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It follows that

z1 ≾ z2

if one of the following conditions is satisfied:

(i) Re (z1) = Re (z2) , Im (z1) < Im (z2)

(ii) Re (z1) < Re (z2) , Im (z1) = Im (z2)

(iii) Re (z1) < Re (z2) , Im (z1) < Im (z2)

(iv) Re (z1) = Re (z2) , Im (z1) = Im (z2) .

In particular, we will write z1 ⋨ z2 if z1 ̸= z2 and one of (i), (ii) and (iii) is satisfied
and we will write z1 ≺ z2 if only (iii) is satisfied. Note that

0 ≾ z1 ⋨ z2 =⇒ |z1| < |z2| ,
z1 ⪯ z2, z2 ≺ z3 =⇒ z1 ≺ z3.

Definition 1.1. Let X be a nonempty set. Suppose that the self-mapping d :
X ×X → C satisfies:

(1) 0 ≾ d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X
(3) d(x, y) ≾ d(x, z) + d(z, y), for all x, y, z ∈ X.

Then d is called a complex valued metric on X, and (X, d) is called a complex
valued metric space. A point x ∈ X is called interior point of a set A ⊆ X whenever
there exists 0 ≺ r ∈ C such that

B(x, r) = {y ∈ X : d(x, y) ≺ r} ⊆ A.

A point x ∈ X is called a limit point of A whenever for every 0 ≺ r ∈ C,
B(x, r) ∩ (A∖ {x}) ̸= ϕ

A is called open whenever each element of A is an interior point of A. Moreover,
a subset B ⊆ X is called closed whenever each limit point of B belongs to B. The
family

F = {B(x, r) : x ∈ X, 0 ≺ r}
is a sub-basis for a Hausdorff topology τ on X.

Let xn be a sequence in X and x ∈ X. If for every c ∈ C with 0 ≺ c there is
n0 ∈ N such that for all n > n0, d(xn, x) ≺ c, then {xn} is said to be convergent,
{xn} converges to x and x is the limit point of {xn} .We denote this by limn→∞ xn =
x, or xn −→ x, as n → ∞. If for every c ∈ C with 0 ≺ c there is n0 ∈ N such that
for all n > n0, d(xn, xn+m) ≺ c, then {xn} is called a Cauchy sequence in (X, d).
If every Cauchy sequence is convergent in (X, d), then (X, d) is called a complete
complex valued metric space. Let X be a non empty set and T, f : X → X. The
mappings T, f are said to be weakly compatible if they commute at their coincidence
point (i. e. Tfx = fTx whenever Tx = fx). A point y ∈ X is called point of
coincidence of T and f if there exists a point x ∈ X such that y = Tx = fx. We
require the following Lemmas:

Lemma 1.2 ([10]). Let (X, d) be a complex valued metric space and let {xn} be a
sequence in X. Then {xn} converges to x if and only if |d(xn, x)| → 0 as n → ∞.
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Lemma 1.3 ([10]). Let (X, d) be a complex valued metric space and let {xn} be
a sequence in X. Then {xn} is a Cauchy sequence if and only if |d(xn, xn+m)| →
0 as n → ∞.

Lemma 1.4 ( [16]). Let X be a non empty set and f : X → X be a function. Then
there exists a subset E ⊂ X such that fE = fX and f : E → X is one to one.

Lemma 1.5 ([22]). Let X be a non empty set and the mappings S, T, f : X → X
have a unique point of coincidence v in X. If (S, f) and (T, f) are weakly compatible,
then S, T, f have a unique common fixed point.

2. Main results

Now we state and prove our first main result.

Theorem 2.1. Let (X, d) be a complete complex valued metric space and S, T :
X → X be a self-mappings such that

(2.1) d(Sx, Ty) ⪯


Λ(x)d(x, y) + Ξ(x)d(x,Sx)d(y,Ty)+d(y,Sx)d(x,Ty)

d(x,Sx)+d(y,Ty)

+Θ(x)d(x,Sx)d(x,Ty)+d(y,Sx)d(y,Ty)
d(y,Sx)+d(x,Ty) , if A1 ̸= 0,A2 ̸= 0

0, if A1 = 0 or A2 = 0.

for all x, y ∈ X, where A1 = d(x, Sx) + d(y, Ty) and A2 = d(y, Sx) + d(x, Ty) and

Λ,Ξ,Θ : X → [0, 1),

satisfying the following conditions,

(i) Λ(Sx) ≤ Λ(x), Ξ(Sx) ≤ Ξ(x) and Θ(Sx) ≤ Θ(x);
(ii) Λ(Tx) ≤ Λ(x), Ξ(Tx) ≤ Ξ(x) and Θ(Tx) ≤ Θ(x);
(iii) (Λ + Ξ +Θ)(x) < 1.
Then S and T have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X. Define a sequence {xk} as follows

x2k+1 = Sx2k and x2k+2 = Tx2k+1 for all k ≥ 0.

Now we have two cases.

