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FINDING THE MINIMUM NORM COMMON ELEMENT OF
MAXIMAL MONOTONE OPERATORS AND NONEXPANSIVE
MAPPINGS WITHOUT INVOLVING PROJECTION

YONGHONG YAO, YEONG-CHENG LIOU, AND JEN-CHIH YAO*

ABSTRACT. The purpose of this paper is to construct two simple algorithms
without involving projection for finding the minimum norm common solution
of maximal monotone operators and nonexpansive mappings in Hilbert spaces.
Some applications are also included.

1. INTRODUCTION

In many problems, it is needed to find a solution with minimum norm. A typical
example is the least-squares solution to the constrained linear inverse problem [25]

Ax = b,
x e C,

where A is a bounded linear operator from H to another real Hilbert space H; and b
is a given point in H;. Some related works on the minimum norm solution problems
(or least squares problem), please refer to [8,9,12,13,15,19-21,23,31,32,34-37]. We
note that we may formulate such problems in an abstract way as finding a point
zf € Q with the property
|z = min |l2]].
z€eQ)

In another word, z' is the (nearest point or metric) projection of the origin onto €,
zt = Pg(0),

where P is the metric (or nearest point) projection from H onto 2. This indicates
that we can use projection to find the minimum norm solution. In this respect, very
recently, some authors use projection algorithms that employ projections onto the
set C, in order to iteratively reach the minimum norm solution of some nonlinear
operators, see., e.g., [8,21,31,32,34-37].

Projection methods are used extensively in a variety of methods in optimization
theory. Apart from theoretical interest, the main advantage of projection methods,
which makes them successful in real-word applications, is computational. The field
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of projection methods is vast and we mention here only a few recent works that can
give the reader some good starting points. Such a list includes, among many others,
the works of [2,5,11,16-18], the connection with variational inequalities, see, e.g.,
Solodov and Svaiter [26], Censor, Gibali and Reich [6], Noor [22], Yamada [33] which
is motivated by real-word problems of signal processing, and the many contributions
of Bauschke and Combettes, see, e.g., Bauschke, Combettes and Kruk [3]. We
observe that in each iteration of the projection algorithm, in order to get the next
iterative z,41, projection onto C is calculated, according to the iterative step. If the
set C is simple enough, so that the projection onto it is easily executed, then this
method is particularly useful; but, if C is a general closed and convex set, then a
minimal distance problem has to be solved in order to obtain the next iterative. This
might seriously affect the efficiency of the method. It remains however a challenge
how to implement the projection algorithm in the case where the projection Po fails
to have closed-form expressions. Hence, it is an very interesting work of finding the
minimum norm solution without involving projection.

The purpose of this paper is to construct two algorithms without using projection
for finding the minimum norm common solution of maximal monotone operators
and nonexpansive mappings in Hilbert spaces. Our work is mainly based on a
recent work of Takahashi, Takahashi and Toyoda [28]. They proved the following
convergence result

Theorem 1.1. Let C be a closed and convex subset of a real Hilbert space H.
Let A be an a-inverse strongly-monotone mapping of C into H and let B be a
mazimal monotone operator on H, such that the domain of B is included in C.
Let J)’\B = (I + AB)~! be the resolvent of B for A > 0 and let S be a nonexpansive
mapping of C into itself, such that F(S)N(A+ B)~'0# (. Let vy = x € C and let
{zn} C C be a sequence generated by

(1.1) Tnt1 = Pnn + (1 — Bn)S(anz + (1 — an)Jﬁ(xn — AAzxy))
for alln >0, where {\,} C (0,2a),{an} C (0,1) and {Bn} C (0,1) satisfy
0<a<A <b<2a, O<e<B,<d<1,

nh_)Iglo()\n+1 — ) =0, nh_)rgo o, =0 and Zan = o0.
n

Then {x,} converges strongly to a point of F(S) N (A+ B)~!0.

Remark 1.2. We notice that the above method (1.1) does find the minimum-norm
element in F(S) N (A + B)~10 if 0 € C. However, if 0 ¢ C, then this algorithm
(1.1) does not work to find the minimum-norm element. The reason is simple: If
0 ¢ C, we cannot take z = 0 since (1 — an)Jﬁ(xn — A\Az,) may not belong
to C' and consequently, z,11 may be undefined. A natural idea is we can choose
the initial point x in the whole space. Then we have to employ projection such
that Polapz + (1 — an)Jﬁ (xn, — ApAxy)] € C. Thus, we can construct algorithm
Tnt1 = Bnn + (1 — Bn)SPolanz + (1 — ozn)J/{Bn (n, — ApAxy,)] to find the minimum-
norm element. This is an active topic. But this is not our main purpose in the
present paper due to this algorithm involves the computation of the projection.
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Remark 1.3. We also note that in Theorem 1.1, the authors added an additional
assumption: the domain of B is included in C' (The reader can refer to Lemma
4.3 in the last section for a possible example which satisfies this assumption). This
assumption is indeed not restrict in order to guarantee J /{Bn (xn—AnAx,) € C. Based
on this fact, in the present paper we construct two simple algorithms with strong
convergence to the minimum-norm element.

Remark 1.4. From the listed references, there exist a large number of problems
which need to find the minimum norm solution. A useful path to circumvent this
problem is to use projection. Bauschke and Browein [2] and Censor and Zenios [7]
provide reviews of the field. The main difficult is in computation. We note that the
algorithm (1.1) can not use to find the minimum norm element.

