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COMMON FIXED POINT RESULTS IN COMPLEX VALUED
METRIC SPACE WITH APPLICATIONS TO SYSTEM OF
INTEGRAL EQUATIONS

JAMSHAID AHMAD, NAWAB HUSSAIN, AKBAR AZAM, AND MUHAMMAD ARSHAD

ABSTRACT. In this paper, we prove several common fixed point results by uti-
lizing new control functions in the contractive inequalities. An example is also
given to illustrate our main result. Moreover, we apply our main result to find
unique common solution of system of integral equations.

1. INTRODUCTION AND PRELIMINARIES

Fixed point theory became one of the most interesting area of research in the
last fifty years for its applications in optimization and control theory, differential
and integral equations, economics etc. The fixed point theorem, generally known
as the Banach contraction principle, appeared in explicit form in Banach’s thesis
in 1922 [12]. Since its simplicity and usefulness, it became a very popular tool
in solving many problems in mathematical analysis. Several authors proved fixed
point results in different metric spaces (see [1-9,11,14-20,22-25]).

On the other hand, the study of metric spaces has expressed the most important
role to many fields both in pure and applied sciences such as biology, medicine,
physics, and computer science (see [28]). Azam et al. [10] introduced the concept
of complex valued metric space and obtained sufficient conditions for the existence
of common fixed points of a pair of mappings satisfying contractive type condi-
tion. Subsequently, in [13], Bhatt et al. presented some common fixed point results
of mappings satisfying rational inequality in the context of complex valued met-
ric space. In the same way Rouzkard and Imdad [27] established some common
fixed point theorems satisfying certain rational expressions in complex valued met-
ric spaces which generalize, unify and complement the results of Azam et al. [10].
Recently, Sintunavarat and Kumam [29] obtained common fixed point results by
replacing constants of contractive condition to control functions. In this paper we
generalize and improve all of the above mentioned results. As an application we will
prove the existence of integrable solutions for an implicit system of integral equa-
tions. For the remainder of this section we gather some notations and preliminary
facts. Let C be the set of complex numbers and zi, 20 € C. Define a partial order
< on C as follows:

21 3 72 if and only if Re (21) < Re(22), Im(21) < Im(22).
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It follows that
21 3 %

if one of the following conditions is satisfied:

(i) Re(z1) = Re(z2), Im(z1) < Im(22)
(ii) Re(21) < Re(z2), Im(21) = Im(22)
(iii) Re(21) < Re(z2), Im(21) < Im(22)
(iv) Re(z1) = Re(z2), Im(z1) =Im(22).

In particular, we will write z1 3 22 if 21 # 22 and one of (i), (ii) and (iii) is satisfied
and we will write z; < 29 if only (iii) is satisfied. Note that

0 ,'j zljzg —— ‘21|<|2’2’,
z1 X 29,29 R 23 —> 21 < Z3.

Definition 1.1. Let X be a nonempty set. Suppose that the self-mapping d :
X x X — C satisfies:

(1) 0 2 d(z,y), for all z,y € X and d(x,y) = 0 if and only if z = y;
(2) d(z,y) =d(y,z) for all z,y € X
(3) d(z,y) S d(z,z) +d(z,y), for all z,y,z € X.
Then d is called a complex valued metric on X, and (X,d) is called a complex
valued metric space. A point z € X is called interior point of a set A C X whenever
there exists 0 < r € C such that

B(z,r)={y € X : d(z,y) <r} C A.
A point z € X is called a limit point of A whenever for every 0 < r € C,

Bla,r) N (A~ {2}) # 6

A is called open whenever each element of A is an interior point of A. Moreover,
a subset B C X is called closed whenever each limit point of B belongs to B. The
family

F={B(z,r):z€ X,0=<r}
is a sub-basis for a Hausdorff topology 7 on X.

Let z,, be a sequence in X and x € X. If for every ¢ € C with 0 < ¢ there is
no € N such that for all n > ng, d(zp,z) < ¢, then {x,} is said to be convergent,
{z,,} converges to x and z is the limit point of {z,,} . We denote this by lim,, o 2, =
x, or £, — x, as n — oo. If for every ¢ € C with 0 < ¢ there is ng € N such that
for all n > ng, d(zp,Tn+m) < ¢, then {z,} is called a Cauchy sequence in (X, d).
If every Cauchy sequence is convergent in (X, d), then (X,d) is called a complete
complex valued metric space. Let X be a non empty set and 7', f : X — X. The
mappings 7', f are said to be weakly compatible if they commute at their coincidence
point (i. e. Tfx = fTxz whenever Tx = fx). A point y € X is called point of
coincidence of T" and f if there exists a point x € X such that y = Tx = fx. We
require the following Lemmas:

Lemma 1.2 ([10]). Let (X,d) be a complex valued metric space and let {zy} be a
sequence in X. Then {x,} converges to x if and only if |d(xn,z)] — 0 as n — oc.
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Lemma 1.3 ([10]). Let (X,d) be a complex valued metric space and let {x,} be
a sequence in X. Then {x,} is a Cauchy sequence if and only if |d(zp, Tpim)| —
0 as n — oo.