Case 1: If d(x2k, Sx2k)+d(x2k+1, Tx2k+1) ̸= 0 and d(x2k+1, Sx2k)+d(x2k, Tx2k+1) ̸=
0 for k ≥ 0, then

d(x2k+1, x2k+2)

= d(Sx2k, Tx2k+1)

⪯ Λ(x2k)d(x2k, x2k+1)

+Ξ(x2k)
d(x2k, Sx2k)d(x2k+1, Tx2k+1) + d(x2k+1, Sx2k)d(x2k, Tx2k+1)

d(x2k, Sx2k) + d(x2k+1, Tx2k+1)

+Θ(x2k)
d(x2k, Sx2k)d(x2k, Tx2k+1) + d(x2k+1, Sx2k)d(x2k+1, Tx2k+1)

d(x2k+1, Sx2k) + d(x2k, Tx2k+1)

⪯ Λ(x2k)d(x2k, x2k+1)



858 J. AHMAD, N. HUSSAIN, A. AZAM, AND M. ARSHAD

+Ξ(x2k)
d(x2k, x2k+1)d(x2k+1, x2k+2) + d(x2k+1, x2k+1)d(x2k, x2k+2)

d(x2k, x2k+1) + d(x2k+1, x2k+2)

+Θ(x2k)
d(x2k, x2k+1)d(x2k, x2k+2) + d(x2k+1, x2k+1)d(x2k+1, x2k+2)

d(x2k+1, x2k+1) + d(x2k, x2k+2)

⪯ Λ(x2k)d(x2k, x2k+1)

+Ξ(x2k)
d(x2k, x2k+1)d(x2k+1, x2k+2)

d(x2k, x2k+1) + d(x2k+1, x2k+2)

+Θ(x2k)
d(x2k, x2k+1)d(x2k, x2k+2)

d(x2k, x2k+2)
.

which implies that

|d(x2k+1, x2k+2)| ≤ |Λ(x2k)||d(x2k, x2k+1)|

+|Ξ(x2k)|
|d(x2k, x2k+1)|.|d(x2k+1, x2k+2)|
|d(x2k, x2k+1) + d(x2k+1, x2k+2)|

+|Θ(x2k)||d(x2k, x2k+1)|.

Since |d(x2k, x2k+1) + d(x2k+1, x2k+2)| > |d(x2k, x2k+1)|, therefore

|d(x2k+1, x2k+2)| ≤ |Λ(x2k)||d(x2k, x2k+1)|+ |Ξ(x2k)||d(x2k+1, x2k+2)|
+|Θ(x2k)||d(x2k, x2k+1)|

= |Λ(Tx2k−1)||d(x2k, x2k+1)|+ |Ξ(Tx2k−1)||d(x2k+1, x2k+2)|
+|Θ(Tx2k−1)||d(x2k, x2k+1)|

≤ |Λ(x2k−1)||d(x2k, x2k+1)|+ |Ξ(x2k−1)||d(x2k+1, x2k+2)|
+|Θ(x2k−1)||d(x2k, x2k+1)|

= |Λ(Sx2k−2)||d(x2k, x2k+1)|+ |Ξ(Sx2k−2)||d(x2k+1, x2k+2)|
+|Θ(Sx2k−2)||d(x2k, x2k+1)|

≤ |Λ(x2k−2)||d(x2k, x2k+1)|+ |Ξ(x2k−2)||d(x2k+1, x2k+2)|
+|Θ(x2k−2)||d(x2k, x2k+1)|
...

≤ |Λ(x0)||d(x2k, x2k+1)|+ |Ξ(x0)||d(x2k+1, x2k+2)|
+|Θ(x0)||d(x2k, x2k+1)|

so that

(2.2) |d(x2k+1, x2k+2)| ≤
∣∣∣Λ(x0) + Θ(x0)

1− Ξ(x0)
||d(x2k, x2k+1)

∣∣∣.
Now similarly we get

d(x2k+2, x2k+3)

=d(x2k+3, x2k+2) = d(Sx2k+2, Tx2k+1)

⪯Λ(x2k+2)d(x2k+2, x2k+1)

+ Ξ(x2k+2)
d(x2k+2, Sx2k+2)d(x2k+1, Tx2k+1) + d(x2k+1, Sx2k+2)d(x2k+2, Tx2k+1)

d(x2k+2, Sx2k+2) + d(x2k+1, Tx2k+1)
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+Θ(x2k+2)
d(x2k+2, Sx2k+2)d(x2k+2, Tx2k+1) + d(x2k+1, Sx2k+2)d(x2k+1, Tx2k+1)

d(x2k+1, Sx2k+2) + d(x2k+2, Tx2k+1)

⪯Λ(x2k+2)d(x2k+2, x2k+1)

+ Ξ(x2k+2)
d(x2k+2, x2k+3)d(x2k+1, x2k+2) + d(x2k+1, x2k+3)d(x2k+2, x2k+2)

d(x2k+2, x2k+3) + d(x2k+1, x2k+2)

+ Θ(x2k+2)
d(x2k+2, x2k+3)d(x2k+2, x2k+2) + d(x2k+1, x2k+3)d(x2k+1, x2k+2)

d(x2k+1, x2k+3) + d(x2k+2, x2k+2)

⪯Λ(x2k+2)d(x2k+2, x2k+1) + Ξ(x2k+2)
d(x2k+2, x2k+3)d(x2k+1, x2k+2)

d(x2k+2, x2k+3) + d(x2k+1, x2k+2)

+ Θ(x2k+2)
d(x2k+1, x2k+3)d(x2k+1, x2k+2)

d(x2k+1, x2k+3)
,

so that

|d(x2k+2, x2k+3)| ≤ |Λ(x2k+2)||d(x2k+2, x2k+1)|

+|Ξ(x2k+2)|
|d(x2k+2, x2k+3)|.|d(x2k+1, x2k+2)|
|d(x2k+2, x2k+3) + d(x2k+1, x2k+2)|

+|Θ(x2k+2)||d(x2k+1, x2k+2)|.
Since |d(x2k+2, x2k+3) + d(x2k+1, x2k+2)| > |d(x2k+1, x2k+2)|, so we have

|d(x2k+2, x2k+3)| ≤ |Λ(x2k+2)||d(x2k+1, x2k+2)|+ |Ξ(x2k+2)||d(x2k+2, x2k+3)|
+|Θ(x2k+2)||d(x2k+1, x2k+2)|