Motivated and inspired by the works in this field, we first suggest the following
two algorithms without using projection:

vy = ij(u )z — )\A:ct>,t € (0,1)

and
Tnt1 = Pnn + (1 - /BN)SJQL ((1 - O‘n)xn - )\nAxn> ;n > 0.

(Notice that these two algorithms are indeed well-defined (see the next section).)
We will show the suggested algorithms converge strongly to a common point =
Pr(s)n(A+B)-10(0) which is the minimum-norm element of F(S)N(A+B)~'0. Some
applications are also included.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product (-, -) and norm || - ||, respectively.
Let C be a nonempty closed convex subset of H. Recall that a mapping S : C' — C
is said to be nonexpansive if |[Sz — Sy|| < ||z — y|| for all z,y € C. We denote
by F(S) the set of fixed points of S. A mapping A : C — H is said to be a-
inverse strongly-monotone iff (Ax — Ay,x — y) > al|Az — Ayl||? for some a > 0
and for all x,y € C. It is known that if A is a-inverse strongly-monotone, then
Az — Ay|| < 1/allz —y| for all z,y € C.

Let B be a mapping of H into 27. The effective domain of B is denoted by
dom(B), that is, dom(B) = {x € H : Bx # (0}. A multi-valued mapping B is said
to be a monotone operator on H iff (z —y,u—v) > 0 for all z,y € dom(B), u € Bz,
and v € By. A monotone operator B on H is said to be maximal iff its graph is
not strictly contained in the graph of any other monotone operator on H. Let B
be a maximal monotone operator on H and let B~10 = {x € H : 0 € Bx}.

For a maximal monotone operator B on H and A > 0, we may define a single-
valued operator JP = (I+AB)~!: H — dom(B), which is called the resolvent of B
for A. It is known that the resolvent J£ is firmly nonexpansive, i.e., || JEz—JPy||> <
(JPx — JPy,2 —y) for all z,y € C and B~10 = F(JP) for all A > 0.
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The following resolvent identity is well-known: for A > 0 and g > 0, there holds
the identity

(2.1) JPx = JP (%x +(1- %)fo),x c H.

We use the following notation:

e 1z, — x stands for the weak convergence of (z,) to z;
e 1z, — x stands for the strong convergence of (x,) to .

We need the following lemmas for the next section.

Lemma 2.1 ([35]). Let C be a nonempty closed convex subset of a real Hilbert space
H. Let the mapping A : C — H be a-inverse strongly monotone and A > 0 be a
constant. Then, we have

I(I = AA)z — (I = XA)y|* < [lz =yl + A(A - 20)|| Az — Ay[|*, Y,y € C.
In particular, if 0 < X < 2q«, then I — AA is nonexpansive.

Lemma 2.2 ([21]). Let C be a closed convex subset of a Hilbert space H. Let
S : C — C be a nonexpansive mapping. Then F(S) is a closed convexr subset of
C' and the mapping I — S is demiclosed at 0, i.e. whenever {x,} C C is such that
xn = x and (I — S)x, — 0, then (I — S)x = 0.

Lemma 2.3 ([36]). Let {x,,} and {yn} be bounded sequences in a Banach space X

and let {Bn} be a sequence in [0,1] with 0 < liminf, _,~ 5, < limsup,,_,. fn < 1.

Suppose tnt1 = (1 — Bp)yn + Bnxn for all n > 0 and limsup,,_, o (||yn+1 — ynl —
|Zng1 — 2n]|) < 0. Then, limy_so0 ||yn — @n|| = 0.

Lemma 2.4 ([14]). Assume {an} is a sequence of nonnegative real numbers such
that

an+1 < (1 —Yn)an + 0nn,
where {yn} is a sequence in (0,1) and {d,} is a sequence such that
(1) 220:1 f}/’l’b = OO;
(2) imsup,,_,o0 0n <0 o1 > 07 |0n7n| < o0.

Then lim,, oo an = 0.

3. MAIN RESULTS
In this section, we will prove our main results.

Theorem 3.1. Let C be a closed and conver subset of a real Hilbert space H.
Let A be an a-inverse strongly-monotone mapping of C into H and let B be a
mazimal monotone operator on H, such that the domain of B is included in C.
Let Jf = (I + AB)~! be the resolvent of B for X > 0 and let S be a nonexpansive
mapping of C into itself, such that F(S) N (A+ B)7'0 # 0. Let X be a constant
satisfying a < A < b where [a,b] C (0,2a). Fort € (0,1 — 5), let {z:} C C be a
net generated by

(3.1) 2 = SJf(u )z — AAact>.
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Then the net {x;} converges strongly, ast — 0+, to a point & = PF(S)O(AJrB)flO(O)
which is the minimum norm element in F(S) N (A+ B)~10.

Proof. First, we show the net {z;} is well-defined. For any t € (0,1 — %), we define
a mapping T := SJP ((1 —t)I — )\A). Note that S, JP and I — %_tA (see Lemma

2.1) are nonexpansive. For any z,y € C, we have

ITe =Tyl = |[$78((1 =0~ Ada) - $7E((1 - 1)y — 2y |

2 An) (- )y - Ay

< (A =Bfz—yl,

< |o-0e-

which implies the mapping T is a contraction on C'. We use x; to denote the unique
fixed point of T"in C. Therefore, {z;} is well-defined.
Take any z € F(S) N (A + B)710. It is obvious that z = JZ(z — A\Az) for all

A > 0. So, we have z = JP(z — A\z) = Jf(tz + (1 —1t)(z — ANAz/(1 — t))) for all

t € (0,1). Since JZ is nonexpansive for all A > 0, we have
Jf(u ~t)w — AA:Et> - sz
- Jf(u — #) (@ — Mz (1 — t))) —JB (tz F(1—t)(z— MMz/(1 - t))) H2
< [|(@ = )@ = Az (1 = 1)) = (12 + (@ = 1)z~ rdz/ - 1)
—1

2
3.2) = [ )((:ct Mz /(1= 1) — (2 — Az/(1 - t))) —|—t(—z)H .

