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(H2) x−1 and x0 are two points belonging to the interior D0 of D and satisfying
the inequality

∥ x0 − x−1 ∥≤ c;

(H3) F is Fréchet–differentiable on D0 and there exists an operator δF : D0 ×
D0 → L(X ,Y) such that the linear operator A = δF (x−1, x0) is invertible,
its inverse A−1 is bounded and

∥ A−1 F (x0) ∥≤ η;

∥ A−1 (δF (x, y)− F ′(z)) ∥≤ ℓ (∥ x− z ∥ + ∥ y − z ∥);
U(x0, r) = {x ∈ X : ∥ x− x0 ∥≤ r} ⊆ D0

for all x, y, z ∈ D and for some r > 0 depending on ℓ, c, η and

(1.3) ℓ c+ 2
√

ℓ η ≤ 1.

The sufficient convergence condition (1.3) is easily violated. Indeed, let ℓ = 1,
η = 0.18 and c = 0.185. Then (1.3) does not holds since

ℓ c+ 2
√

ℓ η = 1.033528137.

Moreover, our recently found corresponding conditions are also violated [7] (see
Remark 2.4(c)). Hence there is no guarantee that the equation (1.1) under the
information (ℓ, c, η) has a solution that can be found using the (SM).

In this paper, we are motivated by optimization considerations and the above
observation. Here, using a combination of the Lipschitz and center–Lipschitz condi-
tions, we provide a semilocal convergence analysis for the (SM). Our error bounds
are tighter and our convergence conditions hold in cases where the corresponding
hypotheses in the earlier results ([9, 10, 13, 17, 15, 17, 20, 22]) are violated. Also,
some applications and examples are also provided.

2. Semilocal convergence analysis of the (SM)

We need the following result on the majorizing sequence for (SM) (1.2).

Lemma 2.1. Let l0 > 0, l > 0, c > 0 and η > 0 be given constants. Assume that

l0(c+ η) < 1(2.1)

and, for

δ =
1

2

−l +
√
l2 + 4 l l0
l0

,(2.2)

max

{
η

c
,

l(c+ η)

1− l0(c+ η)

}
≤ δ ≤ 1− l0c

1 + l0c
.(2.3)

Then the scalar sequence {tn} (n ≥ −1) given by

t−1 = 0, t0 = c, t1 = c+ η,

tn+2 = tn+1 +
l(tn+1 − tn−1)(tn+1 − tn)

1− l0(tn+1 − t0 + tn)
(2.4)
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is non-decreasing, bounded from above by

t⋆⋆ =
c

1− δ
,(2.5)

and converges to its unique least upper bound t⋆ such that

0 ≤ t⋆ ≤ t⋆⋆.(2.6)

Moreover, the following estimates hold

0 ≤ tn+2 − tn+1 ≤ δ(tn+1 − tn) ≤ δn+1c (n ≥ −1)(2.7)

and

t⋆ − tn ≤ δnc

1− δ
(n ≥ 0).(2.8)

Proof. From (2.1) and (2.3), we obtain δ ∈ [0, 1). Now, we show, using mathematical
induction on k ≥ −1,

(2.9) 0 ≤ tk+1 − tk ≤ δ (tk − tk−1).

By (2.4) for k = 0, we must show

0 ≤ t1 − t0 ≤ δ(t0 − t−1), 0 ≤ l(t1 − t−1)

1− l0 t1
≤ δ,

which are true from (2.1) and (2.3).
Assume that (2.9) holds for k ≤ n+ 1. The induction hypothesis yields

tk+2 ≤ tk+1 + δ(tk+1 − tk)

≤ tk + δ(tk − tk−1) + δ(tk+1 − tk)

≤ t1 + δ(t1 − t0) + · · ·+ δ(tk+1 − tk)

≤ c+ δ c+ δ2 c+ · · ·+ δk+2 c(2.10)

=
1− δk+3

1− δ
c

<
c

1− δ
= t⋆⋆.