Lemma 1.4 ([16]). Let X be a non empty set and f : X — X be a function. Then
there exists a subset E C X such that fE = fX and f : E — X is one to one.

Lemma 1.5 ([22]). Let X be a non empty set and the mappings S,T,f: X — X
have a unique point of coincidence v in X. If (S, f) and (T, f) are weakly compatible,
then S, T, f have a unique common fixed point.

2. MAIN RESULTS
Now we state and prove our first main result.

Theorem 2.1. Let (X,d) be a complete complex valued metric space and S, T :
X — X be a self-mappings such that

( ) ( ) :( ) $ Sx)d(y,Ty)+d(y,Sz)d(:c,Ty)
S » d(y,Sz)d( (7:}’: S rd(.Ty)
(21)  d(Sw,Ty) = | +O(x) S Tup v Zdwly) ir 4y 220,45 # 0
, ifAl =0 OTAQ—O.
for all x,y € X, where A1 = d(x,Sx) + d(y,Ty) and Ay = d(y, Sx) + d(z,Ty) and
AEO:X 0,1,

satisfying the following conditions,
(i) A(Sz) < Ax), E(Sz) < E(x) and O(Sz) < O(2);
(ii) A(Tz) < A(x), E(Tz) < E(z) and ©(Tz) < O(z);
(i) ( A+E24+0)(z) <1

Then S and T have a unique common fixed point.

Proof. Let xy be an arbitrary point in X. Define a sequence {z} as follows
Lo2k+1 = S$2k and Lok+2 = T$2k+1 for all k > 0.

Now we have two cases.

Case 1: If d(l‘gk, S$2k)+d($2k+17 T.IQ/H_l) 75 0 and d($2k+1, S:L‘Qk)—}—d($2k, T:Cgk_H) 75
0 for £ > 0, then

d(Tok 11, Tokt2)
= d(Szok, Trop41)
A(zor)d(war, Tox11)
d(xok, STor)d(Tog41, TTop41) + d(@op41, STop
d(war, Szor) + d(@2p+1, To2k+1
d(xok, Swop)d(wok, Tok41) + d(Top41, STor)d
d(T2k+1, STok) + d(x2k, TT2x11

IA

d T
FE(2a) (zok, Txop+1)

—~ — [ —

k41, TTok41)

+0O(z21)

~—

IA

A(zor)d(xok, Tokt1)
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d(ok, Tok+1)d(Top41, Taky2) + A(Tog41, Tort1)d(Tok, Tor+2)
d(Tok, Tog+1) + d(Top41, Tory2)

d(ok, Tok+1)d(Tok, Topt2) + d(Toki1, Tor+1)d(Tok41, Tor+2)
d(T2k41, Tokt1) + d(w2p, Tori2)

= A(zor)d(zak, Tog+1)

+E(.ﬁ62k)

+@(.€E2k

d(Tok, Tog+1)d(Tok41, Tog42)
d(2ok, Tok+1) + d(Tok+1, Tort2)
) d(wog, Tog+1)d(T2k, Tart2)
d(zok, Tog+2)

which implies that

|d(zok41, ort2)| < |A(xow)||d(z2k, T2r+1)]

|d(wok, Tokt1)|.|d(Tak1, Tory2)|
|d(z2k, Tog+1) + d(Tok+1, Tor+2)]
+|O(zor)||d(22k, Tokt1)|-

+[E(zar)]

Since |d(zak, Top+1) + d(Tok+1, Toars2)| > |d(22k, Togp41)|, therefore

N

|d(zort1, Tornt2)| < |Alzor)||d(zok, vopt1)| + |E(xor) ||d(22k+1, Tort2)]

so that

(2.2)

+|O(2ar)l|d(z2k, Tok+1)]

= |[ATwo—1)l|d(@2k, T2pt1)| + [E(TTop—1)||d(T2h+1, T2p42)|
+O(Tok—1)||d(w2k, Top+1)|

< |A(zop—1)|ld(z2k, Tok11)| + |E(@2k—1)||d(T2k 41, T2r12)|
+|O(z2p-1)||d(z2k, T2p41)]

= |A(Szak—2)||d(zok, T2r+1)| + [E(STok-2)||d(Tok+1, Tor+2)]
+|O(Szor—_2)||d(2ok, Top41)|

< |A(wak—2)lld(z2k; Tort1)| + [E(@2h-2)[|d(T2k+1, T2k+2)]
+1O(z2k—2)||d(z28, T2811)|
< |A(zo)lld(w2r, Torr1)| + [E(z0)||d(T2p41, Tort2)]

+10(z0)|d(z2r, T4 1)

A(zg) + O(z
|d(T2r 41, Topy2)| < M’d(ﬂfzkaxzkﬂ) :

