n+1}-z\right\| .
\end{aligned}
$$

Then we have that

$$
\begin{aligned}
& \left(1-\alpha_{n} \bar{\gamma}\right)^{2} \lambda_{n}\left(2-\lambda_{n}\left\|T T^{*}\right\|\right)\left\|\left(I-Q_{\mu_{n}}\right) T u_{n}\right\|^{2} \\
& \quad \leq\left\|x_{n}-z\right\|^{2}-\left\|x_{n+1}-z\right\|^{2} \\
& \quad+2 \alpha_{n} \gamma k\left\|x_{n}-z\right\|\left\|x_{n+1}-z\right\|+2 \alpha_{n}\|\gamma g(z)-G z\|\left\|x_{n+1}-z\right\|
\end{aligned}
$$

and

$$
\begin{aligned}
\left(1-\alpha_{n} \bar{\gamma}\right)^{2} \| x_{n} & -u_{n}\left\|^{2} \leq\right\| x_{n}-z\left\|^{2}-\right\| x_{n+1}-z \|^{2} \\
& +2 \alpha_{n} \gamma k\left\|x_{n}-z\right\|\left\|x_{n+1}-z\right\|+2 \alpha_{n}\|\gamma g(z)-G z\|\left\|x_{n+1}-z\right\| .
\end{aligned}
$$

From $\alpha_{n} \rightarrow 0,\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$ and $0<\liminf _{n \rightarrow \infty} \lambda_{n} \leq \limsup _{n \rightarrow \infty} \lambda_{n}<\frac{2}{\left\|T T^{*}\right\|}$, we have that

$$
\begin{equation*}
\left\|\left(I-Q_{\mu_{n}}\right) T u_{n}\right\| \rightarrow 0 \quad \text { and } \quad\left\|x_{n}-u_{n}\right\| \rightarrow 0 \tag{3.5}
\end{equation*}
$$

Then we have from (3.3) and (3.5) that

$$
\begin{equation*}
\left\|y_{n}-u_{n}\right\| \leq\left\|y_{n}-x_{n}\right\|+\left\|x_{n}-u_{n}\right\| \rightarrow 0 \tag{3.6}
\end{equation*}
$$

From $\sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+1}\right|<\infty$, we have that $\left\{\lambda_{n}\right\}$ is a Cauchy sequence. Then we have $\lambda_{n} \rightarrow \lambda_{0} \in\left(0, \frac{2}{\left\|T T^{*}\right\|}\right)$. Put $A_{\mu}=T^{*}\left(I-Q_{\mu}\right) T$, where $0<\mu<\liminf _{n \rightarrow \infty} \mu_{n}$. For $u_{n}=T_{r_{n}} x_{n}, z_{n}=\left(I-\lambda_{n} A_{n}\right) T_{r_{n}} x_{n}$ and $y_{n}=J_{\lambda_{n}}\left(I-\lambda_{n} A_{n}\right) T_{r_{n}} x_{n}$, we have from Lemma 2.1 and (2.6) that