We must have

l(tk+2 − tk) + δ l0 (tk+2 − t0 + tk+1) ≤ δ

or

l(δk+2 + δk+1)c+
δ l0
1− δ

(
2− δk+1 − δk+2

)
c− δl0c ≤ δ(2.11)

or

l(δk+1 + δk)c+ l0

((
1 + δ + · · ·+ δk+2

)
+
(
1 + δ + · · ·+ δk+1

)
− 1
)
c− 1

≤ 0.(2.12)
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From the above inequality, we are motivated to define (for δ = s) the functions as
follows: for all k ≥ 0 on [0, 1),

(2.13) fk(s) = l(sk+1 + sk)c+ l0

(
2
(
1 + s+ · · ·+ sk+1

)
+ sk+2 − 1

)
c− 1.

We need a relationship between two consecutive functions fk. From the preceding
equation, we obtain

fk+1(s) = g(s)skc+ fk(s),(2.14)

where

g(s) = l0s
3 + (l0 + l)s2 − l.(2.15)

Note that δ (given by (2.2)) is the unique positive root of the polynomial g. Instead
of (2.11), it suffices to show

(2.16) fk(δ) ≤ 0 (k ≥ 0).

But, in view of (2.2), (2.3), (2.11), (2.14) and (2.15), we have

f0(δ) = f1(δ) = · · · = fk(δ) = · · · = f∞(δ) = lim
k→∞

fk(δ)

= c l0

[
2

1− δ
− 1

]
− 1 < 0,(2.17)

which shows (2.16) for all k ≥ 0. Hence we showed that the sequence {tn} (n ≥ −1)
is non-decreasing and bounded from above by t⋆⋆, so that the estimate (2.7) holds.
It follows that there exists t⋆ ∈ [0, t⋆⋆] such that lim

n→∞
tn = t⋆. The estimate (2.8)

follows from (2.7) by using the standard majorization techniques ([4, 5, 11]). This
completes the proof. □

Additionally, we provide the following alternative to Lemma 2.1:

Lemma 2.2. Let l0 > 0, l > 0, c > 0 and η > 0 be given constants. Assume that

(ℓ0 + ℓ)c < 1(2.18)

and

max

{
η

c
,

ℓ(c+ η)

1− ℓ0(c+ η)

}
≤ δ+ ≤ δ,(2.19)

where δ+ is the only positive root, which is given as follows:

δ+ =
−(ℓ+ 2ℓ0)c+

√
((ℓ+ 2ℓ0)c)

2 + 4ℓ0 c(1− (ℓ+ ℓ0)c)

2ℓ0c
,(2.20)

of the polynomial

f0(s) = ℓ0cs
2 + (2ℓ0 + ℓ)cs+ (ℓ+ ℓ0)c− 1.(2.21)

Then the conclusions of the Lemma 2.1 hold with δ+ replacing δ.
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Proof. Following the proof of Lemma 2.1, but with δ+ replaced by δ, we must show
the following (instead of (2.16)):

(2.22) fk(δ+) ≤ 0 (k ≥ 0).

The estimate (2.22) holds for k = 0 by the choice of δ+ as the equality. From (2.14)
and (2.19), we obtain

f1(δ+) = f0(δ+) + g(δ+)c = 0 + g(δ+)c = g(δ+)c ≤ 0.

Assume that (2.22) holds for all m ≤ k. Then, again by (2.14), we obtain

fk+1(δ+) = fk(δ+) + g(δ+)δ
k
+c ≤ 0 + 0 = 0,

which completes the induction for (2.22). Note also that

f∞(δ+) = lim
k→∞

fk(δ+) ≤ lim
k→∞

0 = 0.

This completes the proof. □

We can also show the following result about the convergence order p = (1+
√
5)

2 of
the majorizing sequence {tn}:

Lemma 2.3. Under the hypotheses of Lemma 2.1, further assume

q = α c < 1,(2.23)

where

α =
ℓ(1 + δ)

1− ℓ0c

(
1 + δ

1− δ

) .(2.24)

Then the following estimates hold:

tn − tn−1 ≤ qθ(n−1)−1 η (n ≥ 2)(2.25)

and

t⋆ − tn ≤ enη (n ≥ 1),(2.26)

where

p =
1 +

√
5

2
,(2.27)

en =

(
q1/

√
5
)pn

q
(
1− qpn(p−1)/

√
5
)(2.28)

and {θn} is Fibonacci’s sequence given as follows:

θ0 = θ1 = 1, θn+1 = θn + θn−1 (n ≥ 1).(2.29)
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Proof. It follows from (2.4), (2.5), (2.11) and (2.24) that

(2.30) tn+2 − tn+1 ≤ α(tn − tn−1)(tn+1 − tn).