Now similarly we get

d(zaky2, Tok43)
=d(v2x43, Tort2) = d(STop42, T2 1)
<A(zok+2)d(T2k42, Tok41)

+ E(z2k42)

d(zopt2, Sxokt2)d(Ton+1, Txok+1) + d(Top+1, STor2)d(@okt2, T2k y1)

d(zop42, Sxoky2) + d(@okt1, TTok41)
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d(xoky2, Sxopro)d(xokyo, TTopt1) + d(Tokt1, STokt2)d(Tok41, T2k+1)

+O(x
(T2k+2) d(xopt1, STokt2) + d(Tokr2, TTokt1)

=A(wok+2)d(T2k+2, Tok+1)

d(Tor+2, Tok43)d(Top+1, Tont2) + d(Tok41, Tor43)d(Toky2, Tor42)
(Top42, Toky3) + d(Tor+1, Tort2)

d(Tor+2, Tort3)d(Tor42, Tont2) + d(Tok41, Tor43)d(Tok41, Tor42)

(Top41, Toky3) + d(Tor+2, Tort2)

(

+ Z(z2k42)

=9

+ O(z2542)

U

— d(Tok+2, Tok+3)d(T2k+1, T2k+2
<A(zop+2)d(zop+2, Tog+1) + E(x2k+2) (( +2: 221)d(L2k1, Lokrs)

d(Top42, Top43) + d(Topt1, Topt2)
) d(xok41, Tok+3)d(T2k11, Tokt2)
d(zok41, T2k+3)

+ O(z2k42

)

so that

|d(@op42, Tort3)| < [A(zort2)||d(Tor2, Tars1)]

|d(z2112, T2r43)|-|d(Top 41, Tory2)]
|d(z2k+2, Tok+3) + d(Tok+1, Tor+2)|
+O(@op42)||d(T2k41, Tort2)|-

+=(wor42)|

Since |d(zok+2, Tokt3) + d(Tog+1, Tagt2)| > |d(T2k+1, Tokt2)|, so we have

| d(ok+2, Tok43)| < [AMzaks2)||d(@2kt1, Tonr2)| + [E(@2rt2)||d(z2k+2, Tot13)|

+10(Tak+2)[|d(T28+1, Tor+2)]

= |AMTzorq1)||d(@op 41, Torg2)| + [E(T2op11)||d(T2r42, Tor13)]
HO(Twop+1)||d(@2p+1, Topt2)|

<A@k )lld(z2r+1, D2p12)| + [E(Tok+1)||d(T2k42, Tort3)|
+|O(@2p+1)|[d(z2k+1, T2p12)]

= |A(Szap)l|d(@2k+1, Tonr2)| + [E(Sz2p) | d(2k+2, T2k+3)|
+O(Szok)||d(z2k+1, T2p+2)|

< |A(zor)||d(@okt1, Tar2)| + |2(xor)||d(22k+2, Tok43)]
+O(war)||d(z2h41, T2k 12)|
< |A(zo)l|d(wop41, Tort2)| + [E(w0)||d(T2r12, Tor13)]
+O(o)||d(z2111, Tor+2)|5
which implies that
Alzg) +O(x
(2.3) |d(z2kt2, Tort3)| < Alzo) + 6(zo)

= d(Tok41, Tak42)|-
1__( O) ||( + +)

Since |[(A+Z2+4 0)(x)| < 1, so we set A = \%\ < 1, it follows by (2.2) and
(2.3) that

Ald(zn—1,%n)|

)\2|d(xn—27xn—1)’

|d(@n, o) <
<
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S )\n’d(IEU, $1)|

for all n € N. Now, for any positive integer m and n with m > n, we have

‘d(l‘n,l’m” < |d($na xn+1)’ + |d($n+1a xn+2)| + -+ ’d(xm—lyxmﬂ
< AP AT e AT d (g, 1) |
)\n
<
< |55l @) |,
and so "
‘d<$N7xm)’ < 1— A’d(af(),l'l) ‘ —0 as m,n — Q.

Thus by Lemma 1.3, we conclude that {z,} is a Cauchy sequence in X. Since X is
complete, so there exists z € X such that x,, — z as n — 0o. Next we claim that
z = Sz. We suppose on the contrary that z # Sz and d(z,S5z) = u # 0. Then by
triangular inequality and given condition, we get
u = d(z,52) 2d(z,Txops+1) + d(Txok+1,S2) = d(z, Txory1) + d(Sz, Trog+1)
d(z, Txok+1) + A(2)d(z, Tok+1)
d(z,Sz)d(zok+1, Txop+1) + d(wogs1,S2)d(z, Trok11)
d(z,52) + d(z2k+1, TTop+1)
d(z,S82)d(z, Twok+1) + d(zok+1, Sz)d(Tok+1, TTok11)
d($2k+1, SZ) + d(z, T$2k+1)
d(z, Toy2) + A(2)d(z, x2k+1)
d(z, Sz)d(@2k+1, Tak+2) + d(T2k+1, S2)d(2, Top+2)
d(z, SZ) + d($2k+1, 172k:+2)
d(z, Sz)d(z, Xopt2) + d(Tok+1, S2)d(Tok+1, Toak+2)
+0(z2)
d(T2p41,52) + d(z, Top+2)