= |Λ(Tx2k+1)||d(x2k+1, x2k+2)|+ |Ξ(Tx2k+1)||d(x2k+2, x2k+3)|
+|Θ(Tx2k+1)||d(x2k+1, x2k+2)|

≤ |Λ(x2k+1)||d(x2k+1, x2k+2)|+ |Ξ(x2k+1)||d(x2k+2, x2k+3)|
+|Θ(x2k+1)||d(x2k+1, x2k+2)|

= |Λ(Sx2k)||d(x2k+1, x2k+2)|+ |Ξ(Sx2k)||d(x2k+2, x2k+3)|
+|Θ(Sx2k)||d(x2k+1, x2k+2)|

≤ |Λ(x2k)||d(x2k+1, x2k+2)|+ |Ξ(x2k)||d(x2k+2, x2k+3)|
+|Θ(x2k)||d(x2k+1, x2k+2)|
...

≤ |Λ(x0)||d(x2k+1, x2k+2)|+ |Ξ(x0)||d(x2k+2, x2k+3)|
+|Θ(x0)||d(x2k+1, x2k+2)|,

which implies that

(2.3) |d(x2k+2, x2k+3)| ≤
∣∣∣Λ(x0) + Θ(x0)

1− Ξ(x0)
||d(x2k+1, x2k+2)

∣∣∣.
Since |(Λ + Ξ + Θ)(x)| < 1, so we set λ = |Λ(x0)+Θ(x0)

1−Ξ(x0)
| < 1, it follows by (2.2) and

(2.3) that

|d(xn, xn+1)| ≤ λ|d(xn−1, xn)|
≤ λ2|d(xn−2, xn−1)|
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...

≤ λn|d(x0, x1)|
for all n ∈ N. Now, for any positive integer m and n with m > n, we have

|d(xn, xm)| ≤ |d(xn, xn+1)|+ |d(xn+1, xn+2)|+ · · ·+ |d(xm−1, xm)|
≤ [λn + λn+1 + · · ·+ λm−1]|d (x0, x1) |

≤
[ λn

1− λ

]
|d (x0, x1) |,

and so

|d(xn, xm)| ≤ λn

1− λ
|d (x0, x1) | −→ 0 as m,n −→ ∞.

Thus by Lemma 1.3, we conclude that {xn} is a Cauchy sequence in X. Since X is
complete, so there exists z ∈ X such that xn −→ z as n −→ ∞. Next we claim that
z = Sz. We suppose on the contrary that z ̸= Sz and d(z, Sz) = u ̸= 0. Then by
triangular inequality and given condition, we get

u = d(z, Sz) ⪯ d(z, Tx2k+1) + d(Tx2k+1, Sz) = d(z, Tx2k+1) + d(Sz, Tx2k+1)

⪯ d(z, Tx2k+1) + Λ(z)d(z, x2k+1)

+Ξ(z)
d(z, Sz)d(x2k+1, Tx2k+1) + d(x2k+1, Sz)d(z, Tx2k+1)

d(z, Sz) + d(x2k+1, Tx2k+1)

+Θ(z)
d(z, Sz)d(z, Tx2k+1) + d(x2k+1, Sz)d(x2k+1, Tx2k+1)

d(x2k+1, Sz) + d(z, Tx2k+1)

⪯ d(z, x2k+2) + Λ(z)d(z, x2k+1)

+Ξ(z)
d(z, Sz)d(x2k+1, x2k+2) + d(x2k+1, Sz)d(z, x2k+2)

d(z, Sz) + d(x2k+1, x2k+2)

+Θ(z)
d(z, Sz)d(z, x2k+2) + d(x2k+1, Sz)d(x2k+1, x2k+2)

d(x2k+1, Sz) + d(z, x2k+2)

which implies that

|u| = |d(z, Sz)| ≤ |d(z, x2k+2)|+ |Λ(z)||d(z, x2k+1)|

+|Ξ(z)| |u||d(x2k+1, x2k+2)|+ |d(x2k+1, Sz)||d(z, x2k+2)|
|d(z, Sz) + d(x2k+1, x2k+2)|

+|Θ(z)| |u||d(z, x2k+2)|+ |d(x2k+1, Sz)||d(x2k+1, x2k+2)|
|d(x2k+1, Sz) + d(z, x2k+2)|

.

Taking limit as k → ∞, we get |u| = 0, which is a contradiction and hence z = Sz.
Similarly it follows that z = Tz. Therefore z is the common fixed point S and T.
Finally, we show that z is a unique common fixed point of S and T . Assume that
there exists another common fixed point z∗ that is z∗ = Sz∗ = Tz∗. Then

d(z, z∗) = d(Sz, Tz∗)

⪯ Λ(z)d(z, z∗) + Ξ(z)
d(z, Sz)d(z∗, T z∗) + d(z∗, Sz)d(z, Tz∗)

d(z, Sz) + d(z∗, T z∗)

+Θ(z)
d(z, Sz)d(z, Tz∗) + d(z∗, Sz)d(z∗, T z∗)

d(z∗, Sz) + d(z, Tz∗)
,



COMMON FIXED POINT RESULTS 861

which implies that d(z, z∗) = 0, so z = z∗. Thus S and T have a unique common
fixed point.