From the initial conditions and (2.29), the estimate (2.25) holds for n = 0. As-
sume that the estimate (2.25) holds for all k ≤ n− 1. Then, using the induction
hypotheses and (2.30), we obtain

tk+1 − tk ≤ q · qθ(k−2)−1(tk − tk−1)

= qθ(k−1)(tk − tk−1)

≤ qθ(k−2)qθ(k−1)η(2.31)

= qθkη,

which shows that (2.25) holds for all n. We also have

tn+1 − t1 = (t2 − t1) + (t3 − t2) + · · ·+ (tk+1 − tk)

≤ η

q

(
qθ1 + qθ2 + · · ·+ qθk

)
(2.32)

< t⋆0 =
η

q

∞∑
k=1

qθk .

Moreover, we note that

(2.33) θk =
1√
5

(1 +
√
5

2

)k+1

−

(
1−

√
5

2

)k+1
 ≥ 1√

5

(
1 +

√
5

2

)k

=
pk√
5
.

Consequently, for all m ≥ 1, we have

tk+m − tk = (tk+1 − tk) + (tk+2 − tk+1) + · · ·+ (tk+m − tk+m−1)

≤ η

q

(
qθk + qθk+1 + · · ·+ qθk+m−1

)
≤ η

q

(
qp

k/
√
5 + qp

k+1/
√
5 + · · ·+ qp

k+m−1/
√
5
)
.(2.34)

Using Bernoulli’s inequality and the preceding inequality, we obtain

tk+m − tk ≤ η

q
qp

k/
√
5

(
1 + q

pk+1−pk√
5 + · · ·+ q

pk+m−1−pk√
5

)
≤ η

q
qp

k/
√
5

(
1 + q

pk(p−1)√
5 + · · ·+ q

pk(1+(m−1)(p−1)−1)√
5

)
=

η

q
qp

k/
√
5

(
1 + q

pk(p−1)√
5 + · · ·+

[
q

pk(p−1)√
5

]m−1
)

=
η

q
qp

k/
√
5

1− q
pk(p−1)m√

5

1− q
pk(p−1)√

5

 ,(2.35)

which shows (2.26) if we let m → ∞. This completes the proof. □
Similarly, using the hypotheses of Lemma 2.2, we have the following:
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Lemma 2.4. Under the hypotheses of Lemma 2.2, further, assume that (2.23) holds,
but δ is replaced by δ+ in (2.24). Then the conclusions of Lemma 2.3 hold.

Next, we study the (SM) for triplets (F, x−1, x0) belonging to the class C =
C(ℓ0, ℓ, η, c, δ) as follows:

Definition 2.5. Let ℓ0, ℓ, η, c, δ be non-negative constants satisfying the hypotheses
of Lemma 2.1, Lemma 2.2 or Lemma 2.3 or Lemma 2.4. A triplet (F, x−1, x0)
belongs to the class C(ℓ0, ℓ, η, c, δ) if
(A1) F is a nonlinear operator defined on a convex subset D of a Banach space

X with values in a Banach space Y;
(A2) x−1 and x0 are two points belonging to the interior D0 of D and satisfying

the inequality

∥ x0 − x−1 ∥≤ c;

(A3) F is Fréchet–differentiable on D0 and there exists an operator δF : D0 ×
D0 → L(X ,Y) such that A−1 = δF (x−1, x0)

−1 ∈ L(Y,X ) and, for all
x, y, z ∈ D,

∥ A−1 F (x0) ∥≤ η,

∥ A−1 (δF (x, y)− F ′(z)) ∥≤ ℓ (∥ x− z ∥ + ∥ y − z ∥),

∥ A−1 (δF (x, y)− F ′(x0)) ∥≤ ℓ0 (∥ x− x0 ∥ + ∥ y − x0 ∥);

(A4)

U(x0, t
⋆) ⊆ Dc = {x ∈ D : F is continuous at x} ⊆ D,

where t⋆ is given in Lemma 2.1.