$$
\begin{aligned}
\| J_{\lambda_{0}}(I- & \left.\lambda_{0} A_{\mu}\right) u_{n}-y_{n} \| \\
& \leq\left\|J_{\lambda_{0}}\left(I-\lambda_{0} A_{\mu}\right) u_{n}-J_{\lambda_{0}}\left(I-\lambda_{n} A_{n}\right) u_{n}\right\|+\left\|J_{\lambda_{0}}\left(I-\lambda_{n} A_{n}\right) u_{n}-y_{n}\right\| \\
\leq & \left\|\left(I-\lambda_{0} A_{\mu}\right) u_{n}-\left(I-\lambda_{n} A_{n}\right) u_{n}\right\|+\left\|J_{\lambda_{0}} z_{n}-J_{\lambda_{n}} z_{n}\right\| \\
= & \left\|\lambda_{0} A_{\mu} u_{n}-\lambda_{n} A_{n} u_{n}\right\|+\left\|J_{\lambda_{0}} z_{n}-J_{\lambda_{n}} z_{n}\right\| \\
= & \left\|\lambda_{0} A_{\mu} u_{n}-\lambda_{0} A_{n} u_{n}+\lambda_{0} A_{n} u_{n}-\lambda_{n} A_{n} u_{n}\right\|+\left\|J_{\lambda_{0}} z_{n}-J_{\lambda_{n}} z_{n}\right\| \\
\leq .7) \quad & \lambda_{0}\|T\|\left\|\left(I-Q_{\mu}\right) T u_{n}-\left(I-Q_{\mu_{n}}\right) T u_{n}\right\| \\
& \quad+\left\|\lambda_{0} A_{n} u_{n}-\lambda_{n} A_{n} u_{n}\right\|+\left\|J_{\lambda_{0}} z_{n}-J_{\lambda_{n}} z_{n}\right\| \\
\leq & \lambda_{0}\|T\|\left(\left\|\left(I-Q_{\mu}\right) T u_{n}\right\|+\left\|\left(I-Q_{\mu_{n}}\right) T u_{n}\right\|\right) \\
& \quad+\left\|\lambda_{0} A_{n} u_{n}-\lambda_{n} A_{n} u_{n}\right\|+\left\|J_{\lambda_{0}} z_{n}-J_{\lambda_{n}} z_{n}\right\| \\
\leq & 2 \lambda_{0}\|T\|\left\|\left(I-Q_{\mu_{n}}\right) T u_{n}\right\|+\left\|\lambda_{0} A_{n} u_{n}-\lambda_{n} A_{n} u_{n}\right\|+\left\|J_{\lambda_{0}} z_{n}-J_{\lambda_{n}} z_{n}\right\| \\
\leq & 2 \lambda_{0}\|T\|\left\|\left(I-Q_{\mu_{n}}\right) T u_{n}\right\|+\left|\lambda_{n}-\lambda_{0}\right|\left\|A_{n} u_{n}\right\|+\frac{\left|\lambda_{n}-\lambda_{0}\right|}{\lambda_{0}}\left\|J_{\lambda_{0}} z_{n}-z_{n}\right\| .
\end{aligned}
$$

We also have from (3.6) and (3.7) that

$$
\begin{equation*}
\left\|u_{n}-J_{\lambda_{0}}\left(I-\lambda_{0} A_{\mu}\right) u_{n}\right\| \leq\left\|u_{n}-y_{n}\right\|+\left\|y_{n}-J_{\lambda_{0}}\left(I-\lambda_{0} A_{\mu}\right) u_{n}\right\| \tag{3.8}
\end{equation*}
$$

We will use (3.7) and (3.8) later. From Lemma 2.3, we can take a unique solution $z_{0} \in A^{-1} 0 \cap T^{-1}\left(B^{-1} 0\right) \cap F^{-1} 0$ of the variational inequality

$$
\left\langle(G-\gamma g) z_{0}, q-z_{0}\right\rangle \geq 0, \quad \forall q \in A^{-1} 0 \cap T^{-1}\left(B^{-1} 0\right) \cap F^{-1} 0
$$

We show that $\lim \sup _{n \rightarrow \infty}\left\langle(G-\gamma g) z_{0}, x_{n}-z_{0}\right\rangle \geq 0$. Put

$$
l=\limsup _{n \rightarrow \infty}\left\langle(G-\gamma g) z_{0}, x_{n}-z_{0}\right\rangle
$$

Without loss of generality, there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that $l=$ $\lim _{i \rightarrow \infty}\left\langle(G-\gamma g) z_{0}, x_{n_{i}}-z_{0}\right\rangle$ and $\left\{x_{n_{i}}\right\}$ converges weakly to some point $w \in H_{1}$. From $\left\|x_{n}-u_{n}\right\| \rightarrow 0$, we also have that $\left\{u_{n_{i}}\right\}$ converges weakly to $w \in H_{1}$. On the other hand, from $\lambda_{n} \rightarrow \lambda_{0} \in\left(0, \frac{2}{\left\|T T^{*}\right\|}\right)$, we have $\lambda_{n_{i}} \rightarrow \lambda_{0} \in\left(0, \frac{2}{\left\|T T^{*}\right\|}\right)$. Using (3.7), we have that

$$
\left\|J_{\lambda_{0}}\left(I-\lambda_{0} A_{\mu}\right) u_{n_{i}}-y_{n_{i}}\right\| \rightarrow 0 .
$$