Case 2: If d(x2k, Sx2k)+d(x2k+1, Tx2k+1) = 0 or d(x2k+1, Sx2k)+d(x2k, Tx2k+1) =
0 (for any k ≥ 0), then

(d(x2k, Sx2k) + d(x2k+1, Tx2k+1))× (d(x2k+1, Sx2k) + d(x2k, Tx2k+1)) = 0,

implies that d(Sx2k, Tx2k+1) = 0. Now, if

d(x2k, Sx2k) + d(x2k+1, Tx2k+1) = 0,

then x2k = Sx2k = x2k+1 = Tx2k+1 = x2k+2. Since we have x2k+1 = Sx2k = x2k, so
there exist k1 and l1 such that l1 = Sk1 = k1. Also, since x2k+2 = Tx2k+1 = x2k+1,
so there exist k2 and l2 such that l2 = Sk2 = k2. As

d(x2k, Sx2k) + d(x2k+1, Tx2k+1) = 0,

so we have
d(k1, Sk1) + d(k2, Tk2) = 0,

which implies that
d(Sk1, Tk2) = 0,

so that, l1 = Sk1 = Tk2 = l2 which in turn yields that l1 = Sk1 = Sl1. Similarly,
one can also have l2 = T l2. As l1 = l2, implies that Sl1 = T l1 = l1, so l1 = l2,
is a common fixed point of S and T . We now prove that S and T have a unique
common fixed point. For this, let l∗1 be another common fixed point of S and T .
Then we have l∗1 = Sl∗1 = T l∗1. Since

A1 = d(l1, Sl1) + d(l∗1, T l
∗
1) = 0,

implies that d(l1, l
∗
1) = d(Sl1, T l

∗
1) = 0. This implies that l1 = l∗1. This completes

the proof. □
Remark 2.2. By setting Λ(x) = λ, Ξ(x) = µ and Θ(x) = γ in Theorem 2.1, we
get Theorem 2.11 of [27].

Remark 2.3. By setting S = T, Λ(x) = λ, Ξ(x) = µ and Θ(x) = γ in Theorem
2.1, we get Corollary 2.12 of [27].

Remark 2.4. By setting Λ(x) = Ξ(x) = 0 and Θ(x) = a in Theorem 2.1, we get
Theorem 2.1 of [13].

Corollary 2.5. Let (X, d) be a complete complex valued metric space and T : X →
X be a self-mapping such that

d(Tx, Ty) ⪯


Λ(x)d(x, y) + Ξ(x)d(x,Tx)d(y,Ty)+d(y,Tx)d(x,Ty)

d(x,Tx)+d(y,Ty)

+Θ(x)d(x,Tx)d(x,Ty)+d(y,Tx)d(y,Ty)
d(y,Tx)+d(x,Ty) , if A1 ̸= 0, A2 ̸= 0

0, if A1 = 0 or A2 = 0

for all x, y ∈ X, where A1 = d(x, Tx) + d(y, Ty) and A2 = d(y, Tx) + d(x, Ty) and

Λ,Ξ,Θ : X → [0, 1),

satisfying the following conditions,
(i) Λ(Tx) ≤ Λ(x), Ξ(Tx) ≤ Ξ(x) and Θ(Tx) ≤ Θ(x);
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(ii) (Λ + Ξ +Θ)(x) < 1.
Then T has a unique fixed point.

Corollary 2.6. Let (X, d) be a complete complex valued metric space and T : X →
X be a self-mapping such that

d(Tnx, Tny) ⪯


Λ(x)d(x, y) + Ξ(x)d(x,T

nx)d(y,Tny)+d(y,Tnx)d(x,Tny)
d(x,Tnx)+d(y,Tny)

+Θ(x)d(x,T
nx)d(x,Tny)+d(y,Tnx)d(y,Tny)

d(y,Tnx)+d(x,Tny) , if A1 ̸= 0, A2 ̸= 0

0, if A1 = 0 or A2 = 0

for all x, y ∈ X, and for some n ∈ N, where A1 = d(x, Tnx) + d(y, Tny) and
A2 = d(y, Tnx) + d(x, Tny) and

Λ,Ξ,Θ : X → [0, 1),

satisfying the following conditions,
(i) Λ(Tnx) ≤ Λ(x),Ξ(Tnx) ≤ Ξ(x) and Θ(Tnx) ≤ Θ(x);
(ii) (Λ + Ξ +Θ)(x) < 1.
Then T has a unique fixed point.

Proof. From Corollary 2.5, we get Tn has a unique fixed point z. It follows from

Tn(Tz) = T (Tnz) = Tz,

that Tz is a fixed point of Tn. Therefore Tz = z by the uniqueness of a fixed point
of Tn and then z is also a fixed point of T . Since the fixed point of T is also fixed
point of Tn, so the fixed point of T is unique. □
Example 2.7. Let X = {1

2 ,
1
3 ,

1
4 ,

1
5 ,

1
6} be a set. Define a mapping d : X ×X → C

as follows

d
(1
2
,
1

2

)
= d

(1
3
,
1

3

)
= d

(1
4
,
1

4

)
= d

(1
5
,
1

5

)
= d

(1
6
,
1

6

)
= 0

d
(1
2
,
1

3

)
= d

(1
3
,
1

2

)
= (2, 3), d

(1
2
,
1

4

)
= d(

1

4
,
1

2

)
= (3, 4)

d
(1
2
,
1

5

)
= d

(1
5
,
1

2

)
= (3, 4), d

(1
2
,
1

6

)
= d

(1
6
,
1

2

)
= (4, 5)

d
(1
3
,
1

4

)
= d

(1
4
,
1

3

)
= (2, 3), d

(1
3
,
1

5

)
= d

(1
5
,
1

3

)
= (2, 3)

d
(1
3
,
1

6

)
= d

(1
6
,
1

3

)
= (2, 3), d

(1
4
,
1

5

)
= d

(1
5
,
1

4

)
= (3, 4)

d
(1
4
,
1

6

)
= d

(1
6
,
1

4

)
= (3, 4), d

(1
5
,
1

6

)
= d

(1
6
,
1

5

)
= (4, 5).

