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concepts of f -efficient solution, Henig efficient solution, globally efficient solution,
weakly efficient solution, superefficient solution and cone-Benson efficient solution
to Ky Fan Inequalities and gave some scalarization characterizations for various
proper efficient solutions. By using the scalarization results, he investigated the
connectedness of the Henig efficient solutions set, globally efficient solutions set,
weakly efficient solutions set, superefficient solutions set and cone-Benson efficient
solutions set for Ky Fan Inequalities in locally convex spaces. Very recently, Gong
and Yao [14] introduced the concept of positive proper efficient solutions to a class
of vector Ky Fan Inequality. They showed that, under some suitable conditions, the
set of positive proper efficient solutions is dense in the set of efficient solutions to
the vector Ky Fan Inequality. By virtue of the density result, they first discussed
the connectedness of the set of efficient solutions for the Ky Fan Inequality with
monotone bifunctions in real locally convex Hausdorff topological vector spaces.

In above mentioned works, the monotonicity plays an important role in deriving
the connectedness of the sets of various (proper) efficient solutions to (generalized)
Ky Fan Inequalities. We also observed that the density result and connectedness
theorem of (weak) efficient solutions has been established under the critical assump-
tion of C-strict/strong monotonicity, which implies that the f -solution set of the
(Generalized) Ky Fan Inequalities ((G)KFIs, in short) is a singleton (eg. [13, 14]).
However, it is well known that the f -solution set of the (G)KFI may be general,
but not a singleton. In this paper, without assumption of monotonicity, we obtain
a density result of positive proper efficient solutions for a class of GKFI. Then, by
using density result, we discuss the connectedness of the efficient solutions set for
the GKFI in metric spaces when the f -solution set is set-valued. Our main results
extend and improve the corresponding ones of Gong [13, 14].

The rest of the paper is organized as follows. In Sect. 2, we introduce a class
of generalized Ky Fan Inequality, and recall some concepts and their properties.
In Sect. 3, we first give the density theorem of positive proper efficient solution
sets to GKFI under the case that f -solution is a general set. Then, we discuss
the connectedness of efficient solution mappings to the GKFI in metric spaces,
and compare our main results with the corresponding ones in the recent literature
([13, 14, 21]). We also give some examples to illustrate our results. The final short
Sect. 4 includes some concluding remarks.

2. Preliminaries

Throughout this paper, if not otherwise specified, d(·, ·) denote the metric in any
metric space. Let B(0, δ) denote the open ball with radius δ > 0 and center 0 in
any metric linear spaces. Let X and Y be two real linear metric spaces. Let Y ∗ be
the topological dual space of Y , and C be a closed, convex and pointed cone in Y
with nonempty topological interior intC.

Let
C∗ := {f ∈ Y ∗ : f(y) ≥ 0, ∀y ∈ C}

be the dual cone of C. Denote the quasi-interior of C∗ by C♯, i.e.,

C♯ := {f ∈ Y ∗ : f(y) > 0, ∀y ∈ C \ {0}},
and assume C♯ ̸= ∅ in the paper.
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Let A be a nonempty subset ofX and F : A×A→ Y be a vector-valued mapping.
We consider the following generalized Ky Fan Inequality (GKFI) of finding x ∈ A
such that

(GKFI) F (x, y) ̸∈ −K, for all y ∈ A,

where K ∪ {0} is a convex cone in Y .

Definition 2.1 ([12]). A vector x ∈ A is called a weak efficient solution to the
(GKFI), iff

F (x, y) ̸∈ −intC, for all y ∈ A.

The set of the weak efficient solutions to the (GKFI) is denoted by Vw(A,F ).

Definition 2.2 ([12, 13]). Let f ∈ C∗ \ {0}. A vector x ∈ A is called a f -solution
to the (GKFI), iff

f(F (x, y)) ≥ 0, ∀y ∈ A.

The set of the f -solutions to the (GKFI) is denoted by Vf (A,F ).

Definition 2.3 ([14]). (i) A vector x ∈ A is called a efficient solution to the
(GKFI), iff

F (x, y) ̸∈ −C \ {0}, ∀y ∈ A.

The set of the efficient solutions to the (GKFI) is denoted by V (A,F ).
(ii) A vector x ∈ A is called a positive proper efficient solution to the (GKFI)

if there exists f ∈ C♯ such that

f(F (x, y)) ≥ 0, ∀y ∈ A.