IA

+Z(2)

+0(2)

IA

+E(2)

which implies that
lul = |d(z,52)| < |d(z, zar+2)| + |A(2)[|d(z, D2p41)]|
| |ulld(z2k11, Toki2)| + |d(zan1, S2)||d(2, Tok12)|
|d(z, Sz) + d(22k41, T2k+2)]
ulld(z, Zak+2)| + |d(z2r41, S2)||d(T2k+1, T2rt2)|
+0(2)| :
|d(2k+1,52) + d(2, Tag+2)|
Taking limit as k — oo, we get |u| = 0, which is a contradiction and hence z = Sz.
Similarly it follows that z = T'z. Therefore z is the common fixed point S and T.

Finally, we show that z is a unique common fixed point of S and T. Assume that
there exists another common fixed point z* that is z* = Sz* = T2*. Then

d(z,2*) = d(Sz,Tz%)

+E(2)

d(z,Sz)d(z*,Tz*) + d(z*,Sz)d(z,Tz")
d(z,8z) +d(z*,Tz*)
d(z,Sz)d(z,Tz*) + d(z*,Sz)d(z*, Tz*)
d(z*,S8z) +d(z,Tz*) ’

= A(z)d(z,z%) + Z(2)

+0O(z)
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which implies that d(z,z*) = 0, so z = z*. Thus S and T have a unique common
fixed point.

Case 2: If d(xgk, S$2k)—|—d(l’2k+1, T:L'Qk_H) =0or d(l’gk_H, Smgk)—i—d(mgk, Tl’gk_H) =
0 (for any k£ > 0), then
(d(wak, Swop) + d(wap1, Trort1)) X (d(T2k11, STor) + d(zok, Trory1)) = 0,
implies that d(Sxak, Txor+1) = 0. Now, if
d(wag, Swor) + d(wopy1, Tr2r41) = 0,

then zop = Sxor = ®op+1 = T'Topt1 = Togro. Since we have xop1 = Sxor = Lo, SO
there exist k1 and [; such that Iy = Sk; = k1. Also, since xop19 = Twopt1 = Togt1,
so there exist k9 and Iy such that lo = Sky = ko. As

d(wag, Swor) + d(wop 41, Tr2r41) = 0,
so we have
d(kl, Sk)l) + d(kg, Tkg) =0,
which implies that
d(Sk1,Tko) =0,
so that, {1 = Sky = Tko = lo which in turn yields that [y = Sk; = SI;. Similarly,
one can also have lo = Tls. As I = lo, implies that Sl = Tl; = [y, so I1 = s,
is a common fixed point of S and 7. We now prove that S and T have a unique
common fixed point. For this, let {] be another common fixed point of S and 7.
Then we have [] = SI7 = Tl]. Since
Ay =d(lh,Sly) +d(l7,Ti}) =0,
implies that d(l1,1}) = d(Sl1,Tl}) = 0. This implies that [; = /. This completes
the proof. 0
Remark 2.2. By setting A(z) = A, Z(z) = p and O(z) = 7 in Theorem 2.1, we
get Theorem 2.11 of [27].
Remark 2.3. By setting S = T, A(x) = A\, E(z) = p and ©(x) = 7 in Theorem
2.1, we get Corollary 2.12 of [27].
Remark 2.4. By setting A(x) = Z(z) = 0 and ©(z) = a in Theorem 2.1, we get
Theorem 2.1 of [13].

Corollary 2.5. Let (X, d) be a complete complex valued metric space and T : X —
X be a self-mapping such that

A)ila, ) + Slo) Tl gt

d(z,Tz)d(z, d(y,Tx)d(y, .
(T, Ty) 24 +0 () WTDUETU LTI - p 4y 240, Ay #£ 0
0, ifAl =0 OT‘AQZO
for all x,y € X, where A1 = d(z,Tz) + d(y,Ty) and Az = d(y,Tx) + d(z,Ty) and
AZ,0:X = [0,1),

satisfying the following conditions,
(i) A(Tz) < Az), E(Tx) < Z(z) and O(Tzx) < O(x);
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(i) ( A+E+0)(z) < 1.
Then T has a unique fized point.

Corollary 2.6. Let (X,d) be a complete complex valued metric space and T : X —
X be a self-mapping such that

Az, )+ () S S e

n,. n d(z,T"z)d(z,T"y)+d(y,T"x)d(y,T™ :
d(T"z, T"y) = { +6(x) Ay T rde Ty s if AL #0,A2 #0
O, ifAl =0 OT'AQZO
for all z,y € X, and for some n € N, where Ay = d(x,T"z) + d(y,T™y) and
Ay =d(y,T"z) + d(z, T"y) and
ANZE0:X —[0,1),
satisfying the following conditions,
(i) A(T"x) < Ax),2(T"z) < E(x) and O(T"z) < O(z);
(i) ( A+E+0)(z) < 1.
Then T has a unique fixed point.

