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of projection methods is vast and we mention here only a few recent works that can
give the reader some good starting points. Such a list includes, among many others,
the works of [2, 5, 11, 16–18], the connection with variational inequalities, see, e.g.,
Solodov and Svaiter [26], Censor, Gibali and Reich [6], Noor [22], Yamada [33] which
is motivated by real-word problems of signal processing, and the many contributions
of Bauschke and Combettes, see, e.g., Bauschke, Combettes and Kruk [3]. We
observe that in each iteration of the projection algorithm, in order to get the next
iterative xn+1, projection onto C is calculated, according to the iterative step. If the
set C is simple enough, so that the projection onto it is easily executed, then this
method is particularly useful; but, if C is a general closed and convex set, then a
minimal distance problem has to be solved in order to obtain the next iterative. This
might seriously affect the efficiency of the method. It remains however a challenge
how to implement the projection algorithm in the case where the projection PC fails
to have closed-form expressions. Hence, it is an very interesting work of finding the
minimum norm solution without involving projection.

The purpose of this paper is to construct two algorithms without using projection
for finding the minimum norm common solution of maximal monotone operators
and nonexpansive mappings in Hilbert spaces. Our work is mainly based on a
recent work of Takahashi, Takahashi and Toyoda [28]. They proved the following
convergence result

Theorem 1.1. Let C be a closed and convex subset of a real Hilbert space H.
Let A be an α-inverse strongly-monotone mapping of C into H and let B be a
maximal monotone operator on H, such that the domain of B is included in C.
Let JB

λ = (I + λB)−1 be the resolvent of B for λ > 0 and let S be a nonexpansive
mapping of C into itself, such that F (S)∩ (A+B)−10 ̸= ∅. Let x1 = x ∈ C and let
{xn} ⊂ C be a sequence generated by

(1.1) xn+1 = βnxn + (1− βn)S(αnx+ (1− αn)J
B
λn
(xn − λnAxn))

for all n ≥ 0, where {λn} ⊂ (0, 2α),{αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) satisfy

0 < a ≤ λn ≤ b < 2α, 0 < c ≤ βn ≤ d < 1,

lim
n→∞

(λn+1 − λn) = 0, lim
n→∞

αn = 0 and
∑
n

αn = ∞.

Then {xn} converges strongly to a point of F (S) ∩ (A+B)−10.

Remark 1.2. We notice that the above method (1.1) does find the minimum-norm
element in F (S) ∩ (A + B)−10 if 0 ∈ C. However, if 0 ̸∈ C, then this algorithm
(1.1) does not work to find the minimum-norm element. The reason is simple: If
0 ̸∈ C, we cannot take x = 0 since (1 − αn)J

B
λn
(xn − λnAxn) may not belong

to C and consequently, xn+1 may be undefined. A natural idea is we can choose
the initial point x in the whole space. Then we have to employ projection such
that PC [αnx + (1 − αn)J

B
λn
(xn − λnAxn)] ∈ C. Thus, we can construct algorithm

xn+1 = βnxn+(1−βn)SPC [αnx+(1−αn)J
B
λn
(xn−λnAxn)] to find the minimum-

norm element. This is an active topic. But this is not our main purpose in the
present paper due to this algorithm involves the computation of the projection.
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Remark 1.3. We also note that in Theorem 1.1, the authors added an additional
assumption: the domain of B is included in C (The reader can refer to Lemma
4.3 in the last section for a possible example which satisfies this assumption). This
assumption is indeed not restrict in order to guarantee JB

λn
(xn−λnAxn) ∈ C. Based

on this fact, in the present paper we construct two simple algorithms with strong
convergence to the minimum-norm element.

Remark 1.4. From the listed references, there exist a large number of problems
which need to find the minimum norm solution. A useful path to circumvent this
problem is to use projection. Bauschke and Browein [2] and Censor and Zenios [7]
provide reviews of the field. The main difficult is in computation. We note that the
algorithm (1.1) can not use to find the minimum norm element.

Motivated and inspired by the works in this field, we first suggest the following
two algorithms without using projection:

xt = SJB
λ

(
(1− t)xt − λAxt

)
, t ∈ (0, 1)

and

xn+1 = βnxn + (1− βn)SJ
B
λn

(
(1− αn)xn − λnAxn

)
, n ≥ 0.

(Notice that these two algorithms are indeed well-defined (see the next section).)
We will show the suggested algorithms converge strongly to a common point x̃ =
PF (S)∩(A+B)−10(0) which is the minimum-norm element of F (S)∩(A+B)−10. Some
applications are also included.

2. Preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥·∥, respectively.
Let C be a nonempty closed convex subset of H. Recall that a mapping S : C → C
is said to be nonexpansive if ∥Sx − Sy∥ ≤ ∥x − y∥ for all x, y ∈ C. We denote
by F (S) the set of fixed points of S. A mapping A : C → H is said to be α-
inverse strongly-monotone iff ⟨Ax − Ay, x − y⟩ ≥ α∥Ax − Ay∥2 for some α > 0
and for all x, y ∈ C. It is known that if A is α-inverse strongly-monotone, then
∥Ax−Ay∥ ≤ 1/α∥x− y∥ for all x, y ∈ C.

Let B be a mapping of H into 2H . The effective domain of B is denoted by
dom(B), that is, dom(B) = {x ∈ H : Bx ̸= ∅}. A multi-valued mapping B is said
to be a monotone operator on H iff ⟨x−y, u−v⟩ ≥ 0 for all x, y ∈ dom(B), u ∈ Bx,
and v ∈ By. A monotone operator B on H is said to be maximal iff its graph is
not strictly contained in the graph of any other monotone operator on H. Let B
be a maximal monotone operator on H and let B−10 = {x ∈ H : 0 ∈ Bx}.

For a maximal monotone operator B on H and λ > 0, we may define a single-
valued operator JB

λ = (I+λB)−1 : H → dom(B), which is called the resolvent of B

for λ. It is known that the resolvent JB
λ is firmly nonexpansive, i.e., ∥JB

λ x−JB
λ y∥2 ≤

⟨JB
λ x− JB

λ y, x− y⟩ for all x, y ∈ C and B−10 = F (JB
λ ) for all λ > 0.
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The following resolvent identity is well-known: for λ > 0 and µ > 0, there holds
the identity

(2.1) JB
λ x = JB

µ

(µ
λ
x+ (1− µ

λ
)JB

λ x
)
, x ∈ H.