By using the convexity of || || and the a-inverse strong monotonicity of A, we derive

|0 =) (G~ A/ = 1) = (= 242/~ 1)) + t(—z)H2
< (1= Bl — AMa/(1— 1)) — (2 — Az/(1 — )|+ t]]
= (1= t)|[(z¢ — 2) = A(Az;p — A2) /(1 — 1) [|* + t]|z|°

2\ A2
= (1= 8)(llee = 212 = {5 (Awy — Az — 2) + o pplA - 4z|?)
+ ||
20\ A2
< (1_ 2 LaA _ 2, AN _ 2 2
< (1= 0)(llee = 2P = T Am = Az + sl 4w — AsI?) + e
A
(3.3) =(1 —t)(Ha:t—zHQ—i- (1_t)2(>\—2(1—t)a)HAxt —AzH2> +t 2]

By the assumption, we have A — 2(1 —t)a < 0 for all ¢ € (0,1 — %) Then, from
(3.2) and (3.3), we obtain

HJF ((1 — )z — )\AiL‘t) — zH2
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(1_)\15)20\ —2(1 = t)a)|| Az — Az||2) + t]|2|?

< (L=l — 2 + ¢z
It follows from (3.1) and (3.4) that
(3.5) Joe =212 < IIE (=D = Az,) - 2|

< (@ =t)llae— 2 + 2]

B4 <=t fla—=I+

It follows that
[we — 2|| < [|2]|-

Therefore, {z;} is bounded. Since A is a-inverse strongly monotone, it is é—Lipschitz
continuous. We deduce immediately that {Az;} is also bounded.
By (3.4) and (3.5), we obtain

A
lze = 2l < (1 = t)l|lze — 2[|* + a—1 (A —2(1 — t)a)||Aze — Az[|* + ¢ 2.
So,
A 2 2 2
= (2(1 —t)a — N)||Azy — Az||” < t||z]| — t]|ze — 2]|* — 0.
This implies that
(3.6) t£%1+ |Az; — Az|| = 0.

Next, we show ||z — Sz¢|| — 0. By using the firm nonexpansivity of JZ, we have
2
HJAB ((1 —t)xy — )\Awt) — zH
2
= HJ/{B ((1 —t)xy — )\A$t> —Jp (z — /\Az> H
< <(1 —t)zr — Mz — (2 — NAz), JD ((1 —t)xe — )\Axt> — Z>
1 2
= 5(H(l — )z — My — (2 — Mz)||* + HJ)]? ((1 —t)xy — )\Axt) — zH
2
—H(1 — #)zp — A(Azp — AAz) — Jf(u ~ )z — )\Axt> H )
By the nonexpansivity of I — AA/(1 —t), we have

(1 —t)z; — Nz — (2 — MA2)||?
= [I(1 = t)((ze — Aae/(1 — 1) — (2 = Az/(1 = 1)) + t(=2)|”

< (= t)l(@r — My /(1 —t) — (2 = AMz/(1 = 1)) || + t]|2]?
< (L=t — 2[* + ¢| 2]
Thus,
2
HJ/{B ((1 —t)zy — )\Aazt) — ZH
1 2
< 5 (= lle — 21 + 2] + ij((l — t)a— May) — 2
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[ =ty — TP (= tye — AAwe) — A(Azi AZ)HZ).

HJE ((1 ) — /\Axt) - zHQ

(1= )l — 2l + el =]

=t — (@ = = Ada) — MAw - 42)|)

(1= 1)z — 21 + 102 = | 2 = o) — TP (1~ By — Adw) H2
+2)\<(1 — )z — Jf(u — )z — )\A:vt>,Axt - Az> ~ A2 Az — Az|?
R (G P (SR P W H2

+2)\H(1 )y — Jf’((1 )z — /\Aa:t> H | Az, — Az|.

This together with (3.5) imply that

2
e — 22 < HJf(u —t)w — )\Awt) - zH

Hence,

IN

(1 — 8|z — 22+ ¢]|2]% - H(1 )z — Jf(u B )\A:nt) H2

+2)\H(1 S Jf((1 )z — /\Axt> HHAmt ~ Az

| =ty = 72 (= o — raw) H2

< )22 + 2)\H(1 )z — Jf((l )z — )\Axt> H||Axt ~ A

Since ||Az; — Az|| — 0, we deduce

tgr&r H(l — )y — JP ((1 —t)xy — )\Aajt) H =0.

Therefore,

(3.7)

. __ B . . _
[ (e [

From (3.1) and (3.2), we have

e — 2]

< Jo-aftnm gt -- ipas)
A 2
= @ _t)QH(xt T A g —tAZ)H
—2t(1 — t)<z, (2 — 1 i tAg:t) —(z— ] i tAZ)> + 2|22

IN

(1= 62z = 202 = 2601 = 1) (2,0 = T2 (Awy = Az2) = 2) + 2] 2|

1-1¢
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, A
— (120w — 2|2+ 2t{ (- t)<z,:ct — T (An — A2) - z>

(2l + fle — 2[1%)

——

It follows that

A t
lae =2l < =@ = 7o (Am = Az) = 2) 4 S (2 + o - =)

—i—tHzHth - %(Aa:t — Az) — z”

A
(3.8) < —<z,a:t — E<A$t — Az) — z> +tM,

where M is some constant such that
A A
sup { 121 + Ifoe = 212 + [12lllz — 72— (A = A2) =zl t € (0,1 52)} < M.