Special case:
If for any x, y ∈ A, F (x, y) := φ(x, y) + ψ(y) − ψ(x), where φ : A × A → Y

and ψ : A → Y are two vector-valued maps, the (GKFI) reduces to the vector
equilibrium problem (VEP) considered in [12, 13, 14, 21].

Throughout this paper, we always assume V (A,F ) ̸= ∅ and Vf (A,F ) ̸= ∅ in A.
This paper aims at investigating the connectedness of efficient solutions for (GKFI).

Now we recall some basic definitions and their properties which are needed in
this paper.

Definition 2.4. Let F : X ×X → Y be a vector-valued mapping.

(i) F (·, ·) is called C-monotone on A×A, iff for each x, y ∈ A F (x, y)+F (y, x) ∈
−C.

(ii) F (·, ·) is called C-strongly monotone (i.e., C-strictly monotone in [13]) on
A×A, iff F is C-monotone on A×A, and for any each x, y ∈ A with x ̸= y,
F (x, y) + F (y, x) ∈ −intC.

(iii) F (x, ·) is called C-convex(C-concave) on convex set A if, for each x1, x2 ∈ A
and t ∈ [0, 1], tF (x, x1)+ (1−t)F (x, x2) ∈ F (x, tx1+(1−t)x2)+C(F (x, tx1+
(1− t)x2) ∈ tF (x, x1) + (1− t)F (x, x2) + C).

(iv) A set D ⊂ Y is called a C-convex set, iff D + C is a convex set in Y.

Definition 2.5 ([1, 2]). Let F : Λ ⇒ X be a set-valued mapping, and given λ̄ ∈ Λ.

(i) F is called lower semicontinuous(l.s.c, in short) at λ̄, iff for any open set V
satisfying V

∩
F (λ̄) ̸= ∅, there exists δ > 0, such that for every λ ∈ B(λ̄, δ),

V
∩
F (λ) ̸= ∅.
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(ii) F is called upper semicontinuous(u.s.c, in short) at λ̄, iff for any open
set V satisfying F (λ̄) ⊂ V, there exists δ > 0, such that for every λ ∈
B(λ̄, δ), F (λ) ⊂ V.

(iii) F is said to be closed if Graph(F ) = {(λ, x) : λ ∈ Λ and x ∈ F (λ)} is a
closed set in Λ×X.

We say F is l.s.c(resp. u.s.c) on Λ, iff it is l.s.c(resp. u.s.c) at each λ ∈ Λ. F is said
to be continuous on Λ, iff it is both l.s.c and u.s.c on Λ.

Definition 2.6. A vector-valued mapping F (·) is called C-convexlike on A, iff for
any x1, x2 ∈ A and any t ∈ [0, 1], there exists x3 ∈ A such that tF (x1) + (1 −
t)F (x2) ∈ F (x3) + C.

Remark 2.7. (i) F is C-convexlike on X if and only if F (X) + C is convex.
(ii) From the definitions, we can obtain immediately the following implications

for the map F :

C − convexity ⇒ C − convexlikeness

However, one simple example in [19] (Example 3.2) show that the converse impli-
cation is generally not valid. Hence, the class of C-convexlike maps is larger than
the class of C-convex maps.

Lemma 2.8 ([2, 4]). Let X and Y be topological spaces, T : X ⇒ Y be a set-valued
mapping. T is l.s.c at x0 ∈ X if and only if for any net {xα} ⊂ X with xα → x0
and any y0 ∈ T (x0), there exists yα ∈ T (xα) such that yα → y0.

Lemma 2.9 ([1]). Let S : K ⇒ Y be a set-valued mapping. If S is closed and Y is
compact, then S is upper semicontinuous.

3. Connectedness of eficient solutions for (GKFI)

In this section, we obtain an important density result for (GKFI), then we further
discuss the connectedness of efficient solutions to the (GKFI).

Define set-valued mapping H : C∗ \ {0} ⇒ A by

H(f) := Vf (A,F ), f ∈ C∗ \ {0}.

Firstly, we establish the following lemma.

Lemma 3.1. Let f ∈ C∗ \ {0}. Suppose the following conditions are satisfied

(i) A is a nonempty compact set;
(ii) F (·, ·) is continuous on A×A;
(iii) For each x ∈ A \ Vf (A,F ), there exists y ∈ Vf (A,F ) such that

F (x, y) + F (y, x) +B(0, dr(x, y)) ⊂ −C,

where γ > 0 is a positive constant.