The semilocal convergence theorem for (SM) is as follows:

Theorem 2.6. If (F, x−1, x0) ∈ C(l, l0, η, c, δ), then the sequence {xn} (n ≥ −1)
generated by the (SM) is well defined, remains in U(x0, t

⋆) for all n ≥ 0 and
converges to a unique solution x⋆ ∈ U(x0, t

⋆) of the equation (1.1). Moreover, the
following estimates hold: for all n ≥ 0,

∥ xn − xn−1 ∥ ≤ tn − tn−1(2.36)

and

∥ xn − x⋆ ∥ ≤ t⋆ − tn,(2.37)

where {tn} (n ≥ 0) is given by (2.4). Furthermore, if there exists a number R such
that

U(x0, R) ⊆ D, R ≥ t⋆ − c,

(2.38) ℓ0 (t
⋆ − c+R) +

∥∥A−1(F−1(x0)−A)
∥∥ ≤ 1,

then the solution x⋆ is unique in U(x0, R).
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Proof. First, we show that L = δF (xk, xk+1) is invertible for xk, xk+1 ∈ U(x0, t
⋆).

By (2.11), (A2) and (A3), we have

(2.39)

∥ I −A−1 L ∥ =∥ A−1 (L −A) ∥
≤∥ A−1(L − F ′(x0)) ∥ + ∥ A−1(F ′(x0)−A) ∥
≤ ℓ0 (∥ xk − x0 ∥ + ∥ xk+1 − x0 ∥ + ∥ x0 − x−1 ∥)
≤ ℓ0 (tk − t0 + tk+1 − t0 + c) < 1.

Using the Banach Lemma on invertible operators [4, 12] and (2.39), L is invertible
and

(2.40) ∥ L−1A ∥≤
(
1− ℓ0 (tk+1 − tk − t0)

)−1

.

By (A3), we have

(2.41) ∥ A−1 (F ′(u)− F ′(v)) ∥≤ 2 ℓ ∥ u− v ∥ (u, v ∈ D0).

We can write the identity

(2.42) F (x)− F (y) =

∫ 1

0
F ′(y + t(x− y)) dt (x− y)

and then, for all x, y, u, v ∈ D0, we obtain

∥ A−1 (F (x)− F (y)− F ′(u)(x− y)) ∥
≤ ℓ (∥ x− u ∥ + ∥ y − u ∥) ∥ x− y ∥(2.43)

and

∥ A−1 (F (x)− F (y)− δF (u, v) (x− y)) ∥
≤ ℓ (∥ x− v ∥ + ∥ y − v ∥ + ∥ u− v ∥) ∥ x− y ∥ .(2.44)

By a continuity argument, (2.41)–(2.44) remain valid if x and/or y belong to Dc.
Now, we show (2.36). If (2.36) holds for all n ≤ k and {xn} (n ≥ 0) is well

defined for n = 0, 1, 2, · · · , k, then we have

(2.45) ∥ xn − x0 ∥≤ tn − t0 < t⋆ − t0 (n ≤ k).

That is, (??) is well defined for n = k+1. For n = −1 and n = 0, (2.36) reduces to
∥ x−1−x0 ∥≤ c and ∥ x0−x1 ∥≤ η. Suppose that (2.36) holds for n = −1, 0, 1, · · · , k
(k ≥ 0). By (2.40), (2.44) and

(2.46) F (xk+1) = F (xk+1)− F (xk)− δF (xk−1, xk) (xk+1 − xk),

we obtain the following estimate:

∥ xk+2 − xk+1 ∥ = ∥ δF (xk, xk+1)
−1 F (xk+1) ∥

≤ ∥ δF (xk, xk+1)
−1A ∥∥ A−1 F (xk+1) ∥

≤ ℓ (∥ xk+1 − xk ∥ + ∥ xk − xk−1 ∥)
1− ℓ0 (∥ xk+1 − x0 ∥ + ∥ xk − x0 ∥ +c)

∥ xk+1 − xk ∥(2.47)

≤ ℓ (tk+1 − tk + tk − tk−1)

1− ℓ0 (tk+1 − t0 + tk − t0 + t0 − t−1)
(tk+1 − tk)

= tk+2 − tk+1
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and the induction for (2.36) is completed. It follows from (2.36) and Lemma 2.1 that
{xn} (n ≥ −1) is a Cauchy sequence in a Banach space X and and so it converges
to some x⋆ ∈ U(x0, t

⋆) (since U(x0, t
⋆) is a closed set). By letting k → ∞ in (2.47),

we obtain F (x⋆) = 0. The estimate (2.37) follows from (2.36) by using standard
majoration techniques [4, 6, 12].