Next we show that {z:} is relatively norm-compact as ¢ — 0+. Assume {t,} C
(0,1 — ﬁ) is such that ¢, — 0+ as n — co. Put x,, := z4,. From (3.8), we have

A
2
_ < _ __ - _ _
|lxn — 2]|* < <z,a;n = (Az,, — Az) z>
(3.9) +t,M, z € F(S)N (A+ B)~ 0.

Since {z,} is bounded, without loss of generality, we may assume that =, — & € C.
Hence, z, — ﬁ(AiL‘n — Az) — Z because of ||Ax,, — Az|| — 0. From (3.7), we have
limy 04 ||z — Sa¢|| = 0. Thus,

(3.10) lim |z, — Sx,|| = 0.

n—oo

We can use Lemma 2.2 to (3.10) to deduce & € F(S). Further, we show that Z is
also in (A + B)710. Let v € Bu. Set z, = JZ((1 — t,)z, — Mz, for all n. Then,
we have

1-t¢,

z
Ty — Az, — =% € Bz,

(1 —tp)xn — Nz, € (I + AB)z, = 3

Since B is monotone, we have, for (u,v) € B,

1—
< tnxn—AJ:n—Z—n—v,zn—u>20

A A
= (L —tp)xn — Nzp — 2y — A,z —u) >0
1 n
= <A:cn+v,zn—u>§X(xn—zn,zn—w—%(mn,zn u)
1 ty -
= (AZ 4+ v, 2z, —u) < X(xn — Zp, Zp — U) — X(a:n,zn —u) + (AT — Axp, 2, — )
1

- t
= (AT 4,2 —u) < Tlan = zalllz0 = ull + Flzalllzn = ul

A
+ 1A% — Az ||[|2 — ul|-
It follows that

- - 1 t
(A +v,3 —u) < Slon = zalllza = ull + Flzalllzn = ul
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(3.11) +|AZ — Az |||2n — ul| + (AT + v, T — 2,).
Since
(xn — &, Az, — AZ) > a|| Az, — AZ|?,
Azx, — Az and x, — Z, we have Ax, — AZ. We also observe that ¢, — 0,
|zr, — 2zn|| = 0 (by (3.7)) and 2z, — Z. Then, from (3.11), we derive
(—AZ — v,z —u) > 0.
Since B is maximal monotone, we have —Az € BZ. This shows that 0 € (A + B)Z.

Hence, we have & € F(S)N(A+ B)~'0. Therefore we can substitute & for z in (3.9)
to get

A
2 — 7|2 < —<5c, 2 — 7 Az, — AT) - x> F it M.
—n

Consequently, the weak convergence of {z,} to & actually implies that =, — Z.
This has proved the relative norm-compactness of the net {z:} as t — 0+.

Now we return to (3.9) and take the limit as n — oo to get

|z — 2| < —(2,2—2), z€ F(S)N (A + B)~10.
Equivalently,
|Z||> < (&,2), z€ F(S)n(A+ B)~ 0.
This clearly implies that
IZ[l < [lzll, = € F(S)n(A+B)~t0.

Therefore, Z is the minimum-norm element in F(S) N (A + B)~!0. This completes
the proof. O

Theorem 3.2. Let C be a closed and convex subset of a real Hilbert space H.
Let A be an a-inverse strongly-monotone mapping of C into H and let B be a
maximal monotone operator on H, such that the domain of B is included in C.
Let J)]\3 = (I + AB)~! be the resolvent of B for A > 0 and let S be a nonexpansive
mapping of C into itself, such that F(S) N (A + B)~10 # 0. For given ¢ € C, let
{zn} C C be a sequence generated by

(3.12) Tnt1 = Bnxn + (1 — Bn)SJﬁ ((1 — Q) Ty — )\nAZL‘n>

for all n > 0, where {\,} C (0,2a),{an} C (0,1) and {B,} C (0,1) satisfy
(1) limy oo ap =0 and Y, oy = 00;
(73) 0 < liminf, o Bn < limsup,,_,o. Bn < 1;

(177) a(l—ap) < Ay < b(1—ay,) where [a,b] C (0,2q) and limy, o0 (Ap+1—An) = 0.
Then {zn} generated by (3.12) converges strongly to a point & = Pp(syn(a+5)-10(0)
which is the minimum norm element in F(S) N (A+ B)~10.

Proof. Pick up z € F(S) N (A + B)~!0. It is obvious that z = an(z — MAz) =
Jﬁ <anz + (1 —an)(z— AAz/(1 — ozn))> for all n > 0. Since JP is nonexpansive
for all A > 0, we have

HJ/{'D; <(1 — Q) Ty — /\nAxn) — ZH2
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:HJﬁ (1= an)@n = AnAzn/(1 = @)
—JE (nz + (1= an)(z = AAz/(1 = o)) HQ
gH ((1 — an)(@n — AAzn /(1 — an)))notag
— (a2 + (1= an)(z = AAz/ (1 an) HQ
(3.13) :H(1 —ap) <(a:n Az /(1 — an)) = (2 — AAz/(1 — an))> + an(—z>) ’

By using the convexity of ||- || and the a-inverse strong monotonicity of A, we derive

1= ) (@ = AnAwa /(1 = ) = (= = AaAz/ (1~ an)) + an(—z)H2
< (1= an)[[(@n = AAzn /(1 = an)) = (2 = M Az/(1 = ap))||* + |2
= (1= an)[[(zn — 2) = An(Azp — A2) /(1 = an)|I* + o 2]