Let us define set-valued mapping H : C∗ \ {0} ⇒ A by

H(f) := Vf (A,F ), f ∈ C∗ \ {0}.

Then we have H(·) is l.s.c on C∗ \ {0}.
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Proof. Suppose to the contrary that there exists f0 ∈ C∗ \ {0}, such that H(f) be
not l.s.c at f0. Then, there exist a sequence {fn} ⊂ C∗ \ {0} with fn → f0 and
x0 ∈ H(f0) such that for any xn ∈ H(fn), xn ̸→ x0.

Since x0 ∈ A and A is nonempty compact, then there exists x̄n ∈ A, such that
x̄n → x0. Obviously, x̄n ∈ A \H(fn). By (iii), there exists yn ∈ H(fn) such that

(3.1) F (x̄n, yn) + F (yn, x̄n) +B(0, dr(x̄n, yn)) ⊂ −C,

where γ > 0 is a positive constant.
For yn ∈ H(fn) implies yn ∈ A, because A is nonempty compact, there exist

y0 ∈ A and a subsequence {ynk
} of {yn}, such that ynk

→ y0. In particular, for
(3.1), we have

(3.2) F (x̄nk
, ynk

) + F (ynk
, x̄nk

) +B(0, dr(x̄nk
, ynk

)) ⊂ −C.

Taking the limit as nk → +∞, it follows from the continuity of F we have

(3.3) F (x0, y0) + F (y0, x0) +B(0, dr(x0, y0)) ⊂ −C.

Assume that x0 ̸= y0, by (3.3), we can obtain F (x0, y0) + F (y0, x0) ∈ −intC.
Thus, it follows from f0 ∈ C∗ \ {0}, we have

(3.4) f0(F (x0, y0) + F (y0, x0)) < 0.

Noting that x0 ∈ H(f0) and y0 ∈ A, we have

(3.5) f0(F (x0, y0)) ≥ 0.

Moreover, since ynk
∈ H(fnk

) and x̄nk
∈ A, it follows from the continuity of f0 and

F that

(3.6) f0(F (y0, x0)) ≥ 0.

By (3.5), (3.6) and the linearity of f0, we have

f0(F (x0, y0) + F (y0, x0)) ≥ 0.

which contradicts (3.4). Therefore x0 = y0. This is impossible by the contradiction
assumption. Therefore, H(·) is l.s.c on C∗ \ {0}. The proof is complete. □

Theorem 3.2. Let f ∈ C∗ \ {0}. Suppose the following conditions are satisfied:

(i) A is a nonempty compact set;
(ii) F (·, ·) is continuous on A×A;
(iii) For each x ∈ A \ Vf (A,F ), there exists y ∈ Vf (A,F ) such that

F (x, y) + F (y, x) +B(0, dr(x, y)) ⊂ −C,

where γ > 0 is a positive constant.
(iv) For each x ∈ A, F (x, ·) is C-convexlike on A.

Then, ∪
f∈C♯

Vf (A,F ) ⊂ V (A,F ) ⊂ cl
( ∪

f∈C♯

Vf (A,F )
)
.
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Proof. By definition, we can easily obtain

(3.7)
∪

f∈C♯

Vf (A,F ) ⊂ V (A,F ) ⊂ Vw(A,F ).

Since for any x ∈ A,F (x, ·) is C-convexlike, then F (x,A)+C is a convex set. From
Lemma 2.1 in [12], we have

(3.8) Vw(A,F ) =
∪

f∈C∗\{0}

Vf (A,F ).

By (3.7) and (3.8), we can get

(3.9)
∪

f∈C♯

Vf (A,F ) ⊂ V (A,F ) ⊂
∪

f∈C∗\{0}

Vf (A,F ).

Hence, we need to prove that∪
f∈C∗\{0}

Vf (A,F ) ⊂ cl(
∪

f∈C♯

Vf (A,F )).

By the definition of set-valued mappingH(f) = Vf (A,F ) and by virtue of Lemma
3.1, we know that H(·) is lower semicontinuous on C∗ \ {0}.

Let x0 ∈
∪

f∈C∗\{0} Vf (A,F ). Then, there exists f0 ∈ C∗ \ {0} such that

x0 ∈ Vf0(A,F ) = H(f0).

Since C♯ ̸= ∅, let g ∈ C♯ and set

fn = f0 + (1/n)g.