Finally, to show the uniqueness in U(x0, R), let y⋆ ∈ U(x0, R) be a solution of
the equation (1.1). Set

M =

∫ 1

0
F ′(y⋆ + t (y⋆ − x⋆)) dt.

Then it follows from (A3) and (2.38) that

∥ A−1 (A−M) ∥ = ℓ0 (∥ y⋆ − x0 ∥ + ∥ x⋆ − x0 ∥)+ ∥ A−1(F ′(x0)−A) ∥
≤ ℓ0 [(t

⋆ − t0) +R] + ∥ A−1(F ′(x0)−A) ∥(2.48)

< 1.

It follows from (2.48) and the Banach lemma on invertible operators that M−1

exists on U(x0, t
⋆). Using the identity:

(2.49) F (x⋆)− F (y⋆) = M (x⋆ − y⋆),

we deduce x⋆ = y⋆. This completes the proof. □

Remark 2.7. (1) The point t⋆⋆ given in closed form by (2.5) can replace t⋆ in the
hypotheses of Theorem 2.6.

(2) In the uniqueness part (see (2.38)), we can replace
∥∥A−1(F ′(x0)−A)

∥∥ by
the less tight ℓ0c since, by (A3),

(2.50)
∥∥A−1(F ′(x0)−A)

∥∥ ≤ l0∥x0 − x−1∥ ≤ l0 c.

In fact, according to (2.39), the majorizing sequence {tn} can be replaced by the
following iteration, which is at least as tight as the sequence defined by (2.4):

t1 = 0, t0 = c, t1 = c+ η,

tn+2 = tn+1 +
ℓ(tn+1 − tn−1)(tn+1 − tn)

1− (L+ ℓ0(tn+1 + tn − 2c))
.(2.51)

This is also a majorizing sequence for {xn} (converging under the same hypotheses
to some t

⋆ ≤ t⋆).
(3) A more popular hypotheses used, instead of the first inequality in (A3), is

(2.52)
∥∥A−1 (δF (x, y)− δF (u, v))

∥∥ ≤ l (∥x− u∥+ ∥y − v∥)

for all x, y, u, v ∈ D. Note that (2.52) implies both the hypotheses in (A3), but not
necessarily vice versa. Note also that

ℓ0 ≤ ℓ, ℓ ≤ ℓ

and ℓ/ℓ0, ℓ/ℓ can be arbitrarily large ([1-6]).
(4) Our sufficient convergence conditions differ from the ones in [2-10, 12-16, 19,

20].
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Remark 2.8. (1) Let us define the majorizing sequence {wn}, which are used in
[9, 10, 13, 15, 17, 20, 22] (under the condition (1.3)):

w−1 = 0, w0 = c, w1 = c+ η,

wn+2 = wn+1 +
ℓ (wn+1 − wn−1) (wn+1 − wn)

1− ℓ (wn+1 − w0 + wn)
.(2.53)

Note that, in general,

(2.54) ℓ0 ≤ ℓ

holds and ℓ/ℓ0 can be arbitrarily large. In the case, ℓ0 = ℓ and then tn = wn

(n ≥ −1). Otherwise, a simple inductive argument shows ([4, 6]) that

(2.55) tn < wn, tn+1 − tn ≤ wn+1 − wn,

(2.56) 0 ≤ t⋆ − tn ≤ w⋆ − wn, w⋆ = lim
n−→∞

wn.

Note also that the strict inequality holds in (2.55) for all n ≥ 1, if ℓ0 < ℓ.
Note that the only difference in the proofs is that the conditions of Lemma 2.1 are

used here, instead of the ones in [4, 6]. However, this makes no difference between
the proofs.

Finally, note that (1.3) is the sufficient convergence condition for the sequence
(2.34).

(2) It turns out from the proof of Theorem 2.6 that the sequences {vn} given by

v−1 = 0, v0 = c, v1 = c+ η,

vn+2 = vn+1 +
ℓ1 (vn+1 − vn−1) (vn+1 − vn)

1− ℓ0 (vn+1 − v0 + vn)
,(2.57)

where

ℓ1 =

{
ℓ0 if n = 0,
ℓ if n > 0

is a finer majorizing sequence for {xn} than {tn} if ℓ0 < ℓ.
Moreover, we have

(2.58) vn < tn, vn+1 − vn < tn+1 − tn,

(2.59) 0 ≤ v⋆ − vn ≤ t⋆ − tn, v⋆ = lim
n−→∞

vn.