Then (X, d) is a complex valued metric space. Define a self-mapping T on X as
follows

T
(1
2

)
=

1

3
, T

(1
3

)
=

1

4
, T

(1
4

)
=

1

5
, T

(1
5

)
=

1

6
and T

(1
6

)
=

1

6
.

Now we define the control functions Λ,Ξ,Θ : X → [0, 1) as Λ(x) = x
2 ,Ξ(x) = 4

5x
and Θ(x) = x

1+x for all x ∈ X. By a routine calculation, one can easily verify that

(i) Λ(Tx) ≤ Λ(x), Ξ(Tx) ≤ Ξ(x) and Θ(Tx) ≤ Θ(x); (ii) (Λ + Ξ +Θ)(x) < 1. Also
the map T satisfies all the conditions of Corollary 2.5. Notice that the point 1

6 ∈ X
remains fixed under T and is indeed unique.
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Theorem 2.8. Let (X, d) be a complete complex valued metric space and S, T :
X → X be self-mappings such that

(2.4) d(Sx, Ty) ⪯ Λ(x)d(x, y) +
Ξ(x)d(x, Sx)d(y, Ty) + Θ(x)d(y, Sx)d(x, Ty)

1 + d(x, y)

for all x, y ∈ X,where the control functions Λ,Ξ,Θ : X → [0, 1) satisfy the following
conditions,

(i) Λ(Sx) ≤ Λ(x), Ξ(Sx) ≤ Ξ(x) and Θ(Sx) ≤ Θ(x);
(ii) Λ(Tx) ≤ Λ(x), Ξ(Tx) ≤ Ξ(x) and Θ(Tx) ≤ Θ(x);
(iii) (Λ + Ξ +Θ)(x) < 1.

Then S and T have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X and define a sequence {xk} as follows

x2k+1 = Sx2k and x2k+2 = Tx2k+1 for all k ≥ 0.

From (2.4), we get

d(x2k+1, x2k+2) = d(Sx2k, Tx2k+1)

⪯ Λ(x2k)d(x2k, x2k+1) +
Ξ(x2k)d(x2k, Sx2k)d(x2k+1, Tx2k+1)

1 + d(x2k, x2k+1)

+Θ(x2k)
d(x2k+1, Sx2k)d(x2k, Tx2k+1)

1 + d(x2k, x2k+1)

⪯ Λ(x2k)d(x2k, x2k+1) + Ξ(x2k)
d(x2k, x2k+1)d(x2k+1, x2k+2)

1 + d(x2k, x2n+1)

+Θ(x2k)
d(x2k+1, x2k+1)d(x2k, x2k+2)

1 + d(x2k, x2n+1)

⪯ Λ(x2k)d(x2k, x2k+1) +
Ξ(x2k)d(x2k, x2k+1)d(x2k+1, x2k+2)

1 + d(x2k, x2k+1)
,

so that

|d(x2k+1, x2k+2)| ≤ |Λ(x2k)||d(x2k, x2k+1)|

+|Ξ(x2k)||d(x2k+1, x2k+2)|
∣∣∣ d(x2k, x2k+1)

1 + d(x2k, x2k+1)

∣∣∣.
Since |1 + d(x2k, x2k+1)| > |d(x2k, x2k+1)|, therefore
|d(x2k+1, x2k+2)| ≤ |Λ(x2k)||d(x2k, x2k+1)|+ |Ξ(x2k)||d(x2k+1, x2k+2)|

= |Λ(Tx2k−1)||d(x2k, x2k+1)|+ |Ξ(Tx2k−1)||d(x2k+1, x2k+2)|
≤ |Λ(x2k−1)||d(x2k, x2k+1)|+ |Ξ(x2k−1)||d(x2k+1, x2k+2)|
= |Λ(Sx2k−2)||d(x2k, x2k+1)|+ |Ξ(Sx2k−2)||d(x2k+1, x2k+2)|
≤ |Λ(x2k−2)||d(x2k, x2k+1)|+ |Ξ(x2k−2)||d(x2k+1, x2k+2)|

·
·
·

≤ |Λ(x0)||d(x2k, x2k+1)|+ |Ξ(x0)||d(x2k+1, x2k+2)|,
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Since Λ,Ξ,Θ : X → [0, 1),so we have

(2.5) |d(x2k+1, x2k+2)| ≤
∣∣∣ Λ(x0)

1− Ξ(x0)

∣∣∣|d(x2k, x2k+1)|.

Similarly we get

d(x2k+2,x2k+3) = d(x2k+3, x2k+2) = d(Sx2k+2, Tx2k+1)

⪯Λ(x2k+2)d(x2k+2, x2k+1) +
Ξ(x2k+2)d(x2k+2, Sx2k+2)d(x2k+1, Tx2k+1)

1 + d(x2k+2, x2k+1)

+ Θ(x2k+2)
d(x2k+1, Sx2k+2)d(x2k+2, Tx2k+1)

1 + d(x2k+2, x2k+1)

⪯Λ(x2k+2)d(x2k+2, x2k+1) +
Ξ(x2k+2)d(x2k+2, x2k+3)d(x2k+1, x2k+2)

1 + d(x2k+2, x2k+1)

+ Θ(x2k+2)
d(x2k+1, x2k+3)d(x2k+2, x2k+2)

1 + d(x2k+2, x2k+1)

⪯Λ(x2k+2)d(x2k+2, x2k+1) +
Ξ(x2k+2)d(x2k+2, x2k+3)d(x2k+1, x2k+2)

1 + d(x2k+2, x2k+1)
.