Then, fn ∈ C♯. We show that {fn} weak∗ converges to f0 with respect to the
topology β(Y ∗, Y ).

For any neighborhood U of 0 with respect to β(Y ∗, Y ), there exist bounded
subsets Bi ⊂ Y (i = 1, 2, . . . ,m) and ϵ > 0 such that

m∩
i=1

{f ∈ Y ∗ : sup
y∈Bi

|f(y)| < ϵ} ⊂ U.

Since Bi is bounded and g ∈ Y ∗, |g(Bi)| is bounded for i = 1, . . . ,m. Thus, there
exists N such that

sup
y∈Bi

|(1/n)g(y)| < ϵ, i = 1, . . . ,m, n ≥ N.

Hence (1/n)g ∈ U, that is, fn − f0 ∈ U. This means that {fn} weak∗ converges to
f0 with respect to β(Y ∗, Y ).

Since H(·) is l.s.c at f0, then for sequence {fn} ⊂ C∗ \ {0}, fn → f0 and x0 ∈
H(f0), there exists xn ∈ H(fn) = Vfn(A,F ) ⊂

∪
f∈C♯ Vf (A,F ), such that xn → x0.

This means that

x0 ∈ cl
( ∪

f∈C♯

Vf (A,F )
)
.
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By the arbitrariness of x0 ∈
∪

f∈C∗\{0} VA,F (µ), we have

(3.10)
∪

f∈C∗\{0}

Vf (A,F ) ⊂ cl
( ∪

f∈C♯

Vf (A,F )
)
.

By (3.9) and (3.10), we obtain that∪
f∈C♯

Vf (A,F ) ⊂ V (A,F ) ⊂ cl
( ∪

f∈C♯

Vf (A,F )
)
.

The proof is completed. □

Remark 3.3. Theorem 3.2 improves and extends Theorem 2.1 of [14]. In [14], under
the condition of C-strong monotonicity, the f -solution set for GKFI is confined to
be a singleton (also see, Theorem 3.2 in [13]). In our paper, we use condition (iii)
in Theorem 3.2 to weaken this condition. Moreover, the f -solution set may be a
general set, but not a singleton. The following example is given to illustrate the
case.

Example 3.4. Let X = R, Y = R2, C = R2
+ := [0,+∞) × [0,+∞), A = [−1, 1].

For each x, y ∈ A, define the mapping F : X ×X → Y by

F (x, y) =
(
− x3 +

1

2
x2 − 1

3
x

1
3 y − 2, 10x

1
3

(
y2 +

1

2
x2

))
.

For any given µ > 0, let f((x, y)) = 1
µy. It follows from a direct computation that

Vf (A,F ) = [0, 1]. Obviously, the f -solution set of GKFI is set-valued, but not a
singleton.

Clearly, conditions (i) (ii) (iv) of Theorem 3.2 are satisfied. The assumption (iii)
can be checked as follows:

For any x ∈ A \ Vf (A,F ) = [−1, 0), there exists y = 0 ∈ Vf (A,F ) and r =
7
3 > 0

such that

F (x, y) + F (y, x) +B(0, dr(x, y)) =
(
− x3 +

1

2
x2 − 1

3
x

1
3 y − 2, 10x

1
3

(
y2 +

1

2
x2

))
+
(
− y3 +

1

2
y2 − 1

3
y

1
3x− 2, 10y

1
3

(
x2 +

1

2
y2
))

+B(0, dr(x, y))

=
(
− x3 +

1

2
x2 − 2, 5x

7
3

)
+(−2, 0)+B(0, dr(x, 0))

=
(
− x3 +

1

2
x2 − 4, 5x

7
3

)
+B(0, dr(x, 0)) ⊂ −C.

By Theorem 3.2, we can obtain that
∪

f∈C♯ Vf (A,F ) ⊂ V (A,F ) ⊂ cl(
∪

f∈C♯ Vf (A,F )).