We also have the following useful extension of Lemma 2.1:

Lemma 2.9. Let N = 0, 1, 2, . . . be fixed. Assume that

t−1 ≤ t0 ≤ t1 ≤ · · · ≤ tN ≤ tN+1,

ℓ0(tN+1 − tN−1) < 1

and

max

(
tN+1 − tN
tN − tN−1

,
ℓ(tN+1 − tN−1)

1− ℓ0(tN+1 − tN−1)

)
≤ δ ≤ 1− ℓ0(tN − tN−1)

1 + ℓ0(tN − tN−1)
.

Then the conclusions of Lemma 2.1 for the sequence {tn} hold with c replaced by
tN − tN−1.
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Remark 2.10. If N = 0, then Lemma 2.9 reduces to Lemma 2.1. Clearly, the
hypotheses of Lemma 2.9 can replace the hypotheses of Lemma 2.1 in Theorem 2.6.
Similarly, we can provide an extension of Lemma 2.2 or the extension using the
tighter sequence {vn}.

3. Examples

In this section, we present some numerical examples.

Example 3.1. In the following table, we validate (1) and (2) of Remark 2.8. The
constants are selected as follows:

ℓ = 1, ℓ0 = 0.9, c = 0.185, η = 0.115.

The table shows that our error bounds vn+1 − vn and tn+1 − tn are finer than
wn+1 − wn given in [9, 10, 13, 15, 17, 20, 22].

Let us validate the estimates (2.6), (2.7) and (2.8). From the equations (2.2) and
(2.5), we get

δ = 6,359 784 · 10−01, t⋆⋆ = 5,082 116 · 10−01.

From the inequality (2.3), we get

4,109 589 · 10−01 ≤ δ(= 6,359 784 · 10−01) ≤ 7,145 306 · 10−01.

Thus the inequality (2.3) is satisfied. To obtain t⋆, we use the value t20 (obtained
from the sequence (2.4)), which is

t⋆ ≈ t20 = 3,619 319 · 10−01.

Comparing the values of t⋆ and t⋆⋆, we observe that the estimate (2.6) holds. We
verify the estimates (2.7) and (2.8) through the Table 2. In the Table 2, we notice
that the estimates (2.7) and (2.8) hold.

Example 3.2. Define the scalar function F by F (x) = c0 x+c1+c2 sin ec3 x, x0 = 0,
where ci, i = 0, 1, 2, 3, are the given parameters. Define a linear operator δF (x, y)
by

δF (x, y) =

∫ 1

0
F ′(y + t (x− y)) dt = c0 + c2

sin ec3 x − sin ec3 y

x− y
.

Then it can easily be seen that, for c3 large and c2 sufficiently small,
ℓ

ℓ0
can be

arbitrarily large. That is, (2.3)) may be satisfied, but not (1.3).

Example 3.3 ([4]). (Newton’s method case) Let X = Y = C[0, 1] be a space
of real–valued continuous functions defined on the interval [0, 1] equipped with the
max–norm ∥ · ∥. Let θ ∈ [0, 1] be a given parameter. Consider the “Cubic”
Chandrasekhar integral equation:

(3.1) u(s) = u3(s) + λu(s)

∫ 1

0
q(s, t)u(t) dt+ y(s)− θ.

Here, the kernel q(s, t) is a continuous function of two variables defined on [0, 1]×
[0, 1]. The parameter λ in (3.1) is a real number called the “albedo” for scattering
and y(s) is a given continuous function defined on [0, 1] and x(s) is the unknown
function sought in C[0, 1]. For the simplicity, we choose u0(s) = y(s) = 1 and
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q(s, t) =
s

s+ t
for all s ∈ [0, 1] and t ∈ [0, 1] with s+t ̸= 0. If we let D = U(u0, 1−θ)

and define the operator F on D by

(3.2) F (x)(s) = x3(s)− x(s) + λx(s)

∫ 1

0
q(s, t)x(t) dt+ y(s)− θ

for all s ∈ [0, 1], then every zero of F satisfies the equation (3.1). We have the
estimates

max
0≤s≤1

∣∣∣ ∫ 1

0

s

s+ t
dt
∣∣∣ = ln 2.