2\, A2
= (1= ) (Jln = 22— T (Azy — Az, - A Ao Az|P)
+ a2
2a\, A2
< (1= an)(llon = 21 = =0 A = AelP o (05 v — As]?)
+ a2
A
=1—-ap n 2 — n—2(1—ay An_A 2
(1= aw) (Jlen = 2l 4+ (55 O = 201 = am)e) A — A2]?)
(3.14)
+ a2

By condition (i), we get A\, —2(1 — ayy)ar < 0 for all n > 0. Then, from (3.13) and
(3.14), we obtain

HJﬁ((l—an)xn—)\nAxn) —z ’

afﬁwﬂafau—awwwﬁm—Aﬂﬂ

< (1= ) (llon — 217 +
(3.15) + o |22
< (1 - O‘n)H$n - ZH2 + Oén||2|!2-

It follows from (3.12) and (3.15) that

ltni =2 = [Butn =)+ (1= 82 (T8 (1~ @n)arn — Andzs) ) H2
2
< Bullzn — 2|2+ (1= Ba)|[STE ((1 )T, — )\nA:cn> - zH
(3.16) < Bullen 202+ (1 = B)|| 78 (1~ @) — Andzn) - zH2
< Ballzn — 217 + (1= Ba) (1 — o) |lzn — 2)* + ol 2]|%)
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[1— (1= Bu)an]llzn = 217 + (1 = Bn)an|l2|I?
max{||z, — 2|, |2]%}.

IN

By induction, we have
lzn41 = 2l* < max{|lzo — 2%, |[[|*}-

Therefore, {x,} is bounded. Since A is a-inverse strongly monotone, it is é—
Lipschitz continuous. We deduce immediately that {Az,} is also bounded. Set
Up = (1 — ap)xn — M\yAxy, and y, = Sanun for all n > 0. Noticing that S and an
are nonexpansive, we can check easily that {u,}, {J /{Bn un} and {y,} are bounded.

We can rewrite (3.12) as 41 = Bpzn + (1 — By)yn for all n > 0. Next, we
estimate ||zp4+1 — p||. In fact, we have

Hyn+1 - yn”

= SJ)iJrl ((1 — Q1) Tpp1 — >\n+1Al‘n+1) — SJf’; ((1 — Qp) Ty — )\nA:rn) ‘

< J)\n+1 (( an—i—l)l'n—i-l - )\n+1Axn+1) - J)]\Sn ((1 - an)l'n - )\nAxn) ‘

< J)\n+1 (( — Qpt1)Tptl — )\nHA:EnJrl) — Jﬁﬁ <(1 — Q) Ty — )\nAacn> ‘
+HJ>\n+1 <(1 — Qp) Ty — /\nAa:n> — J)]\Bn ((1 — Q) Ty — )\nAmn) ‘

< <(1 - an+1)xn+1 - )\n+1Axn+1> - <(1 - an)xn - AnA$n> ‘
+HJ>\n+1< — Qp )Ty — /\nAacn> — J)]i ((1 — Q) Ty — )\nAmn) ‘

= H(I A71—}—1"4)«7777,4-1 - (I - )\n—&-lA)xn + (>\n - )\n—&-l)Axn + anxy — O‘n—&-lxn—i—lH
+||J/{3n+1un — anunH

< M = AnprA)znr — (I = A1 A)znl| + [Ant1 — Anll| Aza ||

+anlznl + ansill@nll + || I — J -

n+1

Since I — A\p4+1A4 is nonexpansive for \,4+1 € (0,2a), we have |[(I — A\py1A4)Tnt1 —
(I — Mt1A)zy|| < ||Tnt1 — oy By the resolvent identity (2.1), we have

A An
B (_7n _
J)‘"“ = ()\n+1 un + (1 Antl )J)‘”“ )
It follows that
A A
B _ B n Mo\ 4B B
||J,\n+1 —Jyunl| = H‘]/\" <7>\n+1un +(1 )\HH)J,\nﬂun) I, Un
A Mo oo
= H(AW“" RS W +1“") i

’)\n—&—l - )\n|
)\n—l—l

IN

I wn, — Jﬁﬂunﬂ.
So,

[gnt1 = vnll < llznsr = zall + A = Aalll Azl + anllzn ]l + cngallzn |
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’)‘n—&-l — )‘n| B
e e [t
Then,
1Ynt+1 = Ynll = [Tns1 —zull < [Ang1 = Al l|Azn || + anllzn || + a1 ||z |l
|)‘n+1 - )\n| B
+T+1Hun — J)\n+1unH’

Since ay, — 0, \py1 — Ay — 0 and liminf, o A\, > 0, we obtain

lim sup(||yn+1 — Ynll — [|Zns1 — nl|) < 0.
n—oo

From Lemma 2.3, we get

lim ||y, — z,| = 0.
n—oo
Consequently, we obtain
nlggo [Zn+1 — znll = nlggo(l = Bn)llyn — 20|l = 0.