We use the following notation:

• xn ⇀ x stands for the weak convergence of (xn) to x;
• xn → x stands for the strong convergence of (xn) to x.

We need the following lemmas for the next section.

Lemma 2.1 ([35]). Let C be a nonempty closed convex subset of a real Hilbert space
H. Let the mapping A : C → H be α-inverse strongly monotone and λ > 0 be a
constant. Then, we have

∥(I − λA)x− (I − λA)y∥2 ≤ ∥x− y∥2 + λ(λ− 2α)∥Ax−Ay∥2, ∀x, y ∈ C.

In particular, if 0 ≤ λ ≤ 2α, then I − λA is nonexpansive.

Lemma 2.2 ( [21]). Let C be a closed convex subset of a Hilbert space H. Let
S : C → C be a nonexpansive mapping. Then F (S) is a closed convex subset of
C and the mapping I − S is demiclosed at 0, i.e. whenever {xn} ⊂ C is such that
xn ⇀ x and (I − S)xn → 0, then (I − S)x = 0.

Lemma 2.3 ([36]). Let {xn} and {yn} be bounded sequences in a Banach space X
and let {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Suppose xn+1 = (1 − βn)yn + βnxn for all n ≥ 0 and lim supn→∞(∥yn+1 − yn∥ −
∥xn+1 − xn∥) ≤ 0. Then, limn→∞ ∥yn − xn∥ = 0.

Lemma 2.4 ([14]). Assume {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1− γn)an + δnγn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(1)
∑∞

n=1 γn = ∞;
(2) lim supn→∞ δn ≤ 0 or

∑∞
n=1 |δnγn| < ∞.

Then limn→∞ an = 0.

3. Main results

In this section, we will prove our main results.

Theorem 3.1. Let C be a closed and convex subset of a real Hilbert space H.
Let A be an α-inverse strongly-monotone mapping of C into H and let B be a
maximal monotone operator on H, such that the domain of B is included in C.
Let JB

λ = (I + λB)−1 be the resolvent of B for λ > 0 and let S be a nonexpansive
mapping of C into itself, such that F (S) ∩ (A + B)−10 ̸= ∅. Let λ be a constant
satisfying a ≤ λ ≤ b where [a, b] ⊂ (0, 2α). For t ∈ (0, 1 − λ

2α), let {xt} ⊂ C be a
net generated by

(3.1) xt = SJB
λ

(
(1− t)xt − λAxt

)
.
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Then the net {xt} converges strongly, as t → 0+, to a point x̃ = PF (S)∩(A+B)−10(0)

which is the minimum norm element in F (S) ∩ (A+B)−10.

Proof. First, we show the net {xt} is well-defined. For any t ∈ (0, 1− λ
2α), we define

a mapping T := SJB
λ

(
(1− t)I − λA

)
. Note that S, JB

λ and I − λ
1−tA (see Lemma

2.1) are nonexpansive. For any x, y ∈ C, we have

∥Tx− Ty∥ =
∥∥∥SJB

λ

(
(1− t)x− λAx

)
− SJB

λ

(
(1− t)y − λAy

)∥∥∥
≤

∥∥∥(1− t)(x− λ

1− t
Ax)− (1− t)(y − λ

1− t
Ay)

∥∥∥
≤ (1− t)∥x− y∥,

which implies the mapping T is a contraction on C. We use xt to denote the unique
fixed point of T in C. Therefore, {xt} is well-defined.

Take any z ∈ F (S) ∩ (A + B)−10. It is obvious that z = JB
λ (z − λAz) for all

λ > 0. So, we have z = JB
λ (z − λAz) = JB

λ

(
tz + (1 − t)(z − λAz/(1 − t))

)
for all

t ∈ (0, 1). Since JB
λ is nonexpansive for all λ > 0, we have∥∥∥JB

λ

(
(1− t)xt − λAxt

)
− z

∥∥∥2
=

∥∥∥JB
λ

(
(1− t)(xt − λAxt/(1− t))

)
− JB

λ

(
tz + (1− t)(z − λAz/(1− t))

)∥∥∥2
≤

∥∥∥((1− t)(xt − λAxt/(1− t))
)
−
(
tz + (1− t)(z − λAz/(1− t))

)∥∥∥2
=

∥∥∥(1− t)
(
(xt − λAxt/(1− t))− (z − λAz/(1− t))

)
+ t(−z)

∥∥∥2.(3.2)

By using the convexity of ∥·∥ and the α-inverse strong monotonicity of A, we derive∥∥∥(1− t)
(
(xt − λAxt/(1− t))− (z − λAz/(1− t))

)
+ t(−z)

∥∥∥2
≤ (1− t)∥(xt − λAxt/(1− t))− (z − λAz/(1− t))∥2 + t∥z∥2

= (1− t)∥(xt − z)− λ(Axt −Az)/(1− t)∥2 + t∥z∥2

= (1− t)
(
∥xt − z∥2 − 2λ

1− t
⟨Axt −Az, xt − z⟩+ λ2

(1− t)2
∥Axt −Az∥2

)
+ t∥z∥2

≤ (1− t)
(
∥xt − z∥2 − 2αλ

1− t
∥Axt −Az∥2 + λ2

(1− t)2
∥Axt −Az∥2

)
+ t∥z∥2

= (1− t)
(
∥xt − z∥2 + λ

(1− t)2
(λ− 2(1− t)α)∥Axt −Az∥2

)
+ t∥z∥2.(3.3)

By the assumption, we have λ − 2(1 − t)α ≤ 0 for all t ∈ (0, 1 − λ
2α). Then, from

(3.2) and (3.3), we obtain∥∥∥JB
λ

(
(1− t)xt − λAxt

)
− z

∥∥∥2
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≤ (1− t)
(
∥xt − z∥2 + λ

(1− t)2
(λ− 2(1− t)α)∥Axt −Az∥2

)
+ t∥z∥2(3.4)

≤ (1− t)∥xt − z∥2 + t∥z∥2.
It follows from (3.1) and (3.4) that

∥xt − z∥2 ≤ ∥JB
λ

(
(1− t)xt − λAxt

)
− z∥2(3.5)

≤ (1− t)∥xt − z∥2 + t∥z∥2.
It follows that

∥xt − z∥ ≤ ∥z∥.
Therefore, {xt} is bounded. Since A is α-inverse strongly monotone, it is 1

α -Lipschitz
continuous. We deduce immediately that {Axt} is also bounded.