Furthermore, using (3.8), we have that

$$
\left\|u_{n_{i}}-J_{\lambda_{0}}\left(I-\lambda_{0} A_{\mu}\right) u_{n_{i}}\right\| \rightarrow 0 .
$$

Since $J_{\lambda_{0}}\left(I-\lambda_{0} A_{\mu}\right)$ is nonexpansive, we have from [20, p. 114] that $w=J_{\lambda_{0}}(I-$ $\left.\lambda_{0} A_{\mu}\right) w$. From Lemma 3.1 we have that $w \in A^{-1} 0 \cap T^{-1}\left(B^{-1} 0\right)$. We show $w \in$ $F^{-1} 0$. Since F is a maximal monotone operator, we have from (2.4) that $A_{r_{n_{i}}} x_{n_{i}} \in$ $F T_{r_{n_{i}}} x_{n_{i}}$. Furthermore, we have that for any $(u, v) \in F$

$$
\left\langle u-u_{n_{i}}, v-\frac{x_{n_{i}}-u_{n_{i}}}{r_{n_{i}}}\right\rangle \geq 0
$$

Since $\liminf _{n \rightarrow \infty} r_{n}>0, u_{n_{i}} \rightharpoonup w$ and $x_{n_{i}}-u_{n_{i}} \rightarrow 0$, we have

$$
\langle u-w, v\rangle \geq 0 .
$$

Since F is a maximal monotone operator, we have $0 \in F w$ and hence $w \in F^{-1} 0$. Thus we have $w \in A^{-1} 0 \cap T^{-1}\left(B^{-1} 0\right) \cap F^{-1} 0$. Then we have

$$
l=\lim _{i \rightarrow \infty}\left\langle(G-\gamma g) z_{0}, x_{n_{i}}-z_{0}\right\rangle=\left\langle(G-\gamma g) z_{0}, w-z_{0}\right\rangle \geq 0
$$

Since $x_{n+1}-z_{0}=\alpha_{n}\left(\gamma g\left(x_{n}\right)-G z_{0}\right)+\left(I-\alpha_{n} G\right)\left(y_{n}-z_{0}\right)$, we have from (2.1) that

$$
\begin{aligned}
\left\|x_{n+1}-z_{0}\right\|^{2} \leq & \left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|y_{n}-z_{0}\right\|^{2}+2\left\langle\alpha_{n}\left(\gamma g\left(x_{n}\right)-G z_{0}\right), x_{n+1}-z_{0}\right\rangle \\
\leq & \left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-z_{0}\right\|^{2}+2 \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-G z_{0}, x_{n+1}-z_{0}\right\rangle \\
\leq & \left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-z_{0}\right\|^{2}+2 \alpha_{n} \gamma k\left\|x_{n}-z_{0}\right\|\left\|x_{n+1}-z_{0}\right\| \\
& \quad+2 \alpha_{n}\left\langle\gamma g\left(z_{0}\right)-G z_{0}, x_{n+1}-z_{0}\right\rangle \\
\leq & \left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-z_{0}\right\|^{2}+\alpha_{n} \gamma k\left(\left\|x_{n}-z_{0}\right\|^{2}+\left\|x_{n+1}-z_{0}\right\|^{2}\right) \\
& \quad+2 \alpha_{n}\left\langle\gamma g\left(z_{0}\right)-G z_{0}, x_{n+1}-z_{0}\right\rangle \\
= & \left\{\left(1-\alpha_{n} \bar{\gamma}\right)^{2}+\alpha_{n} \gamma k\right\}\left\|x_{n}-z_{0}\right\|^{2} \\
& +\alpha_{n} \gamma k\left\|x_{n+1}-z_{0}\right\|^{2}+2 \alpha_{n}\left\langle\gamma g\left(z_{0}\right)-G z_{0}, x_{n+1}-z_{0}\right\rangle
\end{aligned}
$$