Hence

|d(x2k+2, x2k+3)| ≤ |Λ(x2k+2)||d(x2k+1, x2k+2)|

+|Ξ(x2k+2)||d(x2k+2, x2k+3)|
∣∣∣ d(x2k+1, x2k+2)

1 + d(x2k+1, x2k+2)

∣∣∣.
Since |1 + d(x2k+1, x2k+2)| > |d(x2k+1, x2k+2)|, therefore

|d(x2k+2, x2k+3)| ≤ |Λ(x2k+2)||d(x2k+1, x2k+2)|+ |Ξ(x2k+2)||d(x2k+2, x2k+3)|
= |Λ(Tx2k+1)||d(x2k+1, x2k+2)|+ |Ξ(Tx2k+1)||d(x2k+2, x2k+3)|
≤ |Λ(x2k+1)||d(x2k+1, x2k+2)|+ |Ξ(x2k+1)||d(x2k+2, x2k+3)|
= |Λ(Sx2k)||d(x2k+1, x2k+2)|+ |Ξ(Sx2k)||d(x2k+2, x2k+3)|
≤ |Λ(x2k)||d(x2k+1, x2k+2)|+ |Ξ(x2k)||d(x2k+2, x2k+3)|

...

≤ |Λ(x0)||d(x2k+1, x2k+2)|+ |Ξ(x0)||d(x2k+2, x2k+3)|

Since Λ,Ξ,Θ : X → [0, 1), so we have

(2.6) |d(x2k+2, x2k+3)| ≤
∣∣∣ Λ(x0)

1− Ξ(x0)

∣∣∣|d(x2k, x2k+1)|.

Now, by setting λ =
∣∣∣ Λ(x0)
1−Ξ(x0)

∣∣∣ < 1, and using (2.5) and (2.6), we get

|d(xn, xn+1)| ≤ λ|d(xn−1, xn)|
≤ λ2|d(xn−2, xn−1)|

...

≤ λn|d(x0, x1)|
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for all n ∈ N. Now, for any positive integer m and n with m > n, we have

|d(xn, xm)| ≤ |d(xn, xn+1)|+ |d(xn+1, xn+2)|+ · · ·+ |d(xm−1, xm)|
≤ [λn + λn+1 + · · ·+ λm−1]|d (x0, x1) |

≤
[ λn

1− λ

]
|d (x0, x1) |.

Hence

|d(xn, xm)| ≤ λn

1− λ
|d (x0, x1) | −→ 0 as m,n −→ ∞.

Thus by Lemma 1.3, we conclude that {xn} is a Cauchy sequence in X. Since X is
complete, so there exists z ∈ X such that xn −→ z as n −→ ∞. Next we claim that
z = Sz. We suppose on the contrary that z ̸= Sz and d(z, Sz) = u ̸= 0. Then by
triangular inequality and given condition, we get

u = d(z, Sz) ⪯ d(z, Tx2k+1) + d(Tx2k+1, Sz)

= d(z, Tx2k+1) + d(Sz, Tx2k+1)

⪯ d(z, Tx2k+1) + Λ(z)d(z, x2k+1)

+
Ξ(z)d(z, Sz)d(x2k+1, Tx2k+1) + Θ(z)d(x2k+1, Sz)d(z, Tx2k+1)

1 + d(z, x2k+1)

⪯ d(z, x2k+2) + Λ(z)d(z, x2k+1)

+
Ξ(z)u.d(x2k+1, x2k+2) + Θ(z)d(x2k+1, Sz)d(z, x2k+2)

1 + d(z, x2k+1)
,

which implies that

|u| = |d(z, Sz)| ≤ |d(z, x2k+2)|+ |Λ(z)||d(z, x2k+1)|+
|Ξ(z)||u|.|d(x2k+1, x2k+2)|

|1 + d(z, x2k+1)|

+|Θ(z)| |d(x2k+1, Sz)||d(z, x2k+2)|
|1 + d(z, x2k+1)|

.

Taking limit as k → ∞, we get |u| = 0, which is a contradiction and hence z = Sz.
Similarly it follows that z = Tz. Therefore z is the common fixed point S and T.
Finally, we show that z is a unique common fixed point of S and T . Assume that
there exists another common fixed point z∗ that is z∗ = Sz∗ = Tz∗. Then

d(z, z∗) = d(Sz, Tz∗)

⪯ Λ(z)d(z, z∗) +
Ξ(z)d(z, Sz)d(z∗, T z∗) + Θ(z)d(z∗, Sz)d(z, Tz∗)

1 + d(z, z∗)

⪯ Λ(z)d(z, z∗) +
Ξ(z)d(z, z)d(z∗, z∗) + Θ(z)d(z∗, z)d(z, z∗)

1 + d(z, z∗)

⪯ Λ(z)d(z, z∗) +
Θ(z)d(z∗, z)d(z, z∗)

1 + d(z, z∗)
,

so that

|d(z, z∗)| ≤ |Λ(z)||d(z, z∗)|+ |Θ(z)||d(z∗, z)||d(z, z∗)|
|1 + d(z, z∗)|

.

Since
|1 + d(z, z∗)| > |d(z, z∗)|,
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therefore

|d(z, z∗)| ≤ |Λ(z) + Θ(z)||d(z, z∗),
which is a contradiction so that z = z∗. This completes the proof of the theorem. □

Remark 2.9. By choosing Θ(x) = 0 in Theorem 2.8, we get Theorem 3.1 of Sin-
tunavarat and Kumam [29].

Remark 2.10. By setting Λ(x) = λ, Ξ(x) = µ and Θ(x) = γ, in Theorem 2.8, we
get the Theorem 2.1 of [27].