However, the condition of C-strong monotonicity in [14](or called C-strict mono-
tonicity in [13]) does not hold. Indeed, for any x ∈ A \ Vf (A,F ) = [−1, 0), there
exists y = −x ∈ Vf (A,F ) = [0, 1], such that

F (x, y) + F (y, x) =
(
− x3 +

1

2
x2 − 1

3
x

1
3 y − 2, 10x

1
3

(
y2 +

1

2
x2

))
+
(
− y3 +

1

2
y2 − 1

3
y

1
3x− 2, 10y

1
3

(
x2 +

1

2
y2
))
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=
(
x2 +

2

3
x

4
3 − 4, 0

)
∈ −∂C.

where ∂C is the boundary of C. Obviously, F (x, y)+F (y, x) ̸∈ −intC, which implies
F (·, ·) is not C-strongly monotone on A×A. Then, the density Theorem 2.1 in [14]
is not applicable.

Now, we establish a sufficient condition for connectedness of efficient solutions to
(GKFI).

Theorem 3.5. Let f ∈ C∗ \ {0}. Suppose the following conditions are satisfied:

(i) A is a nonempty compact convex set;
(ii) F (·, y) is C-concave on A and F (·, ·) is continuous on A×A;
(iii) For each x ∈ A \ Vf (A,F ), there exists y ∈ Vf (A,F ) such that

F (x, y) + F (y, x) +B(0, dr(x, y)) ⊂ −C,
where γ > 0 is a positive constant.

(iv) For each x ∈ A, F (x, ·) is C-convexlike on A;
(v) F (A,A) is a bounded subsets of Y.

Then, V (A,F ) is a connected set.

Proof. The proof is divided into the following three steps :

Step 1 Vf (A,F ) is a convex set on A.
In fact, for any fixed y ∈ A, let x1, x2 ∈ Vf (A,F ) and λ ∈ [0, 1]. Then, λx1 +

(1− λ)x2 ∈ A and

(3.11) f(F (x1, y)) ≥ 0,

(3.12) f(F (x2, y)) ≥ 0.

Multiplying both side of (3.11) by λ and of (3.12) by 1 − λ, and together with
the C-concavity of F with respect to the first argument yields

f(F (λx1 + (1− λ)x2, y)) ≥ λf(F (x1, y)) + (1− λ)f(F (x2, y)) ≥ 0.

It follows that λx1+(1−λ)x2 ∈ Vf (A,F ). Therefore, Vf (A,F ) is convex. It follows
that for any f ∈ C∗\{0}, H(f) is a connected set.

Step 2 It is clear that C∗\{0} is convex, so it is a connected set.

Step 3 Now we show that H(·) is upper semicontinuous on C∗\{0}.
Since A is compact, by Lemma 2.9, we need only to prove that H is closed. Let

{(fα, xα) : α ∈ I} be a net such that

{(fα, xα) : α ∈ I} ⊂ Graph(H) = {(f, x) ∈ (C∗\{0})×A : x ∈ H(f)}
and

(fα, xα) → (f, x0) ∈ (C∗\{0})×A,

where fα → f means that {fα} weak∗converges to f with respect to the strong
topology β(Y ∗, Y ) in Y ∗. Since xα ∈ H(fα), α ∈ I, one has

(3.13) fα(F (xα, y)) ≥ 0, ∀ y ∈ A.

By assumption, D = {F (x, y) : x, y ∈ A} are bounded subsets of Y . Define

PD(y
∗) := sup{|y∗(u)| : u ∈ D}, y∗ ∈ Y ∗.
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It is easy to see that PD is a seminorm of Y ∗. For arbitrary ε > 0,

U = {y∗ ∈ Y ∗ : PD(y
∗) < ε}

is a neighborhood of zero with respect to β(Y ∗, Y ). Since fα − f → 0, there exists
α0 ∈ I such that fα − f ∈ U , ∀ α ≥ α0. It follows that

PD(fα − f) = sup{|(fα − f)(u)| : u ∈ D} < ε, whenever α ≥ α0.

Therefore, for any y ∈ A,

(3.14) |(fα − f)(F (xα, y))| = |fα(F (xα, y))− f(F (xα, y))| < ε.

It follows from (3.14) and the continuity of f and F , we can get that

lim |f(F (x0, y))− fα(F (xα, y))| ≤ lim |f(F (x0, y))− f(F (xα, y))|
+ lim |f(F (xα, y))− fα(F (xα, y))|

= 0.

This fact together with (3.13) yields,

f(F (x0, y)) ≥ 0, ∀y ∈ Y.