and hence

$$
\left\|x_{n+1}-z_{0}\right\|^{2} \leq \frac{1-2 \alpha_{n} \bar{\gamma}+\left(\alpha_{n} \bar{\gamma}\right)^{2}+\alpha_{n} \gamma k}{1-\alpha_{n} \gamma k}\left\|x_{n}-z_{0}\right\|^{2}
$$

$$
\begin{align*}
& +\frac{2 \alpha_{n}}{1-\alpha_{n} \gamma k}\left\langle\gamma g\left(z_{0}\right)-G z_{0}, x_{n+1}-z_{0}\right\rangle \\
= & \left(1-\frac{2(\bar{\gamma}-\gamma k) \alpha_{n}}{1-\alpha_{n} \gamma k}\right)\left\|x_{n}-z_{0}\right\|^{2}+\frac{\left(\alpha_{n} \bar{\gamma}\right)^{2}}{1-\alpha_{n} \gamma k}\left\|x_{n}-z_{0}\right\|^{2} \\
& +\frac{2 \alpha_{n}}{1-\alpha_{n} \gamma k}\left\langle\gamma g\left(z_{0}\right)-G z_{0}, x_{n+1}-z_{0}\right\rangle \tag{3.9}\\
= & \left(1-\frac{2(\bar{\gamma}-\gamma k) \alpha_{n}}{1-\alpha_{n} \gamma k}\right)\left\|x_{n}-z_{0}\right\|^{2}+\frac{\alpha_{n} \cdot \alpha_{n} \bar{\gamma}^{2}}{1-\alpha_{n} \gamma k}\left\|x_{n}-z_{0}\right\|^{2} \\
= & \left(1-\frac{2 \alpha_{n}}{1-\alpha_{n} \gamma k}\left\langle\gamma g\left(z_{0}\right)-G z_{0}, x_{n+1}-z_{0}\right\rangle\right. \\
& \quad+\beta_{n}\left(\frac{\alpha_{n} \bar{\gamma}^{2}\left\|x_{n}-z_{0}\right\|^{2}}{2(\bar{\gamma}-\gamma k)}+\frac{1}{\bar{\gamma}-\gamma k}\left\langle\gamma g\left(z_{0}\right)-G z_{0}, x_{n+1}-z_{0}\right\rangle\right)
\end{align*}
$$

where $\beta_{n}=\frac{2(\bar{\gamma}-\gamma k) \alpha_{n}}{1-\alpha_{n} \gamma k}$. Since $\sum_{n=1}^{\infty} \beta_{n}=\infty$, we have from Lemma 2.5 and (3.9) we have that $x_{n} \rightarrow z_{0}$, where $z_{0}=P_{A^{-1} 0 \cap T^{-1}\left(B^{-1} 0\right) \cap F^{-1} 0}(I-G+\gamma g) z_{0}$. This completes the proof.

4. Applications

In this section, using Theorem 3.3, we can obtain well-known and new strong convergence theorems which are related to the split common null point problem and an equilibrium problem in Hilbert spaces. Let H be a Hilbert space and let f be a proper, lower semicontinuous and convex function of H into $(-\infty, \infty]$. Then the subdifferential ∂f of f is defined as follows:

$$
\partial f(x)=\{z \in H: f(x)+\langle z, y-x\rangle \leq f(y), \quad \forall y \in H\}
$$

for all $x \in H$. From Rockafellar [15], we know that ∂f is a maximal monotone operator. Let C be a non-empty, closed and convex subset of H and let i_{C} be the indicator function of C, i.e.,