By (3.4) and (3.5), we obtain

∥xt − z∥2 ≤ (1− t)∥xt − z∥2 + λ

(1− t)
(λ− 2(1− t)α)∥Axt −Az∥2 + t∥z∥2.

So,

λ

(1− t)
(2(1− t)α− λ)∥Axt −Az∥2 ≤ t∥z∥2 − t∥xt − z∥2 → 0.

This implies that

lim
t→0+

∥Axt −Az∥ = 0.(3.6)

Next, we show ∥xt − Sxt∥ → 0. By using the firm nonexpansivity of JB
λ , we have∥∥∥JB

λ

(
(1− t)xt − λAxt

)
− z

∥∥∥2
=

∥∥∥JB
λ

(
(1− t)xt − λAxt

)
− JB

λ

(
z − λAz

)∥∥∥2
≤

⟨
(1− t)xt − λAxt − (z − λAz), JB

λ

(
(1− t)xt − λAxt

)
− z

⟩
=

1

2

(
∥(1− t)xt − λAxt − (z − λAz)∥2 +

∥∥∥JB
λ

(
(1− t)xt − λAxt

)
− z

∥∥∥2
−
∥∥∥(1− t)xt − λ(Axt − λAz)− JB

λ

(
(1− t)xt − λAxt

)∥∥∥2).
By the nonexpansivity of I − λA/(1− t), we have

∥(1− t)xt − λAxt − (z − λAz)∥2

= ∥(1− t)((xt − λAxt/(1− t)− (z − λAz/(1− t))) + t(−z)∥2

≤ (1− t)∥(xt − λAxt/(1− t)− (z − λAz/(1− t))∥2 + t∥z∥2

≤ (1− t)∥xt − z∥2 + t∥z∥2.
Thus, ∥∥∥JB

λ

(
(1− t)xt − λAxt

)
− z

∥∥∥2
≤ 1

2

(
(1− t)∥xt − z∥2 + t∥z∥2 +

∥∥∥JB
λ

(
(1− t)xt − λAxt

)
− z

∥∥∥2
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−
∥∥∥(1− t)xt − JB

λ

(
(1− t)xt − λAxt

)
− λ(Axt −Az)

∥∥∥2).
That is, ∥∥∥JB

λ

(
(1− t)xt − λAxt

)
− z

∥∥∥2
≤ (1− t)∥xt − z∥2 + t∥z∥2

−
∥∥∥(1− t)xt − JB

λ

(
(1− t)xt − λAxt

)
− λ(Axt −Az)

∥∥∥2)
= (1− t)∥xt − z∥2 + t∥z∥2 −

∥∥∥(1− t)xt − JB
λ

(
(1− t)xt − λAxt

)∥∥∥2
+2λ

⟨
(1− t)xt − JB

λ

(
(1− t)xt − λAxt

)
, Axt −Az

⟩
− λ2∥Axt −Az∥2

≤ (1− t)∥xt − z∥2 + t∥z∥2 −
∥∥∥(1− t)xt − JB

λ

(
(1− t)xt − λAxt

)∥∥∥2
+2λ

∥∥∥(1− t)xt − JB
λ

(
(1− t)xt − λAxt

)∥∥∥∥Axt −Az∥.

This together with (3.5) imply that

∥xt − z∥2 ≤
∥∥∥JB

λ

(
(1− t)xt − λAxt

)
− z

∥∥∥2
≤ (1− t)∥xt − z∥2 + t∥z∥2 −

∥∥∥(1− t)xt − JB
λ

(
(1− t)xt − λAxt

)∥∥∥2
+2λ

∥∥∥(1− t)xt − JB
λ

(
(1− t)xt − λAxt

)∥∥∥∥Axt −Az∥.

Hence, ∥∥∥(1− t)xt − JB
λ

(
(1− t)xt − λAxt

)∥∥∥2
≤ t∥z∥2 + 2λ

∥∥∥(1− t)xt − JB
λ

(
(1− t)xt − λAxt

)∥∥∥∥Axt −Az∥.

Since ∥Axt −Az∥ → 0, we deduce

lim
t→0+

∥∥∥(1− t)xt − JB
λ

(
(1− t)xt − λAxt

)∥∥∥ = 0.

Therefore,

lim
t→0+

∥∥∥xt − JB
λ

(
(1− t)xt − λAxt

)∥∥∥ = 0.(3.7)

From (3.1) and (3.2), we have

∥xt − z∥2 ≤
∥∥∥(1− t)

(
(xt −

λ

1− t
Axt)− (z − λ

1− t
Az)

)
− tz

∥∥∥2
= (1− t)2

∥∥∥(xt − λ

1− t
Axt)− (z − λ

1− t
Az)

∥∥∥2
−2t(1− t)

⟨
z, (xt −

λ

1− t
Axt)− (z − λ

1− t
Az)

⟩
+ t2∥z∥2

≤ (1− t)2∥xt − z∥2 − 2t(1− t)
⟨
z, xt −

λ

1− t
(Axt −Az)− z

⟩
+ t2∥z∥2
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= (1− 2t)∥xt − z∥2 + 2t
{
− (1− t)

⟨
z, xt −

λ

1− t
(Axt −Az)− z

⟩
+t2(∥z∥2 + ∥xt − z∥2)

}
.

It follows that

∥xt − z∥2 ≤ −
⟨
z, xt −

λ

1− t
(Axt −Az)− z

⟩
+

t

2
(∥z∥2 + ∥xt − z∥2)

+t∥z∥
∥∥∥xt − λ

1− t
(Axt −Az)− z

∥∥∥
≤ −

⟨
z, xt −

λ

1− t
(Axt −Az)− z

⟩
+ tM,(3.8)

where M is some constant such that

sup
{
∥z∥2 + ∥xt − z∥2 + ∥z∥∥xt −

λ

1− t
(Axt −Az)− z∥, t ∈ (0, 1− λ

2α
)
}
≤ M.

Next we show that {xt} is relatively norm-compact as t → 0+. Assume {tn} ⊂
(0, 1− λ

2α) is such that tn → 0+ as n → ∞. Put xn := xtn . From (3.8), we have

∥xn − z∥2 ≤ −
⟨
z, xn − λ

1− tn
(Axn −Az)− z

⟩
+tnM, z ∈ F (S) ∩ (A+B)−10.(3.9)

Since {xn} is bounded, without loss of generality, we may assume that xn ⇀ x̃ ∈ C.
Hence, xn− λ

1−tn
(Axn−Az) ⇀ x̃ because of ∥Axn−Az∥ → 0. From (3.7), we have

limt→0+ ∥xt − Sxt∥ = 0. Thus,

lim
n→∞

∥xn − Sxn∥ = 0.(3.10)

We can use Lemma 2.2 to (3.10) to deduce x̃ ∈ F (S). Further, we show that x̃ is
also in (A+B)−10. Let v ∈ Bu. Set zn = JB

λ ((1− tn)xn − λAxn) for all n. Then,
we have

(1− tn)xn − λAxn ∈ (I + λB)zn ⇒ 1− tn
λ

xn −Axn − zn
λ

∈ Bzn.