It follows that x0 ∈ Vf (A,F ) = H(f). Therefore, H is a closed mapping, and so H
is upper semicontinuous on C∗\{0}. From Theorem 3.1 in [17] (or Theorem 3.1 in
[24]), ∪

f∈C∗\{0}

Vf (A,F )

is a connected set. Using a similar method, with suitable modifications, we can get∪
f∈C♯ Vf (A,F ) is a connected set.
Furthermore, by the Theorem 3.2, we have,∪

f∈C♯

Vf (A,F ) ⊂ V (A,F ) ⊂ cl
( ∪

f∈C♯

Vf (A,F )
)
.

So, we can obtain V (A,F ) is a connected set. This completes the proof. □
Remark 3.6. Theorem 3.5 generalizes and improves Theorem 2.2 of Gong and Yao
[14]. In Theorem 3.5, the assumption of C-strong/strict monotonicity is removed
by assumption (iii), where the f -solution set is not necessary a singleton, may be
a general one. And the mapping F that is a C-convex mapping is extended to the
C-likeconvex mapping.

Moreover, we also can see that the obtained result improves the ones of [13, 21],
where the strong assumptions that F (x, x) = φ(x, x) ≥ 0 and F (0, 0) = 0(or ψ(0) =
0 and φ(0, 0) = 0) is not necessary.

Now, we give an example to illustrate our result extends those of [13] and [14, 21].

Example 3.7. Let X = R, Y = R2, C = R2
+, A = [−1, 1], and let F : X ×X → Y

be a vector-valued mapping defined by

F (x, y) =
(
− x2 + 3x+

3

2
y − 11

2
,
7

3
xy2 +

14

3
x
)
, ∀x, y ∈ A

Let f = (0, 2) ∈ C∗ \ {0}, it follows from a direct computation that Vf (A,F ) =
[0, 1](not a singleton).
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We can verify that A is a nonempty compact convex set, F (·, y) is C-concave on
A and F (·, ·) is continuous on A × A. Obviously, conditions (i) (ii) (iv) and (v) of
Theorem 3.5 are satisfied.

For any x ∈ A \ Vf (A,F ), there exists y = 0 ∈ Vf (A,F ) and r = 1 > 0 such that

F (x, y) + F (y, x) +B(0, dr(x, y))

=
(
− x2 + 3x+

3

2
y − 11

2
,
7

3
xy2 +

14

3
x
)

+
(
− y2 + 3y +

3

2
x− 11

2
,
7

3
yx2 +

14

3
y
)
+B(0, dr(x, y))

=
(
− x2 + 3x− 11

2
,
14

3
x
)
+

(3
2
x− 11

2
, 0
)
+B(0, dr(x, 0))

=
(
− x2 +

9

2
x− 11,

14

3
x
)
+B(0, dr(x, 0)) ⊂ −C.

Thus, the condition (iii) in Theorem 3.5 is satisfied. It is clear that F (A,A) are
also bounded subsets of Y. By virtue of Theorem 3.5, we conclude that V (A,F ) is
a connected set.

However, Theorem 2.2 in [14] is not applicable because F (or φ) is not C-
strongly/strictly monotone on A × A. Indeed, for any x ∈ A \ Vf (A,F ) = [−1, 0),
there exists y = −x ∈ Vf (A,F ) = [0, 1], such that

F (x, y) + F (y, x) =
(
− x2 + 3x+

3

2
y − 11

2
,
7

3
xy2 +

14

3
x
)

+
(
− y2 + 3y +

3

2
x− 11

2
,
7

3
yx2 +

14

3
y
)

= (−2x2 − 11, 0) ̸∈ −intC,
which means F (·, ·) is not C-strongly monotone on A × A. Then, Theorem 2.2 of
[14] is not applicable, and Theorem 3.2 in [13] is also invalid.

Moreover, we observe that F (0, 0) ̸= 0, i.e., the condition that F (0, 0) = 0(or
ψ(0) = 0 and φ(0, 0) = 0) in Theorem 3.2 of [21] is not satisfied. Meanwhile, the
condition that F (x, x) = φ(x, x) ≥ 0 in Theorems 4.1-4.5 of [13] is also not satisfied.
Therefor, the corresponding results of [13, 21] are also inapplicable.

4. Conclusions

In this paper, we study some properties of efficient solutions set. The connected-
ness of efficient solutions for GFKI is established by using density theorem without
monotonicity.

Now one open problem arises in a natural way: Can we establish the connect-
edness of Henig/super/weak efficient solutions set for GFKI or set-valued GFKI
without using monotonicity ? This is a very interesting and valuable topic, and we
will investigate it in our future work.
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