Therefore, if we set ξ =∥ F ′(u0)
−1 ∥, then the hypotheses of Theorem 2.6 (see (A3))

correspond to the usual Lipschitz and center–Lipschitz conditions for the (NM) (see
[7, Theorem 3.4]) such that

η = ξ (|λ| ln 2 + 1− θ),

ℓ = 2 ξ (|λ| ln 2 + 3 (2− θ)) and ℓ0 = ξ (2 |λ| ln 2 + 3 (3− θ)).

It follows from an equivalent Theorem for the (NM) to Theorem 2.6 that, if the
condition

hA =
1

8

(
ℓ+ 4 ℓ0 +

√
ℓ2 + 8 ℓ ℓ0

)
η ≤ 1

2

holds, then the problem (3.1) has a unique solution near u0. This assumption is
weaker than the one given before using the Newton–Kantorovich hypothesis.

Note also that ℓ0 < ℓ for all θ ∈ [0, 1].

Example 3.4. (Secant method case) Let X = Y = C[0, 1] equipped with the
norm ∥ x ∥= max

0≤s≤1
|x(s)|. Consider the following nonlinear boundary value problem

([4]): {
u′′ = −u3 − γ u2,
u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation:

(3.3) u(s) = s+

∫ 1

0
Q(s, t) (u3(t) + γ u2(t)) dt,

where Q is the Green function:

Q(s, t) =

{
t (1− s), t ≤ s,
s (1− t), s < t.

We observe that

max
0≤s≤1

∫ 1

0
|Q(s, t)| dt = 1

8
.

Then the problem (3.3) is in the form (1.1)), where F : D −→ Y is an operator
defined as

[F (x)] (s) = x(s)− s−
∫ 1

0
Q(s, t) (x3(t) + γ x2(t)) dt.
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It is easy to verify that the Fréchet derivative of F is defined in the form

[F ′(x)v] (s) = v(s)−
∫ 1

0
Q(s, t) (3 x2(t) + 2 γ x(t)) v(t) dt.

Let

δF (x, y) =

∫ 1

0
F ′(y + t (x− y)) dt.

If we set u0(s) = s and D = U(u0, R), then, since ∥ u0 ∥= 1, it is easy to verify that
U(u0, R) ⊂ U(0, R+ 1). It follows that 2 γ < 5 and then (see [4])

∥ I − F ′(u0) ∥≤
3 + 2 γ

8
, ∥ F ′(u0)

−1 ∥≤ 8

5− 2 γ
,

∥ F (u0) ∥≤
1 + γ

8
, ∥ F (u0)

−1 F (u0) ∥≤
1 + γ

5− 2 γ
.

On the other hand, for x, y ∈ D, we have

[(F ′(x)− F ′(y))v] (s) = −
∫ 1

0
Q(s, t) (3x2(t)− 3 y2(t) + 2 γ (x(t)− y(t))) v(t) dt.

Consequently, we have (see [4])

∥ F ′(x)− F ′(y) ∥≤ γ + 6R+ 3

4
∥ x− y ∥,

∥ F ′(x)− F ′(u0) ∥≤
2 γ + 3R+ 6

8
∥ x− u0 ∥ .

Define a linear operator δF (x, y) by

δF (x, y) =

∫ 1

0
F ′(y + t (x− y)) dt.

Then the conditions of Theorem 2.6 hold with

η =
1 + γ

5− 2 γ
, ℓ =

γ + 6R+ 3

8
, ℓ0 =

2 γ + 3R+ 6

16
.

Note also that ℓ0 < ℓ.

4. Conclusions

We provided new sufficient convergence conditions for the (SM) to a locally
unique solution of a nonlinear equation in a Banach space. Using our new concept
of recurrent functions and combining the Lipschitz and center–Lipschitz conditions
on the divided difference operator, we obtained the semilocal convergence analysis
of the (SM). Our error bounds are more precise than earlier ones and, under our
convergence hypotheses, we can cover cases where earlier conditions are violated
[9, 10, 13, 15, 17, 20, 22]. Applications and numerical examples are also provided
in this study.
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Table 1. Comparison among scalar sequences (2.4), (2.53) and (2.57).

Table 2. Verification of the estimates (2.7) and (2.8).