Since B is monotone, we have, for (u, v) ∈ B,⟨1− tn
λ

xn −Axn − zn
λ

− v, zn − u
⟩
≥ 0

⇒ ⟨(1− tn)xn − λAxn − zn − λv, zn − u⟩ ≥ 0

⇒ ⟨Axn + v, zn − u⟩ ≤ 1

λ
⟨xn − zn, zn − u⟩ − tn

λ
⟨xn, zn − u⟩

⇒ ⟨Ax̃+ v, zn − u⟩ ≤ 1

λ
⟨xn − zn, zn − u⟩ − tn

λ
⟨xn, zn − u⟩+ ⟨Ax̃−Axn, zn − u⟩

⇒ ⟨Ax̃+ v, zn − u⟩ ≤ 1

λ
∥xn − zn∥∥zn − u∥+ tn

λ
∥xn∥∥zn − u∥

+ ∥Ax̃−Axn∥∥zn − u∥.
It follows that

⟨Ax̃+ v, x̃− u⟩ ≤ 1

λ
∥xn − zn∥∥zn − u∥+ tn

λ
∥xn∥∥zn − u∥
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+∥Ax̃−Axn∥∥zn − u∥+ ⟨Ax̃+ v, x̃− zn⟩.(3.11)

Since

⟨xn − x̃, Axn −Ax̃⟩ ≥ α∥Axn −Ax̃∥2,
Axn → Az and xn ⇀ x̃, we have Axn → Ax̃. We also observe that tn → 0,
∥xn − zn∥ → 0 (by (3.7)) and zn ⇀ x̃. Then, from (3.11), we derive

⟨−Ax̃− v, x̃− u⟩ ≥ 0.

Since B is maximal monotone, we have −Ax̃ ∈ Bx̃. This shows that 0 ∈ (A+B)x̃.
Hence, we have x̃ ∈ F (S)∩ (A+B)−10. Therefore we can substitute x̃ for z in (3.9)
to get

∥xn − x̃∥2 ≤ −
⟨
x̃, xn − λ

1− tn
(Axn −Ax̃)− x̃

⟩
+ tnM.

Consequently, the weak convergence of {xn} to x̃ actually implies that xn → x̃.
This has proved the relative norm-compactness of the net {xt} as t → 0+.

Now we return to (3.9) and take the limit as n → ∞ to get

∥x̃− z∥2 ≤ −⟨z, x̃− z⟩, z ∈ F (S) ∩ (A+B)−10.

Equivalently,
∥x̃∥2 ≤ ⟨x̃, z⟩, z ∈ F (S) ∩ (A+B)−10.

This clearly implies that

∥x̃∥ ≤ ∥z∥, z ∈ F (S) ∩ (A+B)−10.

Therefore, x̃ is the minimum-norm element in F (S) ∩ (A+B)−10. This completes
the proof. □
Theorem 3.2. Let C be a closed and convex subset of a real Hilbert space H.
Let A be an α-inverse strongly-monotone mapping of C into H and let B be a
maximal monotone operator on H, such that the domain of B is included in C.
Let JB

λ = (I + λB)−1 be the resolvent of B for λ > 0 and let S be a nonexpansive
mapping of C into itself, such that F (S) ∩ (A + B)−10 ̸= ∅. For given x0 ∈ C, let
{xn} ⊂ C be a sequence generated by

(3.12) xn+1 = βnxn + (1− βn)SJ
B
λn

(
(1− αn)xn − λnAxn

)
for all n ≥ 0, where {λn} ⊂ (0, 2α),{αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) satisfy

(i) limn→∞ αn = 0 and
∑

n αn = ∞;
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) a(1−αn) ≤ λn ≤ b(1−αn) where [a, b] ⊂ (0, 2α) and limn→∞(λn+1−λn) = 0.

Then {xn} generated by (3.12) converges strongly to a point x̃ = PF (S)∩(A+B)−10(0)

which is the minimum norm element in F (S) ∩ (A+B)−10.

Proof. Pick up z ∈ F (S) ∩ (A + B)−10. It is obvious that z = JB
λn
(z − λnAz) =

JB
λn

(
αnz + (1 − αn)(z − λnAz/(1 − αn))

)
for all n ≥ 0. Since JB

λ is nonexpansive

for all λ > 0, we have∥∥∥JB
λn

(
(1− αn)xn − λnAxn

)
− z

∥∥∥2
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=
∥∥∥JB

λn

(
(1− αn)(xn − λnAxn/(1− αn))

)
− JB

λn

(
αnz + (1− αn)(z − λnAz/(1− αn))

)∥∥∥2
≤
∥∥∥((1− αn)(xn − λnAxn/(1− αn))

)
notag

−
(
αnz + (1− αn)(z − λnAz/(1− αn))

)∥∥∥2
=
∥∥∥(1− αn)

(
(xn − λnAxn/(1− αn))− (z − λnAz/(1− αn))

)
+ αn(−z)

∥∥∥2.(3.13)

By using the convexity of ∥·∥ and the α-inverse strong monotonicity of A, we derive∥∥∥(1− αn)
(
(xn − λnAxn/(1− αn))− (z − λnAz/(1− αn))

)
+ αn(−z)

∥∥∥2
≤ (1− αn)∥(xn − λnAxn/(1− αn))− (z − λnAz/(1− αn))∥2 + αn∥z∥2

= (1− αn)∥(xn − z)− λn(Axn −Az)/(1− αn)∥2 + αn∥z∥2

= (1− αn)
(
∥xn − z∥2− 2λn

1− αn
⟨Axn −Az, xn − z⟩+ λ2

n

(1− αn)2
∥Axn −Az∥2

)
+ αn∥z∥2

≤ (1− αn)
(
∥xn − z∥2 − 2αλn

1− αn
∥Axn −Az∥2 + λ2

n

(1− αn)2
∥Axn −Az∥2

)
+ αn∥z∥2

= (1− αn)
(
∥xn − z∥2 + λn

(1− αn)2
(λn − 2(1− αn)α)∥Axn −Az∥2

)
+ αn∥z∥2.