Remark 2.11. By setting Λ(x) = λ, Ξ(x) = µ and Θ(x) = 0, in Theorem 2.8, we
get Theorem 4 of [10].

By setting S = T in Theorem 2.8, we get the following:

Corollary 2.12. Let (X, d) be a complete complex valued metric space and T :
X → X be a self-mapping such that

d(Tx, Ty) ⪯ Λ(x)d(x, y) +
Ξ(x)d(x, Tx)d(y, Ty) + Θ(x)d(y, Tx)d(x, Ty)

1 + d(x, y)

for all x, y ∈ X and

Λ,Ξ,Θ : X → [0, 1),

satisfying the following conditions,

(i) Λ(Tx) ≤ Λ(x), Ξ(Tx) ≤ Ξ(x) and Θ(Tx) ≤ Θ(x);
(ii) (Λ + Ξ +Θ)(x) < 1.

Then T has a unique fixed point.

Remark 2.13. By setting S = T, and Θ(x) = 0, in Theorem 2.8, we get Corollary
3.3 of [29].

Remark 2.14. By setting S = T, Λ(x) = λ, Ξ(x) = µ and Θ(x) = γ, in Theorem
2.8, we get the Corollary 2.3 of [27].

Remark 2.15. By setting S = T, Λ(x) = λ, Ξ(x) = µ and Θ(x) = 0, in Theorem
2.8, we get the Corollary 5 of [10].

Corollary 2.16. Let (X, d) be a complete complex valued metric space and T :
X → X be a self-mapping such that

d(Tnx, Tny) ⪯ Λ(x)d(x, y) +
Ξ(x)d(x, Tnx)d(y, Tny) + Θ(x)d(y, Tnx)d(x, Tny)

1 + d(x, y)

for all x, y ∈ X and

Λ,Ξ,Θ : X → [0, 1)

satisfying the following conditions,

(i) Λ(Tnx) ≤ Λ(x), Ξ(Tnx) ≤ Ξ(x) and Θ(Tnx) ≤ Θ(x),
(ii) (Λ + Ξ +Θ)(x) < 1.

Then T has a unique fixed point.
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Theorem 2.17. Let (X, d) be a complete complex valued metric space and S, T, f :
X → X be self-mappings such that SX ∪ TX ⊂ fX. Assume that the following
conditions holds:
(2.7)

d(Sx, Ty) ⪯ Λ(fx)d(fx, fy)+
Ξ(fx)d(fx, Sx)d(fy, Ty) + Θ(fx)d(fy, Sx)d(fx, Ty)

1 + d(fx, fy)

for all x, y ∈ X,where the mappings Λ,Ξ,Θ : X → [0, 1) satisfy the following
conditions,

(i) Λ(Sx) ≤ Λ(fx), Ξ(Sx) ≤ Ξ(fx) and Θ(Sx) ≤ Θ(fx);
(ii) Λ(Tx) ≤ Λ(fx), Ξ(Tx) ≤ Ξ(fx) and Θ(Tx) ≤ Θ(fx);
(iii) (Λ + Ξ +Θ)(fx) < 1.

If (S, f) and (T, f) are weakly compatible and f(X) is closed subspace of X, then
S, T, f have a unique common fixed point.

Proof. By Lemma 1.4, there existsD ⊆ X such that f(D) = f(X) and f : D → X is
one-to-one. Now since SX∪TX ⊂ fX, we define two mappings Γ,𝟋 : f(D) → f(D)
by

(2.8) Γ(fx) = Sx

and

(2.9) 𝟋(fx) = Tx

respectively. Since f is one-to-one on D, then Γ,𝟋 are well-defined. Note that for
fx, fy ∈ f(D), fx ̸= fy, inequality (2.7) implies that

d(Γ(fx),𝟋(fy)) ⪯ Λ(fx)d(fx, fy) +
Ξ(fx)d(fx,Γ(fx))d(fy,𝟋(fy))

1 + d(fx, fy)

+
Θ(fx)d(fy,Γ(fx))d(fx,𝟋(fy))

1 + d(fx, fy)
,

Since f(D) = f(X) is complete, so there exists a unique common fixed point z ∈
f(D) of Γ and 𝟋, that is z = Γ(z) = 𝟋(z). Now there exists some u ∈ D, such that
z = fu. Hence z = fu = Γ(fu) and z = fu = 𝟋(fu) that is u is the coincidence
point of f, S and T. This implies that z is the point of coincidence of (f, S) and
(f, T ) and u is the coincidence point of f ,S and T. We suppose on the contrary that
there exists z∗ ∈ f(D) such that z∗ = f(v) = S(v) = T (v) and z ̸= z∗. Now from
(2.7), we get

d(z, z∗) = d(Su, Tv) ⪯ Λ(fu)d(fu, fv)

+
Ξ(fu)d(fu, Su)d(fv, Tv) + Θ(fu)d(fv, Su)d(fu, Tv)

1 + d(fu, fv)

⪯ Λ(z)d(z, z∗) +
Ξ(z)d(z, z)d(z∗, z∗) + Θ(z)d(z∗, z)d(z, z∗)

1 + d(z, z∗)

⪯ Λ(z)d(z, z∗) +
Θ(z)d(z∗, z)d(z, z∗)

1 + d(z, z∗)
,
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which implies that

|d(z, z∗)| ≤ |Λ(z)||d(z, z∗)|+ |Θ(z)||d(z∗, z)||d(z, z∗)|
|1 + d(z, z∗)|

,

since |1 + d(z, z∗)| > |d(z, z∗)|, so that |d(z, z∗)| ≤ |Λ(z) + Θ(z)||d(z, z∗)|. Hence
|d(z, z∗)| = 0 that is z = z∗. Thus the point of coincidence is unique. Now since
(S, f) and (T, f) are weakly compatible, so by Lemma 1.5, S, T, f have a unique
common fixed point. □

Similarly we get the following result.