Proof. From Corollary 2.5, we get T™ has a unique fixed point z. It follows from
T (Tz)=T(T"z) =Tz,

that T'z is a fixed point of T™. Therefore Tz = z by the uniqueness of a fixed point
of T™ and then z is also a fixed point of T'. Since the fixed point of 7' is also fixed

point of T™, so the fixed point of T is unique. O
Example 2.7. Let X = {%, %, %, %, %} be a set. Define a mapping d : X x X — C
as follows
11 1 11 11 11
L) = ) =i =a(h ) =) -
(2 2) 3 4’4 55 66

= (2,3),d

= (37 4)

| =] = ot =W

I
2
—~
e
DO
N—

I
S

I
—~
s
(S
SN—

QU = U] = O =
=W =N =

I
—
~

S
~—

Sy

|
—
~
w
~
o
Il
S
|
—~
w
e~
~—

Wl W RN RN~ W -
N~ " ~— ~— ~—
Il
~—~
\.OO
I
S~—

ISH

[ N S e N B N I

~— N N N
Il
QL
TN TN TN
—— N——
| Il
—~
N
w
SN—

— N N
/N N N /N
B R W NN

() - b -enat Dol h-an

Then (X,d) is a complex valued metric space. Define a self-mapping 7" on X as

follows
1 1 1 1 1 1 1 1 1 1
r(3)=57(5) = 17(3) =57(5) =5 m7(5) = 5

Now we define the control functions A,Z,0 : X — [0,1) as A(z) = £,Z(z) = 22
and ©(z) = 77 for all z € X. By a routine calculation, one can easily verify that
(i) A(Tz) < A(z), E(Tz) < E(z) and O(Tz) < O(x); (ii) (A+E+0)(x) < 1. Also
the map T satisfies all the conditions of Corollary 2.5. Notice that the point % eX
remains fixed under 7" and is indeed unique.
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Theorem 2.8. Let (X,d) be a complete complex valued metric space and S,T :
X — X be self-mappings such that
E(z)d(z, Sz)d(y, Ty) + O(x)d(y, Sz)d(x, Ty)
1+d(z,y)
)

for all x,y € X,where the control functions A,=,0 : X — [0,1) satisfy the following
conditions,

(i) A(Sz) < A(x), E(Sz) <
(ii) A(Tz) < Ax), E(Tz) <
(iii) (A+=24+0)(x) < 1.
Then S and T have a unique common fixed point.

(2.4) d(Sz,Ty) <X A(x)d(x,y) +

Proof. Let xy be an arbitrary point in X and define a sequence {xy} as follows
Tok+1 — S$2k and Tok+2 = T$2k+1 for all k& > 0.

From (2.4), we get

d(zop+1,Topt2) = d(Swog, Txoky1)
E(xor)d(zok, Stog)d(xok+1, Tok41)
1+ d(xok, Tok+1)
d(xoky1, Sxop)d(xok, Txoky1)
+O(z
(w2r) 1+ d(xak, Tok+1)
d(zak, Tog+1)d(T2k+1, T2k+2)

PN

A(zor)d(xok, Top41) +

=< Azop)d(xok, x + Z(x
= A(zor)d(xok, Tor+1) (x2k) T+ d(ar, 2o s1)
d d
+O(291) (Tok+1, Tokt1)d( T2k, Toky2)
1+ d(xaok, Tont1)
= d d
< A(won)d(@ap, Topst) + (or)d(22k, Takt1) ($2k+17$2k+2)7

1+ d(2ok, T2k+1)
so that

|d(zop+1, Tok+2)] < |Alxor)||d(@ok, Tog+1)]
d(zak, Toky1)
1+ d(zok, Tokt1) |

+=(war)||d(z2841, Tor12)|

Since |1 + d(zak, ok+1)| > |d(zok, Tok+1)|, therefore

|d(@op 41, Targ2)] < |A(wor)||d(@or, ors1)| + [E(zar)||d(Top41, ori2)]
|A(Tzop-1)|[d(@2k, 22p41)] + [E(T228-1)[|d(@2k41, T2k12) |
|A(zor—1)l|d(@2k, Bok+1)] + [E(@2r-1)||d(T2k+1, T2k+2)]
(
(

<

= [A(Szop—2)||d(T2k, Tor11)| + [E(ST2k—2)||d(T2k 41, T2k 12) |
< JA(zok—2)|d(zok, zort1)| + |ZE(z2n—2)||d(T2k41, Tok12)]

< [A(wo)|ld(wak, Tar+1)] + |E(20)||d(Tok 41, Tar+2)],
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Since A, Z,0 : X — [0,1),s0 we have
Az
%‘|d($2k>$2k+l)"