(3.14)

By condition (iii), we get λn − 2(1−αn)α ≤ 0 for all n ≥ 0. Then, from (3.13) and
(3.14), we obtain∥∥∥JB

λn

(
(1− αn)xn − λnAxn

)
− z

∥∥∥2
≤ (1− αn)

(
∥xn − z∥2 + λn

(1− αn)2
(λn − 2(1− αn)α)∥Axn −Az∥2

)
+ αn∥z∥2(3.15)

≤ (1− αn)∥xn − z∥2 + αn∥z∥2.

It follows from (3.12) and (3.15) that

∥xn+1 − z∥2 =
∥∥∥βn(xn − z) + (1− βn)

(
SJB

λn

(
(1− αn)xn − λnAxn

)
− z

)∥∥∥2
≤ βn∥xn − z∥2 + (1− βn)

∥∥∥SJB
λn

(
(1− αn)xn − λnAxn

)
− z

∥∥∥2
≤ βn∥xn − z∥2 + (1− βn)

∥∥∥JB
λn

(
(1− αn)xn − λnAxn

)
− z

∥∥∥2(3.16)

≤ βn∥xn − z∥2 + (1− βn)((1− αn)∥xn − z∥2 + αn∥z∥2)
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= [1− (1− βn)αn]∥xn − z∥2 + (1− βn)αn∥z∥2

≤ max{∥xn − z∥2, ∥z∥2}.

By induction, we have

∥xn+1 − z∥2 ≤ max{∥x0 − z∥2, ∥z∥2}.

Therefore, {xn} is bounded. Since A is α-inverse strongly monotone, it is 1
α -

Lipschitz continuous. We deduce immediately that {Axn} is also bounded. Set
un = (1− αn)xn − λnAxn and yn = SJB

λn
un for all n ≥ 0. Noticing that S and JB

λn

are nonexpansive, we can check easily that {un}, {JB
λn
un} and {yn} are bounded.

We can rewrite (3.12) as xn+1 = βnxn + (1 − βn)yn for all n ≥ 0. Next, we
estimate ∥xn+1 − xn∥. In fact, we have

∥yn+1 − yn∥

=
∥∥∥SJB

λn+1

(
(1− αn+1)xn+1 − λn+1Axn+1

)
− SJB

λn

(
(1− αn)xn − λnAxn

)∥∥∥
≤

∥∥∥JB
λn+1

(
(1− αn+1)xn+1 − λn+1Axn+1

)
− JB

λn

(
(1− αn)xn − λnAxn

)∥∥∥
≤

∥∥∥JB
λn+1

(
(1− αn+1)xn+1 − λn+1Axn+1

)
− JB

λn+1

(
(1− αn)xn − λnAxn

)∥∥∥
+
∥∥∥JB

λn+1

(
(1− αn)xn − λnAxn

)
− JB

λn

(
(1− αn)xn − λnAxn

)∥∥∥
≤

∥∥∥((1− αn+1)xn+1 − λn+1Axn+1

)
−

(
(1− αn)xn − λnAxn

)∥∥∥
+
∥∥∥JB

λn+1

(
(1− αn)xn − λnAxn

)
− JB

λn

(
(1− αn)xn − λnAxn

)∥∥∥
= ∥(I − λn+1A)xn+1 − (I − λn+1A)xn + (λn − λn+1)Axn + αnxn − αn+1xn+1∥

+∥JB
λn+1

un − JB
λn
un∥

≤ ∥(I − λn+1A)xn+1 − (I − λn+1A)xn∥+ |λn+1 − λn|∥Axn∥
+αn∥xn∥+ αn+1∥xn+1∥+ ∥JB

λn+1
un − JB

λn
un∥.

Since I − λn+1A is nonexpansive for λn+1 ∈ (0, 2α), we have ∥(I − λn+1A)xn+1 −
(I − λn+1A)xn∥ ≤ ∥xn+1 − xn∥. By the resolvent identity (2.1), we have

JB
λn+1

un = JB
λn

( λn

λn+1
un + (1− λn

λn+1
)JB

λn+1
un

)
.

It follows that

∥JB
λn+1

un − JB
λn
un∥ =

∥∥∥JB
λn

( λn

λn+1
un + (1− λn

λn+1
)JB

λn+1
un

)
− JB

λn
un

∥∥∥
≤

∥∥∥( λn

λn+1
un + (1− λn

λn+1
)JB

λn+1
un

)
− un

∥∥∥
≤ |λn+1 − λn|

λn+1
∥un − JB

λn+1
un∥.

So,

∥yn+1 − yn∥ ≤ ∥xn+1 − xn∥+ |λn+1 − λn|∥Axn∥+ αn∥xn∥+ αn+1∥xn+1∥
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+
|λn+1 − λn|

λn+1
∥un − JB

λn+1
un∥.

Then,

∥yn+1 − yn∥ − ∥xn+1 − xn∥ ≤ |λn+1 − λn|∥Axn∥+ αn∥xn∥+ αn+1∥xn+1∥

+
|λn+1 − λn|

λn+1
∥un − JB

λn+1
un∥.

Since αn → 0, λn+1 − λn → 0 and lim infn→∞ λn > 0, we obtain

lim sup
n→∞

(∥yn+1 − yn∥ − ∥xn+1 − xn∥) ≤ 0.

From Lemma 2.3, we get

lim
n→∞

∥yn − xn∥ = 0.

Consequently, we obtain

lim
n→∞

∥xn+1 − xn∥ = lim
n→∞

(1− βn)∥yn − xn∥ = 0.

From (3.15) and (3.16), we have

∥xn+1 − z∥2

≤ βn∥xn − z∥2 + (1− βn)
∥∥∥JB

λn

(
(1− αn)xn − λnAxn

)
− z

∥∥∥2
≤ (1− βn)

{
(1− αn)

(
∥xn − z∥2 + λn

(1− αn)2
(λn − 2(1− αn)α)∥Axn −Az∥2

)
+αn∥z∥2

}
+ βn∥xn − z∥2

= [1− (1− βn)αn]∥xn − z∥2 + (1− βn)λn

(1− αn)
(λn − 2(1− αn)α)∥Axn −Az∥2

+(1− βn)αn∥z∥2

≤ ∥xn − z∥2 + (1− βn)λn

(1− αn)
(λn − 2(1− αn)α)∥Axn −Az∥2 + (1− βn)αn∥z∥2.