From (3.15) and (3.16), we have

241 — 2]
2 B 2
< Bullan — 212 + (1= 8|78 (1 = an)an = Az ) - 2
A
2 n 2
< (1= 8){ (0 = an)(llon — 217 + o On = 2(1 = an)a) [ Azy — 42| )
Tanll2l2} + Ballzn — 211
1-— A
= 1L (= Budanllion — ol + (P20 0 = 201 - ana)l A, — 45|
+(1 - Bn)anHZ”Q
1- 671 An
< llon = 21 + S50 = 201 - a4y — 21 + (1= B I
Then, we obtain
1-—- n )\n
((1_%(2(1 —ap)a— M| Azy — Az
< Nan — 2l = llzngs — 217 + (1 = Ba)anll2]1?
< (flzn = 2l = g1 — 2D 1Znsr — zall + (1 = Ba)ewll 2]
Since lim, o0 @ = 0, lim;, o0 [|[Zp+1 — zp]| = 0 and liminf,, (16_/3333" (2(1 —

an)a — Ay) > 0, we have

(3.17) lim ||Az, — Az|| = 0.
n—0o0

Next, we show ||z, — J)]\Bn ((1 — ap)zp — A\yAzy)|| — 0. By using the firm nonexpan-
sivity of J )]i , we have

HJ)]\Bn ((1 — Qp) Ty — )\nAxn) — zH2
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2
H'])i ((1 - O‘n)$n - )\nAl'n) - J)i (Z — )\nAz> H
<(1 —ap) Ty — MAT, — (2 — \yAz), J/{Bn <(1 — Q) Ty — )\nAxn) — z>
1 2 B 2
5 (10 = an)an = AnAwn = (2= 2 A2) |2+ [ IE (1= an)an = Adan) - 2
)

condition (iii) and the a-inverse strongly monotonicity of A, we know that

—[ = an)wn = An(Azn = Anaz) = IE (1= @) — Andan)

I— X\, A/(1 - «,) is nonexpansive. Hence

Thus,

(1 = an)xy — AAzy — (2 — M\ Az2)|?
= (1 = an)((zn — ApAzn /(1 — an) — (2 = \Az/(1 — o)) + an(_Z)H2
(1 —an)l[(zn = AAzy /(1 — an) — (2 — AAz/(1 — an))”2 + anHZH2

<
2 2
< (= an)lzn = 2l + anll2]"

HJ,{Bn ((1 — Qp) Ty — )\nAmn> — zH2

) 2
< (0= anllen — 212 + anllzl? + | IE (1 = an)wn — AnAza) |

<! |

— @ = anyzn = IE (1= an)an = AaAzn) = An(Az — AA2)

That is,

IN

IN

B 2
HJ)‘” ((1 — Qp) Ty — )\nAxn) — zH
(1 — an)l|lzn — 2% + anl|z]®

—H(l — Qp) Ty — in ((1 — Qp) Ty — )\nAxn) — M (A, — )\nAz)H2>

2
(1= an)|lzn — 2|2 + anl|z]]? H(1 — o)t — I ((1 ~ )i — )\nAmn> ‘

+2)\n<(1 — )Ty — an ((1 — Q)T — )\nAmn>,A:L‘n - Az> — A2 || Az, — Az|?

‘ 2

(1= an)llan = 212 + anllzl2 = (1 = @)z = I (1 = an)an = AnAa, )

+2X\,

(1= o)z — J2 ((1 — ) Tn — )\nAmn) H||Amn — Az,

This together with (3.16) imply that

[l
< Bullzn = 217 + (1= Ba)(1 = an) |z — 2I* + (1~ Ba)awl|2]®

= B0~ an)n — B (1~ @) — Auday) |
20 (1 = B)||(1 = an)zn — B ((1 P AnAxn)
= [1—= (1= Bn)an]llzn — ZHQ + (1 - /Bn)anHZHZ

‘||A:nn — Az
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’ 2

—(1- Bn)H(l — Q) Ty — in ((1 — Q) Ty — )\nAa:n)

+22(1 = B)||(1 = )z — JE. ((1 — )t — /\nAa:n) ‘||Axn ~ Az
Hence,
2

(1= 8|1 = an)zm — JE. ((1 — ap)tn — /\nA:cn) )
< an = 2012 = @ngn — 2l = (1= Bu)anllzn — 201> + (1 = Ba)ow 2]

+22(1 = B)||(1 = )z — JE, ((1 — ) En — /\nAacn) ]||Axn ~ Az
< (e = 2l + l2as1 = 2D l[2ns1 = zall + (1 = Ba)an|2]

20 (1= B0)||(1 = an)zn = JE (1 = an)an = AnAn ||| 42, - A2

Since limsup,,_,o Bn < 1, ||Zn41 — 2n|| = 0, @y, — 0 and ||Ax, — Az|| — 0, we
deduce
lim H(l — Qp)Tpy — J/{Bn ((1 — ap) Ty — )\nAxn>

n—oo

This implies that

=o.

(319 lim,

Ty — J)]\Bn ((1 — Qp) Ty — )\nAxn)

‘:0.

Put = Pp(s)n(a+p)-10(0) (i-e, T is the minimum norm element in F'(S) N (A +
B)~10). We will finally show that z,, — 7.