$$
i_{C}(x)= \begin{cases}0, & x \in C \\ \infty, & x \notin C\end{cases}
$$

Then i_{C} is a proper, lower semicontinuous and convex function on H and then the subdifferential ∂i_{C} of i_{C} is a maximal monotone operator. Thus we can define the resolvent J_{λ} of ∂i_{C} for $\lambda>0$, i.e.,

$$
J_{\lambda} x=\left(I+\lambda \partial i_{C}\right)^{-1} x
$$

for all $x \in H$. We have that for any $x \in H$ and $u \in C$

$$
\begin{aligned}
u= & J_{\lambda} x \\
& \Longleftrightarrow x \in u+\lambda \partial i_{C} u \Longleftrightarrow x \in u+\lambda N_{C} u \\
& \Longleftrightarrow \frac{1}{\lambda}\langle x-u, v-u\rangle \leq 0, \quad \forall v \in C \\
& \Longleftrightarrow\langle x-u, v-u\rangle \leq 0, \quad \forall v \in C
\end{aligned}
$$

$$
\Longleftrightarrow u=P_{C} x
$$

where $N_{C} u$ is the normal cone to C at u, i.e.,

$$
N_{C} u=\{z \in H:\langle z, v-u\rangle \leq 0, \forall v \in C\}
$$

Theorem 4.1. Let H_{1} and H_{2} be Hilbert spaces. Let C and D be non-empty, closed and convex subsets of H_{1} and let Q be a non-empty, closed and convex subset of H_{2}. Let $T: H_{1} \rightarrow H_{2}$ be a bounded linear operator such that $C \cap T^{-1} Q \cap D$ is non-empty. Let T^{*} be the adjoint operator of T. Let P_{C} and P_{D} be the metric projections of H_{1} onto C and D, respectively and let P_{Q} be the metric projection of H_{2} onto Q. Let $0<k<1$ and let g be a k-contraction of H_{1} into itself. Let G be a strongly positive bounded linear self-adjoint operator on H_{1} with coefficient $\bar{\gamma}>0$. Let $0<\gamma<\frac{\bar{\gamma}}{k}$. Let $x_{1}=x \in H_{1}$ and let $\left\{x_{n}\right\} \subset H_{1}$ be a sequence generated by

$$
x_{n+1}=\alpha_{n} \gamma g\left(x_{n}\right)+\left(I-\alpha_{n} G\right) P_{C}\left(I-\lambda_{n} T^{*}\left(I-P_{Q}\right) T\right) P_{D} x_{n}
$$

for all $n \in \mathbb{N}$, where $\left\{\alpha_{n}\right\} \subset(0,1)$ and $\left\{\lambda_{n}\right\} \subset(0, \infty)$ satisfy

$$
\begin{gathered}
\alpha_{n} \rightarrow 0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \sum_{n=1}^{\infty}\left|\alpha_{n}-\alpha_{n+1}\right|<\infty \\
0<\liminf _{n \rightarrow \infty} \lambda_{n} \leq \limsup _{n \rightarrow \infty} \lambda_{n}<\frac{2}{\left\|T T^{*}\right\|}, \quad \sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+1}\right|<\infty
\end{gathered}
$$

Then $\left\{x_{n}\right\}$ converges strongly to $z_{0} \in C \cap T^{-1} Q \cap D$, where z_{0} is a unique fixed point of $P_{C \cap T^{-1} Q \cap D}(I-G+\gamma g)$. This point z_{0} is also a unique solution of the variational inequality

$$
\left\langle(G-\gamma g) z_{0}, q-z_{0}\right\rangle \geq 0, \quad \forall q \in C \cap T^{-1} Q \cap D
$$

Proof. Put $A=\partial i_{C}, F=\partial i_{D}$ and $B=\partial i_{Q}$ in Theorem 3.3. Then we have that for $\lambda_{n}>0, r_{n}>0$ and $\mu_{n}>0, J_{\lambda_{n}}=P_{C}, T_{r_{n}}=P_{D}$ and $Q_{\mu_{n}}=P_{Q}$. Furthermore, we have $\left(\partial i_{C}\right)^{-1} 0=C,\left(\partial i_{D}\right)^{-1} 0=D$ and $\left(\partial i_{Q}\right)^{-1} 0=Q$. Taking $\mu_{n}=r_{n}=1$, we obtain the desired result by Theorem 3.3.