Then, we obtain

(1− βn)λn

(1− αn)
(2(1− αn)α− λn)∥Axn −Az∥2

≤ ∥xn − z∥2 − ∥xn+1 − z∥2 + (1− βn)αn∥z∥2

≤ (∥xn − z∥ − ∥xn+1 − z∥)∥xn+1 − xn∥+ (1− βn)αn∥z∥2.

Since limn→∞ αn = 0, limn→∞ ∥xn+1 − xn∥ = 0 and lim infn→∞
(1−βn)λn

(1−αn)
(2(1 −

αn)α− λn) > 0, we have

lim
n→∞

∥Axn −Az∥ = 0.(3.17)

Next, we show ∥xn − JB
λn
((1−αn)xn − λnAxn)∥ → 0. By using the firm nonexpan-

sivity of JB
λn
, we have∥∥∥JB

λn

(
(1− αn)xn − λnAxn

)
− z

∥∥∥2
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=
∥∥∥JB

λn

(
(1− αn)xn − λnAxn

)
− JB

λn

(
z − λnAz

)∥∥∥2
≤

⟨
(1− αn)xn − λnAxn − (z − λnAz), J

B
λn

(
(1− αn)xn − λnAxn

)
− z

⟩
=

1

2

(
∥(1− αn)xn − λnAxn − (z − λnAz)∥2 +

∥∥∥JB
λn

(
(1− αn)xn − λnAxn

)
− z

∥∥∥2
−
∥∥∥(1− αn)xn − λn(Axn − λnAz)− JB

λn

(
(1− αn)xn − λnAxn

)∥∥∥2).
From condition (iii) and the α-inverse strongly monotonicity of A, we know that
I − λnA/(1− αn) is nonexpansive. Hence

∥(1− αn)xn − λnAxn − (z − λnAz)∥2

= ∥(1− αn)((xn − λnAxn/(1− αn)− (z − λnAz/(1− αn))) + αn(−z)∥2

≤ (1− αn)∥(xn − λnAxn/(1− αn)− (z − λnAz/(1− αn))∥2 + αn∥z∥2

≤ (1− αn)∥xn − z∥2 + αn∥z∥2.
Thus, ∥∥∥JB

λn

(
(1− αn)xn − λnAxn

)
− z

∥∥∥2
≤ 1

2

(
(1− αn)∥xn − z∥2 + αn∥z∥2 +

∥∥∥JB
λn

(
(1− αn)xn − λnAxn

)
− z

∥∥∥2
−
∥∥∥(1− αn)xn − JB

λn

(
(1− αn)xn − λnAxn

)
− λn(Axn − λnAz)

∥∥∥2).
That is,∥∥∥JB

λn

(
(1− αn)xn − λnAxn

)
− z

∥∥∥2
≤ (1− αn)∥xn − z∥2 + αn∥z∥2

−
∥∥∥(1− αn)xn − JB

λn

(
(1− αn)xn − λnAxn

)
− λn(Axn − λnAz)

∥∥∥2)
= (1− αn)∥xn − z∥2 + αn∥z∥2 −

∥∥∥(1− αn)xn − JB
λn

(
(1− αn)xn − λnAxn

)∥∥∥2
+2λn

⟨
(1− αn)xn − JB

λn

(
(1− αn)xn − λnAxn

)
, Axn −Az

⟩
− λ2

n∥Axn −Az∥2

≤ (1− αn)∥xn − z∥2 + αn∥z∥2 −
∥∥∥(1− αn)xn − JB

λn

(
(1− αn)xn − λnAxn

)∥∥∥2
+2λn

∥∥∥(1− αn)xn − JB
λn

(
(1− αn)xn − λnAxn

)∥∥∥∥Axn −Az∥.

This together with (3.16) imply that

∥xn+1 − z∥2

≤ βn∥xn − z∥2 + (1− βn)(1− αn)∥xn − z∥2 + (1− βn)αn∥z∥2

−(1− βn)
∥∥∥(1− αn)xn − JB

λn

(
(1− αn)xn − λnAxn

)∥∥∥2
+2λn(1− βn)

∥∥∥(1− αn)xn − JB
λn

(
(1− αn)xn − λnAxn

)∥∥∥∥Axn −Az∥

= [1− (1− βn)αn]∥xn − z∥2 + (1− βn)αn∥z∥2
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−(1− βn)
∥∥∥(1− αn)xn − JB

λn

(
(1− αn)xn − λnAxn

)∥∥∥2
+2λn(1− βn)

∥∥∥(1− αn)xn − JB
λn

(
(1− αn)xn − λnAxn

)∥∥∥∥Axn −Az∥.

Hence,

(1− βn)
∥∥∥(1− αn)xn − JB

λn

(
(1− αn)xn − λnAxn

)∥∥∥2
≤ ∥xn − z∥2 − ∥xn+1 − z∥2 − (1− βn)αn∥xn − z∥2 + (1− βn)αn∥z∥2

+2λn(1− βn)
∥∥∥(1− αn)xn − JB

λn

(
(1− αn)xn − λnAxn

)∥∥∥∥Axn −Az∥

≤ (∥xn − z∥+ ∥xn+1 − z∥)∥xn+1 − xn∥+ (1− βn)αn∥z∥2

+2λn(1− βn)
∥∥∥(1− αn)xn − JB

λn

(
(1− αn)xn − λnAxn

)∥∥∥∥Axn −Az∥.

Since lim supn→∞ βn < 1, ∥xn+1 − xn∥ → 0, αn → 0 and ∥Axn − Az∥ → 0, we
deduce

lim
n→∞

∥∥∥(1− αn)xn − JB
λn

(
(1− αn)xn − λnAxn

)∥∥∥ = 0.

This implies that

lim
n→∞

∥∥∥xn − JB
λn

(
(1− αn)xn − λnAxn

)∥∥∥ = 0.(3.18)

Put x̃ = PF (S)∩(A+B)−10(0) (i.e, x̃ is the minimum norm element in F (S) ∩ (A +

B)−10). We will finally show that xn → x̃.

Setting vn = xn − λn
1−αn

(Axn − Ax̃) for all n. Taking z = x̃ in (3.17) to get

∥Axn−Ax̃∥ → 0. First, we prove lim supn→∞⟨x̃, vn−x̃⟩ ≥ 0. We take a subsequence
{vni} of {vn} such that

lim sup
n→∞

⟨x̃, vn − x̃⟩ = lim
i→∞

⟨x̃, vni − x̃⟩.