Setting v, = z, — li‘zn (Azx, — AZ) for all n. Taking z = Z in (3.17) to get
|Azy, — AZ|| — 0. First, we prove limsup,,_, .. (Z,v,—Z) > 0. We take a subsequence
{vn, } of {v,} such that

limsup(z, v, — &) = lim (T, v,, — T).
n—o00 =00

It is clear that {v,, } is bounded due to the boundedness of {z,} and || Az, — AZ| —
0. Then, there exists a subsequence {Unij} of {vy, } which converges weakly to some

point w € C. Hence, {55%} and {ynlj} also converge weakly to w because of
anij — meH — 0 and ||xnlj - ynz]H — 0. At the same time, from (3.18) and

Hynij - mmj H = HSJABTL ((1 - am‘j )‘Tnij - )\nij Axnz]) - mnij H - 07 we have
*j
(3.19) lim ||zp, — Szp, || =0.
Jj—00 J J

By the demi-closedness principle of the nonexpansive mapping (see Lemma 2.2)
and (3.19), we deduce w € F(S). Furthermore, by the similar argument as that
of Theorem 3.1, we can show that w is also in (A 4+ B)~'0. Hence, we have w €
F(S)N (A + B)~10. This implies that
limsup(z, v, — Z) = lim (Z,v,, — ) = (T,w — T).
n—00 J—00 J

Note that & = Ppg)n(a+p)-10(0). Then, (Z,w — &) > 0,w € F(S) N (A+ B)~'0.
Therefore,

lim sup(z, v, — &) > 0.
n—oo
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From (3.12), we have

201 — Z|?
< ﬁn”t%n - §;||2 =+ (1 - ﬁn)HSJ)iun - i‘H2
< Bullzn — E* + (1= Bo) 1T un — 2
= Bullen —&1*+ 1 = B I un — I (& — M AD)||?
< Ballzn = Z* 4+ (1= Ba)llun — (7 — M AT)|?
= Bullzn - j||2 + (1= Bu) (1 — an)rn — AnAzy — (T — )‘nAj)Hz
An g An |12
= (1-8)[01 - an)<(xn -1 anAxn) —(z— . anAx)) — an® ’
+Bullzn _jHQ
Y Y 2
_ _ _ 2 _ n s n ~
= (0 =B((1 = 2w — A - @ - 73|
~ >\n ~ n ~ ~
20 (1 = an) (7, (3 — 2 Awy) — (& = 72" AF) ) + 02 3]
+Bn”xn _j’|2
< Bullen = &1+ (1= 8a) (1 = an)?an — 31
~ An ~ ~ 2 (1502
“2an(1 — an)<x,$n (A — AF) - x> + 2|7 )
< 1= (1= Bo)an]|zn — &7

(1 - Bn)an{ — 21 — ap)(F, v — F) + any|gz||2}.

It is clear that Y (1—8,)ay, = 0o and limsup,,_, oo (—2(1 =0, ) (&, v —Z) +a [|7]?) <
0. We can therefore apply Lemma 2.4 to conclude that x,, — Z. This completes the
proof. O

Remark 3.3. From the listed references, there exist a large number of problems
which need to find the minimum norm solution. A useful path to circumvent this
problem is to use projection. Bauschke and Browein [2] and Censor and Zenios [7]
provide reviews of the field. The main difficult is in computation. The present paper
provides some methods which do not use projection for finding the minimum norm
solution problem. On the other hand, our suggested algorithms (3.1) and (3.12) are
very simple in compared with the algorithm introduced in [28].

Corollary 3.4. Let C' be a closed and conver subset of a real Hilbert space H.
Let A be an a-inverse strongly-monotone mapping of C into H and let B be a
maximal monotone operator on H, such that the domain of B is included in C. Let
JP = (I + AB)™! be the resolvent of B for A\ > 0 such that (A + B)7'0 # (. Let
A be a constant satisfying a < X\ < b where [a,b] C (0,2«a). Fort € (0,1 — ﬁ), let
{z¢} C C be a net generated by

Xy = Jf((l —t)ay — )\Axt).
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Then the net {z} converges strongly, ast — 0+, to a point T = P4, g)-19(0) which
is the minimum norm element in (A + B)~10.

Corollary 3.5. Let C' be a closed and convexr subset of a real Hilbert space H.
Let A be an a-inverse strongly-monotone mapping of C into H and let B be a
maximal monotone operator on H, such that the domain of B is included in C. Let

JP = (I 4+ AB)™! be the resolvent of B for A > 0 such that (A+ B)~'0 # 0. For
given xg € C, let {x,} C C be a sequence generated by

Tnt1 = Bnxn + (1 — ﬂn)an <(1 — ap) Ty — /\nA:z:n)

for alln >0, where {\,} C (0,2a),{an} C (0,1) and {Bn} C (0,1) satisfy
(1) limy oo ay =0 and Y, oy = 00;
(i) 0 < liminf, o By < limsup,,_, . Bn < 1;
(i71) a(l—an) < Ay < b(1—ay,) where [a,b] C (0,2q) and limy,—yo0 (An+1—An) = 0.
Then {xn} converges strongly to a point & = P44p)-19(0) which is the minimum
norm element in (A + B)~10.

4. APPLICATIONS

Next, we consider the problem for finding the minimum norm solution of a math-
ematical model related to equilibrium problems. Let C' be a nonempty, closed and
convex subset of a Hilbert space and let G : C' x C' — R be a bifunction satisfying
the following conditions:

(E1) G(z,z) =0 for all z € C,

(E2) G is monotone, i.e., G(x,y) + G(y,z) <0 for all z,y € C;

(E3) for all z,y,2 € C, limsup, o G(tz + (1 — t)z,y) < G(z,9);

(E4) for all x € C, G(x, ) is convex and lower semicontinuous.

Then, the mathematical model related to equilibrium problems (with respect to C)
is to find € C such that

(4.1) G(Z,y) >0

for all y € C. The set of such solutions Z is denoted by EP(G). The following
lemma appears implicitly in Blum and Oettli [4]:

Lemma 4.1. Let C be a nonempty, closed and convexr subset of H and let G be a
bifunction of C' x C into R satisfying (E1)-(E4). Letr > 0 and x € H. Then, there
exists z € C such that

1
G(Z7y)+;<y_zaz_$> 207vy€ C.

The following lemma was given in Combettes and Hirstoaga [10]:

Lemma 4.2. Assume that G : C x C — R satisfies (E1)-(Ej). For r > 0 and
x € H, define a mapping T, : H — C as follows:

1
T.(x)={z € C:G(z,y)+;(y—z,z—m> >0,y € C}

for all x € H. Then, the following hold:
(1) T, is single-valued;
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(2) T, is a firmly nonexpansive mapping, i.e., for all x,y € H,
1Trz — TryH2 <(Tyx — Ty, —y);

(3) F(Tr) = EP(G);

(4) EP(G) is closed and convez.