Let H be a Hilbert space and let C be a non-empty, closed and convex subset of H. Let $f: C \times C \rightarrow \mathbb{R}$ be a bifunction. Then an equilibrium problem (with respect to C) is to find $\hat{x} \in C$ such that

$$
\begin{equation*}
f(\hat{x}, y) \geq 0, \quad \forall y \in C \tag{4.1}
\end{equation*}
$$

The set of such solutions \hat{x} is denoted by $E P(f)$, i.e.,

$$
E P(f)=\{\hat{x} \in C: f(\hat{x}, y) \geq 0, \forall y \in C\}
$$

For solving the equilibrium problem, let us assume that the bifunction $f: C \times C \rightarrow \mathbb{R}$ satisfies the following conditions:
(A1) $f(x, x)=0$ for all $x \in C$;
(A2) f is monotone, i.e., $f(x, y)+f(y, x) \leq 0$ for all $x, y \in C$;
(A3) for all $x, y, z \in C$,

$$
\limsup _{t \downarrow 0} f(t z+(1-t) x, y) \leq f(x, y)
$$

(A4) for all $x \in C, f(x, \cdot)$ is convex and lower semicontinuous.

We know the following lemma which appears implicitly in Blum and Oettli [5].
Lemma 4.2 (Blum and Oettli). Let C be a nonempty, closed and convex subset of H and let f be a bifunction of $C \times C$ into \mathbb{R} satisfying (A1) - (A4). Let $r>0$ and $x \in H$. Then, there exists $z \in C$ such that

$$
f(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \quad \forall y \in C
$$

The following lemma was also given in Combettes and Hirstoaga [8].
Lemma 4.3. Assume that $f: C \times C \rightarrow \mathbb{R}$ satisfies (A1)-(A4). For $r>0$ and $x \in H$, define a mapping $T_{r}: H \rightarrow C$ as follows:

$$
T_{r} x=\left\{z \in C: f(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \forall y \in C\right\} .
$$

Then, the following hold:
(1) T_{r} is single-valued;
(2) T_{r} is a firmly nonexpansive mapping, i.e., for all $x, y \in H$

$$
\left\|T_{r} x-T_{r} y\right\|^{2} \leq\left\langle T_{r} x-T_{r} y, x-y\right\rangle ;
$$

(3) $F\left(T_{r}\right)=E P(f)$;
(4) $E P(f)$ is closed and convex.

We call such T_{r} the resolvent of f for $r>0$. Using Lemmas 4.2 and 4.3, Takahashi, Takahashi and Toyoda [17] obtained the following lemma. See [2] for a more general result.

Lemma 4.4. Let H be a Hilbert space and let C be a non-empty, closed and convex subset of H. Let $f: C \times C \rightarrow \mathbb{R}$ satisfy (A1)-(A4). Let A_{f} be a set-valued mapping of H into itself defined by

$$
A_{f} x=\left\{\begin{array}{l}
\{z \in H: f(x, y) \geq\langle y-x, z\rangle, \quad \forall y \in C\}, \quad \forall x \in C, \\
\emptyset, \quad \forall x \notin C .
\end{array}\right.
$$

Then, $E P(f)=A_{f}^{-1} 0$ and A_{f} is a maximal monotone operator with $\operatorname{dom}\left(A_{f}\right) \subset C$. Furthermore, for any $x \in H$ and $r>0$, the resolvent T_{r} of f coincides with the resolvent of A_{f}, i.e.,