It is clear that {vni} is bounded due to the boundedness of {xn} and ∥Axn−Ax̃∥ →
0. Then, there exists a subsequence {vnij

} of {vni} which converges weakly to some

point w ∈ C. Hence, {xnij
} and {ynij

} also converge weakly to w because of

∥vnij
− xnij

∥ → 0 and ∥xnij
− ynij

∥ → 0. At the same time, from (3.18) and

∥ynij
− xnij

∥ = ∥SJB
λnij

((1− αnij
)xnij

− λnij
Axnij

)− xnij
∥ → 0, we have

lim
j→∞

∥xnij
− Sxnij

∥ = 0.(3.19)

By the demi-closedness principle of the nonexpansive mapping (see Lemma 2.2)
and (3.19), we deduce w ∈ F (S). Furthermore, by the similar argument as that
of Theorem 3.1, we can show that w is also in (A + B)−10. Hence, we have w ∈
F (S) ∩ (A+B)−10. This implies that

lim sup
n→∞

⟨x̃, vn − x̃⟩ = lim
j→∞

⟨x̃, vnij
− x̃⟩ = ⟨x̃, w − x̃⟩.

Note that x̃ = PF (S)∩(A+B)−10(0). Then, ⟨x̃, w − x̃⟩ ≥ 0, w ∈ F (S) ∩ (A + B)−10.
Therefore,

lim sup
n→∞

⟨x̃, vn − x̃⟩ ≥ 0.



FINDING THE MINIMUM NORM WITHOUT INVOVING PROJECTION 849

From (3.12), we have

∥xn+1 − x̃∥2

≤ βn∥xn − x̃∥2 + (1− βn)∥SJB
λn
un − x̃∥2

≤ βn∥xn − x̃∥2 + (1− βn)∥JB
λn
un − x̃∥2

= βn∥xn − x̃∥2 + (1− βn)∥JB
λn
un − JB

λn
(x̃− λnAx̃)∥2

≤ βn∥xn − x̃∥2 + (1− βn)∥un − (x̃− λnAx̃)∥2

= βn∥xn − x̃∥2 + (1− βn)∥(1− αn)xn − λnAxn − (x̃− λnAx̃)∥2

= (1− βn)
∥∥∥(1− αn)

(
(xn − λn

1− αn
Axn)− (x̃− λn

1− αn
Ax̃)

)
− αnx̃

∥∥∥2
+βn∥xn − x̃∥2

= (1− βn)
(
(1− αn)

2
∥∥∥(xn − λn

1− αn
Axn)− (x̃− λn

1− αn
Ax̃)

∥∥∥2
−2αn(1− αn)

⟨
x̃, (xn − λn

1− αn
Axn)− (x̃− λn

1− αn
Ax̃)

⟩
+ α2

n∥x̃∥2
)

+βn∥xn − x̃∥2

≤ βn∥xn − x̃∥2 + (1− βn)
(
(1− αn)

2∥xn − x̃∥2

−2αn(1− αn)
⟨
x̃, xn − λn

1− αn
(Axn −Ax̃)− x̃

⟩
+ α2

n∥x̃∥2
)

≤ [1− (1− βn)αn]∥xn − x̃∥2

+(1− βn)αn

{
− 2(1− αn)⟨x̃, vn − x̃⟩+ αn∥x̃∥2

}
.

It is clear that
∑

n(1−βn)αn = ∞ and lim supn→∞(−2(1−αn)⟨x̃, vn−x̃⟩+αn∥x̃∥2) ≤
0. We can therefore apply Lemma 2.4 to conclude that xn → x̃. This completes the
proof. □

Remark 3.3. From the listed references, there exist a large number of problems
which need to find the minimum norm solution. A useful path to circumvent this
problem is to use projection. Bauschke and Browein [2] and Censor and Zenios [7]
provide reviews of the field. The main difficult is in computation. The present paper
provides some methods which do not use projection for finding the minimum norm
solution problem. On the other hand, our suggested algorithms (3.1) and (3.12) are
very simple in compared with the algorithm introduced in [28].

Corollary 3.4. Let C be a closed and convex subset of a real Hilbert space H.
Let A be an α-inverse strongly-monotone mapping of C into H and let B be a
maximal monotone operator on H, such that the domain of B is included in C. Let
JB
λ = (I + λB)−1 be the resolvent of B for λ > 0 such that (A + B)−10 ̸= ∅. Let

λ be a constant satisfying a ≤ λ ≤ b where [a, b] ⊂ (0, 2α). For t ∈ (0, 1 − λ
2α), let

{xt} ⊂ C be a net generated by

xt = JB
λ

(
(1− t)xt − λAxt

)
.
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Then the net {xt} converges strongly, as t → 0+, to a point x̃ = P(A+B)−10(0) which

is the minimum norm element in (A+B)−10.

Corollary 3.5. Let C be a closed and convex subset of a real Hilbert space H.
Let A be an α-inverse strongly-monotone mapping of C into H and let B be a
maximal monotone operator on H, such that the domain of B is included in C. Let
JB
λ = (I + λB)−1 be the resolvent of B for λ > 0 such that (A + B)−10 ̸= ∅. For

given x0 ∈ C, let {xn} ⊂ C be a sequence generated by

xn+1 = βnxn + (1− βn)J
B
λn

(
(1− αn)xn − λnAxn

)
for all n ≥ 0, where {λn} ⊂ (0, 2α),{αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) satisfy

(i) limn→∞ αn = 0 and
∑

n αn = ∞;
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) a(1−αn) ≤ λn ≤ b(1−αn) where [a, b] ⊂ (0, 2α) and limn→∞(λn+1−λn) = 0.

Then {xn} converges strongly to a point x̃ = P(A+B)−10(0) which is the minimum

norm element in (A+B)−10.

4. Applications

Next, we consider the problem for finding the minimum norm solution of a math-
ematical model related to equilibrium problems. Let C be a nonempty, closed and
convex subset of a Hilbert space and let G : C × C → R be a bifunction satisfying
the following conditions:

(E1) G(x, x) = 0 for all x ∈ C;
(E2) G is monotone, i.e., G(x, y) +G(y, x) ≤ 0 for all x, y ∈ C;
(E3) for all x, y, z ∈ C, lim supt↓0G(tz + (1− t)x, y) ≤ G(x, y);
(E4) for all x ∈ C, G(x, ·) is convex and lower semicontinuous.