Theorem 2.18. Let (X, d) be a complete complex valued metric space and S, T, f :
X → X be self-mappings such that SX ∪ TX ⊂ fX = gX. Assume that the
following conditions hold:
(2.10)

d(Sx, Ty) ⪯ Λ(fx)d(fx, gy)+
Ξ(fx)d(fx, Sx)d(gy, Ty) + Θ(fx)d(gy, Sx)d(fx, Ty)

1 + d(fx, gy)

for all x, y ∈ X,where the control functions Λ,Ξ,Θ : X → [0, 1) satisfy the following
conditions,

(i) Λ(Sx) ≤ Λ(fx), Ξ(Sx) ≤ Ξ(fx) and Θ(Sx) ≤ Θ(fx);
(ii) Λ(Tx) ≤ Λ(fx), Ξ(Tx) ≤ Ξ(fx) and Θ(Tx) ≤ Θ(fx);
(iii) (Λ + Ξ +Θ)(fx) < 1.

If (S, f) and (T, g) are weakly compatible and f(X) is closed subspace of X, then
S, T, f, g have a unique common fixed point.

3. Applications

Fixed point theorems for operators in ordered Banach spaces are widely inves-
tigated and have found various applications in differential and integral equations
(see [5, 20, 21, 26] and references therein). In this section, we apply Theorem 2.8 to
the existence of common solution of the system of Urysohn integral equations.

Theorem 3.1. Let X = C([a, b],Rn), a > 0 and d : X × X → C be defined as
follows:

d(x, y) = max
t∈[a,b]

∥x (t)− y (t)∥∞
√

1 + a2ei tan
−1 a.

Consider the Urysohn integral equations

(3.1) x(t) =

∫ b

a
K1(t, s, x(s))ds+ g(t),

(3.2) x(t) =

∫ b

a
K2(t, s, x(s))ds+ h(t),

where t ∈ [a, b] ⊂ R, x, g, h ∈ X.

Suppose that K1,K2 : [a, b] × [a, b] × Rn → Rn are such that Fx, Gx ∈ X for
each x ∈ X, where,

Fx (t) =

∫ b

a
K1(t, s, x(s))ds, Gx (t) =

∫ b

a
K2(t, s, x(s))ds for all t ∈ [a, b].



COMMON FIXED POINT RESULTS 869

If there exist three mappings Λ,Ξ,Θ : X → [0, 1) with

(i) Λ(Fx + g) ≤ Λ(x), Ξ(Fx + g) ≤ Ξ(x) and Θ(Fx + g) ≤ Θ(x);
(ii) Λ(Gx + h) ≤ Λ(x), Ξ(Gx + h) ≤ Ξ(x) and Θ(Gx + h) ≤ Θ(x);
(iii) (Λ + Ξ +Θ)(x) < 1,

such that for all x, y ∈ X the following condition holds:

∥Fx (t)−Gy (t) + g(t)− h(t)∥∞
√

1 + a2ei tan
−1 a ≾ Λ(x)A(x, y)(t)

+ Ξ(x)B(x, y)(t) + Θ(x)C(x, y)(t),

where

A (x, y) (t) = ∥x(t)− y(t)∥∞
√

1 + a2ei tan
−1 a

B (x, y) (t) =
∥Fx (t) + g(t)− x(t)∥∞ ∥Gy (t) + h(t)− y(t)∥∞

1 + d(x, y)

√
1 + a2ei tan

−1 a

C (x, y) (t) =
∥Fx (t) + g(t)− y(t)∥∞ ∥Gy (t) + h(t)− x(t)∥∞

1 + d(x, y)

√
1 + a2ei tan

−1 a,

then the system of integral equations (3.1) and (3.2) have a unique common solution.

Proof. Define S, T : X → X by

Sx = Fx + g, Tx = Gx + h.

Then

d (Sx, Ty) = max
t∈[a,b]

∥Fx (t)−Gy (t) + g(t)− h(t)∥∞
√
1 + a2ei tan

−1 a,

d (x, y) = max
t∈[a,b]

A (x, y) (t) ,

d (x, Sx) = max
t∈[a,b]

∥Fx (t) + g(t)− x(t)∥∞
√

1 + a2ei tan
−1 a,

d (y, Ty) = max
t∈[a,b]∞

∥Gy (t) + h(t)− y(t)∥∞
√

1 + a2ei tan
−1 a

d (y, Sx) = max
t∈[a,b]

∥Fx (t) + g(t)− y(t)∥∞
√

1 + a2ei tan
−1 a,

d (x, Ty) = max
t∈[a,b]∞

∥Gy (t) + h(t)− x(t)∥∞
√

1 + a2ei tan
−1 a.

It is easily seen that for all x, y ∈ X, we have

d(Sx, Ty) ⪯ Λ(x)d(x, y) +
Ξ(x)d(x, Sx)d(y, Ty) + Θ(x)d(y, Sx)d(x, Ty)

1 + d(x, y)
,

and

(i) Λ(Sx) ≤ Λ(x), Ξ(Sx) ≤ Ξ(x) and Θ(Sx) ≤ Θ(x);
(ii) Λ(Tx) ≤ Λ(x), Ξ(Tx) ≤ Ξ(x) and Θ(Tx) ≤ Θ(x).

By Theorem 2.8, we get S and T have a common fixed point. Thus there exists a
unique point x ∈ X such that x = Sx = Tx. Therefore, we conclude that the system
of Urysohn integral equations (3.1) and (3.2) have a unique common solution. □
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