$$
T_{r} x=\left(I+r A_{f}\right)^{-1} x .
$$

Using Theorem 3.3, we can also prove a strong convergence theorem for finding solutions of equilibrium problems in Hilbert spaces.
Theorem 4.5. Let H_{1} and H_{2} be Hilbert spaces. Let C and D be non-empty, closed and convex subsets of H_{1} and let Q be a non-empty, closed and convex subset of H_{2}. Let f_{1} and f_{2} be bifunctions of $C \times C$ into \mathbb{R} and $D \times D$ into \mathbb{R} satisfying (A1) - (A4). Let f_{3} be a bifunction of $Q \times Q$ into \mathbb{R} satisfying (A1) - (A4) such that $E P\left(f_{1}\right), E P\left(f_{2}\right)$ and $E P\left(f_{3}\right)$ are non-empty. Let $T: H_{1} \rightarrow H_{2}$ be a bounded linear operator such that $E P\left(f_{1}\right) \cap T^{-1} E P\left(f_{3}\right) \cap E P\left(f_{2}\right)$ is non-empty. Let T^{*} be the adjoint operator of T. Let J_{λ} and T_{r} be the resolvents of f_{1} for $\lambda>0$ and of f_{2} for $r>0$, respectively and let Q_{μ} be the resolvent of f_{3} for $\mu>0$. Let $0<k<1$ and let g be a k-contraction of H_{1} into itself. Let G be a strongly positive bounded linear
self-adjoint operator on H_{1} with coefficient $\bar{\gamma}>0$. Let $0<\gamma<\frac{\bar{\gamma}}{k}$. Let $x_{1}=x \in H_{1}$ and let $\left\{x_{n}\right\} \subset H_{1}$ be a sequence generated by

$$
x_{n+1}=\alpha_{n} \gamma g\left(x_{n}\right)+\left(I-\alpha_{n} G\right) J_{\lambda_{n}}\left(I-\lambda_{n} T^{*}\left(I-Q_{\mu_{n}}\right) T\right) T_{r_{n}} x_{n}
$$

for all $n \in \mathbb{N}$, where $\left\{\alpha_{n}\right\} \subset(0,1)$ and $\left\{\lambda_{n}\right\},\left\{\mu_{n}\right\},\left\{r_{n}\right\} \subset(0, \infty)$ satisfy

$$
\begin{gathered}
\alpha_{n} \rightarrow 0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \sum_{n=1}^{\infty}\left|\alpha_{n}-\alpha_{n+1}\right|<\infty \\
0<\liminf _{n \rightarrow \infty} \lambda_{n} \leq \limsup _{n \rightarrow \infty} \lambda_{n}<\frac{2}{\left\|T T^{*}\right\|}, \quad \sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+1}\right|<\infty \\
\liminf _{n \rightarrow \infty} \mu_{n}>0, \sum_{n=1}^{\infty}\left|\mu_{n}-\mu_{n+1}\right|<\infty, \liminf _{n \rightarrow \infty} r_{n}>0 \text { and } \sum_{n=1}^{\infty}\left|r_{n}-r_{n+1}\right|<\infty
\end{gathered}
$$

Then $\left\{x_{n}\right\}$ converges strongly to $z_{0} \in E P\left(f_{1}\right) \cap T^{-1} E P\left(f_{3}\right) \cap E P\left(f_{2}\right)$, where z_{0} is a unique fixed point of $P_{E P\left(f_{1}\right) \cap T^{-1} E P\left(f_{3}\right) \cap E P\left(f_{2}\right)}(I-G+\gamma g)$. This point z_{0} is also a unique solution of the variational inequality

$$
\left\langle(G-\gamma g) z_{0}, q-z_{0}\right\rangle \geq 0, \quad \forall q \in E P\left(f_{1}\right) \cap T^{-1} E P\left(f_{3}\right) \cap E P\left(f_{2}\right)
$$

Proof. For the bifunctions $f_{1}: C \times C \rightarrow \mathbb{R}, f_{2}: D \times D \rightarrow \mathbb{R}$ and $f_{3}: Q \times Q \rightarrow \mathbb{R}$, we can define $A_{f_{1}}, A_{f_{2}}$ and $A_{f_{3}}$ in Lemma 4.4. Putting $A=A_{f_{1}}, F=A_{f_{2}}$ and $B=A_{f_{3}}$ in Theorem 3.3, we obtain from Lemma 4.4 that $J_{\lambda_{n}}=\left(I+\lambda_{n} A_{f_{1}}\right)^{-1}$, $T_{r_{n}}=\left(I+r_{n} A_{f_{2}}\right)^{-1}$ and $Q_{\mu_{n}}=\left(I+\mu_{n} A_{f_{3}}\right)^{-1}$ for all $\lambda_{n}>0, r_{n}>0$ and $\mu_{n}>0$, respectively. Thus we obtain the desired result by Theorem 3.3.