Then, the mathematical model related to equilibrium problems (with respect to C)
is to find x̃ ∈ C such that

(4.1) G(x̃, y) ≥ 0

for all y ∈ C. The set of such solutions x̃ is denoted by EP (G). The following
lemma appears implicitly in Blum and Oettli [4]:

Lemma 4.1. Let C be a nonempty, closed and convex subset of H and let G be a
bifunction of C×C into R satisfying (E1)-(E4). Let r > 0 and x ∈ H. Then, there
exists z ∈ C such that

G(z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C.

The following lemma was given in Combettes and Hirstoaga [10]:

Lemma 4.2. Assume that G : C × C → R satisfies (E1)-(E4). For r > 0 and
x ∈ H, define a mapping Tr : H → C as follows:

Tr(x) = {z ∈ C : G(z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C}

for all x ∈ H. Then, the following hold:

(1) Tr is single-valued;
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(2) Tr is a firmly nonexpansive mapping, i.e., for all x, y ∈ H,

∥Trx− Try∥2 ≤ ⟨Trx− Try, x− y⟩;
(3) F (Tr) = EP (G);
(4) EP (G) is closed and convex.

We call such Tr the resolvent of G for r > 0. Using Lemmas 4.1 and 4.2, we have
the following lemma. See [1] for a more general result.

Lemma 4.3. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let G : C × C → R satisfy (E1)-(E4). Let AG be a multivalued
mapping of H into itself defined by

AGx =

{
{z ∈ H : G(x, y) ≥ ⟨y − x, z⟩, ∀y ∈ C}, x ∈ C,

∅, x /∈ C.

Then, EP (G) = A−1
G (0) and AG is a maximal monotone operator with dom(AG) ⊂

C . Further, for any x ∈ H and r > 0, the resolvent Tr of G coincides with the
resolvent of AG; i.e.,

Trx = (I + rAG)
−1x.

Form Lemma 4.3, Theorems 3.1 and 3.2, we have the following results.

Theorem 4.4. Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let G be a bifunction from C ×C → R satisfying (E1)-(E4) and let Tr be
the resolvent of G for r > 0. Let S be a nonexpansive mapping from C into itself,
such that F (S) ∩ EP (G) ̸= ∅. For t ∈ (0, 1), let {xt} ⊂ C be a net generated by

xt = STr

(
(1− t)xt

)
, t ∈ (0, 1).

Then the net {xt} converges strongly, as t → 0+, to a point x̃ = PF (S)∩EP (G)(0)
which is the minimum norm element in F (S) ∩ EP (G).

Corollary 4.5. Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let G be a bifunction from C ×C → R satisfying (E1)-(E4) and let Tr be
the resolvent of G for r > 0. Suppose EP (G) ̸= ∅. For t ∈ (0, 1), let {xt} ⊂ C be a
net generated by

xt = Tr

(
(1− t)xt

)
, t ∈ (0, 1).

Then the net {xt} converges strongly, as t → 0+, to a point x̃ = PEP (G)(0) which
is the minimum norm element in EP (G).

Theorem 4.6. Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let G be a bifunction from C × C → R satisfying (E1)-(E4) and let Tλ

be the resolvent of G for λ > 0. Let S be a nonexpansive mapping from C into
itself, such that F (S) ∩ EP (G) ̸= ∅. For given x0 ∈ C, let {xn} ⊂ C be a sequence
generated by

xn+1 = βnxn + (1− βn)STλn

(
(1− αn)xn

)
for all n ≥ 0, where {λn} ⊂ (0,∞),{αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) satisfy

(i) limn→∞ αn = 0 and
∑

n αn = ∞;
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(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) a ≤ λn ≤ b where [a, b] ⊂ (0,∞) and limn→∞(λn+1 − λn) = 0.

Then {xn} converges strongly to a point x̃ = PF (S)∩EP (G)(0) which is the minimum
norm element in F (S) ∩ EP (G).

Corollary 4.7. Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let G be a bifunction from C ×C → R satisfying (E1)-(E4) and let Tλ be
the resolvent of G for λ > 0. Suppose EP (G) ̸= ∅. For given x0 ∈ C, let {xn} ⊂ C
be a sequence generated by

xn+1 = βnxn + (1− βn)Tλn

(
(1− αn)xn

)
for all n ≥ 0, where {λn} ⊂ (0,∞),{αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) satisfy

(i) limn→∞ αn = 0 and
∑

n αn = ∞;
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) a ≤ λn ≤ b where [a, b] ⊂ (0,∞) and limn→∞(λn+1 − λn) = 0.

Then {xn} converges strongly to a point x̃ = PEP (G)(0) which is the minimum norm
element in EP (G).

Remark 4.8. Let H be a Hilbert space and let f be a proper lower semicontinuous
convex function of H into (−∞,+∞]. Then, the subdifferential ∂f of f is defined
as follows:

∂f(x) = {z ∈ H : f(x) + ⟨z, y − x⟩ ≤ f(y), y ∈ H}
for all x ∈ H. We know that ∂f is maximal monotone (see [24]). Let C be a
closed and convex subset of H and let iC be the indicator function of C. Then the
subdifferential ∂iC of iC is a maximal monotone operator because of iC is a proper
lower semicontinuous convex function on H. So, we can define the resolvent Jλx of
∂iC for λ > 0, i.e.,

Jλx = (I + λ∂iC)
−1x, ∀x ∈ H.

It follows that

x ∈ (I + λ∂iC)Jλx,

which is equivalent to

x ∈ (I + λNC)Jλx,(4.2)

where NCx is the normal cone to C at x, i.e.,

NCx = {z ∈ H : ⟨z, u− x⟩ ≤ 0, ∀u ∈ C}.(4.3)

From (4.2), we have

x− Jλx

λ
∈ NCJλx.

This together with (4.3) imply that

1

λ
⟨x− Jλx, u− Jλx⟩ ≤ 0, ∀u ∈ C.
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Thus, Jλx = PCx. Moreover, we know that if C is a closed half space (i.e., C =
{z ∈ H : ⟨v, z⟩ ≤ ρ}), then the metric projection PC can be expressed by

PCx =

{
x− max{0,⟨v,x⟩−ρ}

∥v∥2 v, (v ̸= 0),

x, (v = 0),

for all x ∈ H. In this case, we can compute Jλx by

Jλx =

{
x− max{0,⟨v,x⟩−ρ}

∥v∥2 v, (v ̸= 0),

x, (v = 0).
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