We call such T, the resolvent of G for r > 0. Using Lemmas 4.1 and 4.2, we have
the following lemma. See [1] for a more general result.

Lemma 4.3. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let G : C x C — R satisfy (E1)-(E4). Let Ag be a multivalued
mapping of H into itself defined by
{ze H:G(z,y) > (y—=x,2),Yye C},z € C,
Aqx =
0,z ¢ C.

Then, EP(G) = Aal(O) and A 1s a mazximal monotone operator with dom(Ag) C
C . Further, for any x € H and r > 0, the resolvent T, of G coincides with the
resolvent of Aq; i.e.,

Tox=(I+rAg) =

Form Lemma 4.3, Theorems 3.1 and 3.2, we have the following results.

Theorem 4.4. Let C' be a nonempty, closed and conver subset of a real Hilbert
space H. Let G be a bifunction from C x C' — R satisfying (E1)-(E4) and let T, be
the resolvent of G for r > 0. Let S be a nonexpansive mapping from C' into itself,
such that F(S)NEP(G) # (. Forte (0,1), let {x:} C C be a net generated by

Xy = STT((l - t)wt),t € (0,1).

Then the net {x;} converges strongly, as t — 0+, to a point T = Pp(s)nppc)(0)
which is the minimum norm element in F(S) N EP(G).

Corollary 4.5. Let C' be a nonempty, closed and convex subset of a real Hilbert
space H. Let G be a bifunction from C x C — R satisfying (E1)-(E4) and let T, be
the resolvent of G for r > 0. Suppose EP(G) # 0. Fort € (0,1), let {x;} C C be a
net generated by

vy = TT<(1 - t)a:t),t € (0,1).

Then the net {x;} converges strongly, ast — 0+, to a point T = Pgp(g)(0) which
is the minimum norm element in EP(G).

Theorem 4.6. Let C' be a nonempty, closed and conver subset of a real Hilbert
space H. Let G be a bifunction from C x C — R satisfying (E1)-(E4) and let T
be the resolvent of G for A > 0. Let S be a nonexpansive mapping from C into
itself, such that F\(S) N EP(G) # 0. For given xo € C, let {xn} C C be a sequence
generated by
Tnt1 = BnTn + (1 - ﬁn)ST)\n ((1 - an)xn>
for all n > 0, where {\,} C (0,00),{an} C (0,1) and {B,} C (0,1) satisfy
(1) limp oo o =0 and Y, oy = 00;
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(73) 0 < liminf, o fBn < limsup,,_,o Bn < 1;

(131) a < A\, < b where [a,b] C (0,00) and lim;,,_yo0(Ant1 — Ap) = 0.
Then {zn} converges strongly to a point ¥ = Pr(s\npp()(0) which is the minimum
norm element in F(S) N EP(G).

Corollary 4.7. Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let G be a bifunction from C x C — R satisfying (E1)-(E4) and let Ty be
the resolvent of G for A\ > 0. Suppose EP(G) # 0. For given xg € C, let {x,} C C

be a sequence generated by
Tnt1 = Bpn + (1 — Bn)Th, ((1 - O‘n)xn>

for alln >0, where {\,} C (0,00),{an} C (0,1) and {B,} C (0,1) satisfy

(1) limp oo ap =0 and ), oy = 00;
(7i) 0 < liminf, o By, < limsup,,_, . Bn < 1;
(131) a < A\, < b where [a,b] C (0,00) and lim;, o0 (Ant1 — Ap) = 0.
Then {xn} converges strongly to a point & = Pgp(q)(0) which is the minimum norm
element in EP(G).

Remark 4.8. Let H be a Hilbert space and let f be a proper lower semicontinuous
convex function of H into (—oo, +0oco]. Then, the subdifferential Of of f is defined
as follows:

of(x) ={2€ H: f(z) +(z,y —z) < f(y),y € H}

for all x € H. We know that Jf is maximal monotone (see [24]). Let C be a
closed and convex subset of H and let i be the indicator function of C. Then the
subdifferential Ji¢ of i¢ is a maximal monotone operator because of i¢ is a proper
lower semicontinuous convex function on H. So, we can define the resolvent Jyx of
Oic for A > 0, i.e.,

Iz = (I + \ic) tz,Vo € H.

It follows that

x € (I + \ic)Jzz,
which is equivalent to
(4.2) x € (I +AN¢g)Jy\z,
where Ngx is the normal cone to C at x, i.e.,
(4.3) Nex={z€ H:{(z,u—x) <0,Yu € C}.
From (4.2), we have

z— Jha
A
This together with (4.3) imply that
1

X(x — he,u— Jryr) <0,Vu € C.

€ NoJyx.
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Thus, Jyz = Pox. Moreover, we know that if C' is a closed half space (i.e., C
{z € H: (v,z) < p}), then the metric projection Po can be expressed by
_ meslblen) sl (4 4 0),

Pc$ =
z, (v =0),

for all x € H. In this case, we can compute Jyz by

_ max{0,(v,z)—p}

Tt = e v (v #0),
x, (v =0).
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