(2.5) |d(@2k+1, Topt2)| < ‘1 —
Similarly we get

d(zok+2,%2k+3) = d(T2k+3, Tak+2) = d(Szaky2, TTokt1)
E(xokt2)d(xok+2, STopr2)d(xoks1, TTop+1)

‘<A e d x , L +
= ( 2k+2) ( 2k+2 2k+1) 1+d(x2k+2,932k+1)

d(Zok41, STopy2)d(Tor42, TTokt1)
1+ d(xok42, Tort1)
E(wory2)d(Tory2, Tor43)d(Tor41, Tar2)
1+ d(@op42, Tor11)
d(T2k+1, Tok+3)d(T2k+2, Tok+2)
1+ d(w2x12, Togs1)
E(wor+2)d(Topt2, Tor43)d(Top41, Tor2)
1 + d(@op42, Tog11) '

+ O(x2k12)

<A(zok+2)d(T2k+2, Tak+1) +

+ O(x2k12)

<A(zok+2)d(T2k+2, Tok+1) +
Hence

|d(@orr2, Tort3)] < |A(wopy2)||d(Tort1, Tory2)]
d(T2k41, T2k42)
1+ d(xok+1, Tok42)

+|ZE(zop12)||d(z2p12, Tor+3)|

Since |1 + d(zok+1, Tokr2)| > |d(Tokt1, Tokr2)|, therefore

|d(zok+2, Tort3)] < |A(@ory2)||d(zant1, Tant2)| + |E(z2n42)||d(X2k+2, Tokt3)]

= |[AMTzopq1)||d(w2p 41, Toka2)| + [E(TTox11)||d(T2k42, Tor13)]
<A (@opg 1) [ld(2r41, Zorg2)| + |E(z2rt1)]|d(T2r42, Toks3)]

= |A(Swop)||d(zort1, Tary2)| + [Z(STak)||d(T281 2, T2k 43)]

<A @op)||d(@op 11, Tort2)| + |E(w2r) ||d(T2p42, Tor43)]

< [A(wo)l|d(w2rt1, Tary2)| + |E(z0)||d(228 12, T2k 13)|

Since A,E,0 : X — [0,1), so we have

(2.6) |d(22k+2, Tor43)| < ‘%‘!d(wzk, Topy1)]-

—_
=
—

Now, by setting A = ‘11_\(53‘&(;)0)} < 1, and using (2.5) and (2.6), we get
[d(zn; Tn+1)| < Ald(zp—1,20)|
< >\2|d($n_2, 55n—1)|
< A'd(wo, 1)
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for all n € N. Now, for any positive integer m and n with m > n, we have

|d(@n, 2m)| < |d(@n, Tng1)] + |d(@nt1, Tng2)| + - + [d(@m—1, Tm)|
< AP AT e A d (g, 2) |
)\n
< .
< |55 1@, |
Hence "
|d(zp, xm)| < ] )\|d(x0,:c1)| —0 as m,n — .

Thus by Lemma 1.3, we conclude that {z,} is a Cauchy sequence in X. Since X is
complete, so there exists z € X such that x,, — 2z as n — oo. Next we claim that
z = Sz. We suppose on the contrary that z # Sz and d(z,S5z) = u # 0. Then by
triangular inequality and given condition, we get
u = d(z,52) <d(z,Txops+1) + d(Txok41,5%)
= d(z,Trops1) + d(Sz, Tropt1)
= d(2, Twop11) + A(2)d(2, T2p41)
+E(z)d(z, Sz)d(zok+1, Txopt1) + O(2)d(xok41, S2)d(z, Txok11)
1+ d(Z, :c2k+1)
d(z, Tog+2) + A(2)d(z, T2k41)
+E(z)u.d(x2k+1, Tok+2) + O(2)d(zaky1, S2)d(2, Topt2)
1 + d(Z, $2k+1) ’

IA

which implies that

IZ(2)||ul.|d(@op41, Tor42)]
|ul |d(z,Sz)| < |d(z, xarq2)| + [A(2)]]d(2, Topy1)| + 1+ dz. 2anes)

|d(z2r11,5%)]|d(2, Tok+2)|

|1+d(2,$2k+1)‘ '
Taking limit as k — oo, we get |u| = 0, which is a contradiction and hence z = Sz.
Similarly it follows that z = T'z. Therefore z is the common fixed point S and T.

Finally, we show that z is a unique common fixed point of S and 7. Assume that
there exists another common fixed point z* that is z* = §2* = T'z*. Then

d(z,z*) = d(Sz,Tz%)

+0(2)|

[1]

2 A@)d(z, ) 4 EBME S T2) + O(2)d(", 52)d(=, T=")

1+d(z,2%)
< A(2)d(z,2*) + E(2)d(z,2)d(z ,1z+)d4(rz(?z(f))d(z ,2)d(z, 2%)
so that . » d *
e, 7)) < MGz, )|+ 2N AR
Since

[1+d(z,2%)| > |d(z,2)],
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therefore
|d(z,2")] < [A(2) + ©(2)]]d(z, 27),

which is a contradiction so that z = z*. This completes the proof of the theorem. [J

Remark 2.9. By choosing O(x) = 0 in Theorem 2.8, we get Theorem 3.1 of Sin-
tunavarat and Kumam [29].