References

[1] S. M. Alsulami and W. Takahashi, The split common null point problem for maximal monotone mappings in Hilbert spaces and applications, J. Nonlinear Convex Anal. 15 (2014), 793-808.
[2] K. Aoyama,Y. Kimura and W. Takahashi, Maximal monotone operators and maximal monotone functions for equilibrium problems, J. Convex Anal. 15 (2008), 395-409.
[3] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), 2350-2360.
[4] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, On a strongly nonexpansive sequence in Hilbert spaces, J. Nonlinear Convex Anal. 8 (2007), 471-489.
[5] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123-145.
[6] C. Byrne, Y. Censor, A. Gibali and S. Reich, The split common null point problem, J. Nonlinear Convex Anal. 13 (2012), 759-775.
[7] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms 8 (1994), 221-239.
[8] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), 117-136.
[9] K. Eshita and W. Takahashi, Approximating zero points of accretive operators in general Banach spaces, JP J. Fixed Point Theory Appl. 2 (2007), 105-116.
[10] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961.
[11] G. Marino and H.-K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (2006), 43-52.
[12] G. Marino and H.-K. Xu, Weak and strong convergence theorems for strich pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), 336-346.
[13] A. Moudafi, Weak convergence theorems for nonexpansive mappings and equilibrium problems, J. Nonlinear Convex Anal. 9 (2008), 37-43.
[14] N. Nadezhkina and W. Takahashi, Strong convergence theorem by hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim. 16 (2006), 1230-1241.
[15] R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209-216.
[16] S. Takahashi and W. Takahashi, Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal. 69 (2008), 10251033.
[17] S. Takahashi, W. Takahashi and M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl. 147 (2010), 27-41.
[18] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[19] W. Takahashi, Convex Analysis and Approximation of Fixed Points (Japanese), Yokohama Publishers, Yokohama, 2000.
[20] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009.
[21] W. Takahashi, Strong convergence theorems for maximal and inverse-strongly monotone mappings in Hilbert spaces and applications, J. Optim. Theory Appl. 157 (2013), 781-802
[22] W. Takahashi and J.-C. Yao, Strong convergence theorems by hybrid methods for countable families of nonlinear operators in Banach spaces, J. Fixed Point Theory Appl. 11 (2012), 333-353.
[23] W. Takahashi, J.-C. Yao and K. Kocourek, Weak and strong convergence theorems for generalized hybrid nonself-mappings in Hilbert spaces, J. Nonlinear Convex Anal. 11 (2010), 567-586.
[24] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992), 486-491.
[25] H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc. 65 (2002), 109-113.

> Manuscript received October 10, 2013
> revised November 29, 2013

Abdulaziz Saleem Moslem Alofi

Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

E-mail address: aalofi1@kau.edu.sa
Saud M. Alsulami
Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

E-mail address: alsulami@kau.edu.sa

Watard Takahashi

Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung 80702, Taiwan; and Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; and Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152-8552, Japan

E-mail address: wataru@is.titech.ac.jp

[^0]: 2010 Mathematics Subject Classification. 47H05, 47H10, 58E35.
 Key words and phrases. Equilibrium problem, fixed point, inverse-strongly monotone mapping, iteration procedure, maximal monotone operator, resolvent, split common null point problem.

 This paper was funded by King Abdulaziz University, under grant No. (23-130-1433-HiCi). The authors, therefore, acknowledge technical and financial support of KAU. .