Remark 2.10. By setting A(z) = A,
get the Theorem 2.1 of [27].

(1]

() = p and ©(x) = 7, in Theorem 2.8, we

Remark 2.11. By setting A(x) = A,
get Theorem 4 of [10].

[1]

() = p and O(x) = 0, in Theorem 2.8, we

By setting S = T in Theorem 2.8, we get the following:

Corollary 2.12. Let (X,d) be a complete complex valued metric space and T :
X — X be a self-mapping such that

E(z)d(z, Tx)d(y, Ty) + ©(x)d(y, Tx)d(x, Ty)
1+d(z,y)

d(Tz, Ty) < A(x)d(x,y) +

for all x,y € X and
ANE O X —[0,1),
satisfying the following conditions,
(i) A(Tz) < A(z), E(Tx) < Z(x) and O(Tx) < O(x);
(i) ( A+=E+0)(x) < 1.
Then T has a unique fized point.

Remark 2.13. By setting S =T, and ©(z) = 0, in Theorem 2.8, we get Corollary
3.3 of [29].

Remark 2.14. By setting S =T, A(z) = A\, E(x) = p and O(x) = ~, in Theorem
2.8, we get the Corollary 2.3 of [27].

Remark 2.15. By setting S =T, A(z) = A, E(z) = p and O(z) = 0, in Theorem
2.8, we get the Corollary 5 of [10].

Corollary 2.16. Let (X,d) be a complete complexr valued metric space and T :
X — X be a self-mapping such that
=(@)d(x, T")d(y, T") + O(x)d(y, T"x)d(z, T"y)

d(T"x, T™y) < A(z)d(z,y) + 1+ d(z,y)

for all x,y € X and
ANEO: X —[0,1)
satisfying the following conditions,
(i) A(T"x) < Ax), 2(T"z) < E(x) and O(T"z) < O(z),
(i) ( A+=2+0)(z) < 1.
Then T has a unique fized point.
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Theorem 2.17. Let (X, d) be a complete complex valued metric space and S, T, f :
X — X be self-mappings such that SX UTX C fX. Assume that the following
conditions holds:
(2.7)
E(fz)d(fz, Sx)d(fy, Ty) + ©(fx)d(fy, Sx)d(fz,Ty)
d(Sz, Ty) R A(fx)d(fz, fy)+
(Sz, Ty) 2 A(fx)d(fz, fy) T+ d(fz. 1)
for all x,y € X, ,where the mappings A,Z,0© : X — [0,1) satisfy the following
conditions,
(i) A(Sz) < A(fz), E(Sz) <
(i) A(Tz) < A(fo), 5(Ta) <
(i) (A+=24+0)(fx) < 1.
If (S, f) and (T, f) are weakly compatible and f(X) is closed subspace of X, then
S, T, f have a unique common fized point.

(fx) and B(Sz) <
(fz) and ©(Tz) < O(fz);

Proof. By Lemma 1.4, there exists D C X such that f(D) = f(X)and f: D — X is
one-to-one. Now since SXUTX C fX, we define two mappings ', f : f(D) — f(D)
by

(2.8) I'(fx) = Sx
and
(2.9) F(fz)=Tx

respectively. Since f is one-to-one on D, then I', f are well-defined. Note that for
fx, fy € f(D), fx # fy, inequality (2.7) implies that

AT (fx),F (fy) = A(fﬂ:)d(fa:,fy)+E(fm)d(flf’f:rfc(i{;i)i(z/];y,F(fy))

+@(ffr)d(fy, L(fx))d(fz, F (fy))
L+d(fz, fy) ’

Since f(D) = f(X) is complete, so there exists a unique common fixed point z €
f(D) of T and F, that is z = T'(z) = F (z). Now there exists some u € D, such that
z = fu. Hence z = fu = I'(fu) and z = fu = F (fu) that is u is the coincidence
point of f,S and 7. This implies that z is the point of coincidence of (f,S) and
(f,T) and wu is the coincidence point of f,S and 7. We suppose on the contrary that
there exists z* € f(D) such that z* = f(v) = S(v) = T'(v) and z # z*. Now from
(2.7), we get

d(z,2*) = d(Su,Tv) < A(fu)d(fu, fv)
(fu)d(fu, Su)d(fv,Tv) + O(fu)d(fv, Su)d(fu,Tv)
1+ d(fu, fv)
E(2)d(z, 2)d(2*, 2*) + O(z)d(z*, z)d(z, z*)
1+ d(z,2%)
O(z)d(z*, z)d(z, z*)
14+d(z,2*)

—
(=)
—

PN

A(2)d(z, 2") +

PN

A(z)d(z, ") +




868 J. AHMAD, N. HUSSAIN, A. AZAM, AND M. ARSHAD

which implies that

ld(z", 2)|ld(z, z)]|

1+ d(z, 2)| ’

since |1 4 d(z,2*)| > |d(z,2")], so that |d(z,2*)| < |A(z) + O(2)]|d(z, z*)|. Hence
|d(z,2*)| = 0 that is z = z*. Thus the point of coincidence is unique. Now since

(S, f) and (T, f) are weakly compatible, so by Lemma 1.5, S, T, f have a unique
common fixed point. O

|d(z, 2")| < |A(2)|]d(z, 2*)| + ©(2)

Similarly we get the following result.

Theorem 2.18. Let (X,d) be a complete complex valued metric space and S, T, f :
X — X be self-mappings such that SX UTX C fX = gX. Assume that the
following conditions hold:

(2.10)

E(fx)d(fz, Sx)d(gy, Ty) + O(fz)d(gy, Sx)d(fz, Ty)
d(Sz,Ty) = A(fz)d(fz,gy)+ T+ d(fz.99)
for all x,y € X,where the control functions A,=,0 : X — [0,1) satisfy the following
conditions,

(i) A(Sz) < A(fz), <
(i) A(Tz) < A(fz), 5(Tx) <
(iii) (A+=24+0)(fx) < 1.

If (S, f) and (T, g) are weakly compatible and f(X) is closed subspace of X, then
S, T, f,g have a unique common fixed point.

/[_11
N
&

(fz) and ©(Sz) <
(fz) and O(Tz) < O(fx);

3. APPLICATIONS

Fixed point theorems for operators in ordered Banach spaces are widely inves-
tigated and have found various applications in differential and integral equations
(see [5,20,21,26] and references therein). In this section, we apply Theorem 2.8 to
the existence of common solution of the system of Urysohn integral equations.

Theorem 3.1. Let X = C([a,b],R"), a > 0 and d : X x X — C be defined as
follows:

d(z,y) = max |z (t) —y ()] V1 +a2e e,

t€la,b]
Consider the Urysohn integral equations
b
(31) o(t) = [ Kaltos,ols))ds + g(0),
a
b
(3.2) x(t) = / Ks(t,s,x(s))ds + h(t),

where t € [a,b] CR, z,g9,h € X.

Suppose that Ki, Ko : [a,b] X [a,b] x R" — R™ are such that F,,G, € X for
each z € X, where,

b b
F,(t)= / Ki(t,s,x(s))ds, Gg(t) = / Ky (t, s, z(s))ds for all t € [a,b].
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If there exist three mappings A, Z,0 : X — [0,1) with
(i) A(Fr+g) < AMz), E(F, 4+ g) < E(z) and O(F; + g) < O(2);
(ii) A(Gy +h) < A(z), B

x), 2(Gy + h) < E(x) and @(G h) < O(z);
(ili) ( A+E24+0)(z) <1

such that for all x,y € X the following condition holds

1Fs (£) — Gy (1) + g(t) — h(t)l| o V1 + a2e ™ @ 2 A(2) A, y)(t)

+ =
where

A(z,y) () = |lz(t) —y(t)| o V1 + a2eitan e
B(x,y)(t) = 1F% (1) + 9(8) = 2(t)l| o

Gy (1) + A(t) =yl itan—1a
1 +d(x,2) V1 +aZe
C (o y) () = e +9(0) - y(i)h!(fyygt) +ht) =3Ol gzt e

then the system of integral equations (3.1) and (3.2) have a unique common solution
Proof. Define S,T : X — X by

Sr=F,+g, Tx=G,;+h.

Then
(S Ty) = max [F (1) = Gy (1) + 9(0) = h(t) |, VI + e,
d(z,y) = max A (z,y) (t),
te(a,b)]
d (2, Sx) = max | Fe (1) + (1) ~ (D)oo V1+ a2t e,
€la

A0 T) = ma Gy (1) + h(t) =y VI+aPel e

d(y,52) = max [1Fy (1) + 9(0) = y(t) oo V1 + e,
A, Ty) = mas |Gy (6) + h(t) = 2(t) o V1 +a2el e,
t€la, 00
It is easily seen that for all x,y € X, we have
E(z)d(z, Sz)d(y, Ty) + O(x)d(y, Sz)d(z, Ty)
<
d(Sz, Ty) = A(z)d(z,y) + T+ d(z,y)
and

)

—

(i) A(Sz) < A(z), 2(Sz) < E(z) and ©(Sz) < O(x);
(ii) A(Tz) < A(z), E(Tz) <=

—

< E(z) and ©(Tz) < O(z).
By Theorem 2.8, we get S and T have a common fixed point. Thus there exists

. 5 ists a
unique point € X such that x = Sx = Tz. Therefore, we conclude that the system
of Urysohn integral equations (3.1) and (3.2) have a unique common solution

g

(#)B(z,y)(t) + O(z)C(z,y)(t),

869
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