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above. The outline of this paper is as follows. Theorem 2.1 is a multivalued ver-
sion of Theorem 1.3 with some weakened hypotheses (order continuity and order
completeness are replaced with regularity). Theorem 2.1 also generalizes Theorem
1.1 (where the conditions on the emptiness of the interior of the cone and on the
separability of the space are dropped). Example 2.4 is a counterexample of Theo-
rem 1.2. In fact, this example shows that the regularity of the cone is an essential
assumption and may not be ignored in Theorem 1.2 and Theorem 2.1. From this
point of view, Theorem 2.1 would generalize Theorem 1.2 if the regularity of the
cone were one of the assumptions. Example 2.5 shows that the supremum property
used in the proof of both Theorem 1.1 and Theorem 1.2 as well as [1, Lemma 1, (i)
] and [2, Lemma 9, (i)] is not necessarily valid in vector valued metric spaces. Yet,
the statement of Theorem 1.1 remains true and Theorem 2.1 will be a generalization
of it. Finally, Example 2.6 contradicts [1, Lemma 1, (i) ] and [2, Lemma 9, (i)]. In
fact, this example shows that order completeness and normality are not sufficient
conditions for regularity of a cone.

We start with some preliminaries which will be needed in this paper.
Let (E ,⪯, ∥ · ∥) be an ordered Banach space (for short E) with (positive) cone

E+ = {c ∈ E : c ⪰ θ}, where θ is the null vector.
A lattice norm ∥ · ∥ has the property that for a, b ∈ E that |a| ⪯ |b| we have

∥a∥ ≤ ∥b∥. A Riesz space equipped with a lattice norm is called a normed Riesz
space. A complete normed Riesz space is called a Banach lattice. A lattice norm
∥ · ∥ on a Riesz space is order continuous if infα aα = 0 implies infα ∥aα∥ = 0, for
every decreasing net {aα}. A set B ⊂ E is called bounded if there exists z ∈ E such
that for all b ∈ B, b ⪯ z. A Riesz space is called order complete, if every nonempty
subset that is bounded from above (below) has a supremum (infemum). A cone is
called regular if every nondecreasing (decreasing) sequence which is bounded from
above (below) is convergent in norm. A cone is called normal if θ ⪯ a ⪯ b implies
∥a∥ ≤ M∥b∥, for some M ≥ 1.

Definition 1.4 ([4]). Let X be a nonempty set and E be an ordered Banach space
with order ⪯. If a map d : X ×X → E satisfies the following conditions:

(1) θ ⪯ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y,
(2) d(x, y) = d(y, x) for all x, y ∈ X,
(3) d(x, y) ⪯ d(x, z) + d(y, z) for all x, y, z ∈ X,

then (X, d) is called a vector valued metric space (vvms for short) over E .
Let (X, d) be a vvms. A net {xα} of X is called convergent to x ∈ X, denoted by

xα → x, if ∥d(xα, x)∥ → 0. A net {xα} ofX is called Cauchy net, if ∥d(xα, xβ)∥ → 0.
If every Cauchy net of X is convergent to a point of X, then X is called a complete
vvms. A map φ : X → E is called lower semi-continuous (lsc) if for each net {xα}
of X such that xα → x we have φ(x) ⪯ lim infα φ(xα).

2. Vector version of Caristi’s theorem

Hereafter it is supposed that E+ is a closed regular cone of ordered Banach space
E with order ⪯ (the interior of E+ is not necessary to be nonempty), unless othewise
stated. A correspondence f : X ↠ X maps x ∈ X to a nonempty subset of X. A
point a ∈ X is called fixed point of f if a ∈ f(a).
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Theorem 2.1. Let (X, d) be a complete vvms over E. Let φ : X → E+ be an lsc
map. Then every correspondence f : X ↠ X such that for each x ∈ X there exists
y ∈ f(x) satisfying

d(x, y) ⪯ φ(x)− φ(y),

has a fixed point.

Proof. By assumption, for each x ∈ X the set {y ∈ f(x) : d(x, y) ⪯ φ(x)− φ(y)} is
nonempty. By the axiom of choice, there is a single valued map T : X → X such
that d(x, T (x)) ⪯ φ(x)− φ(T (x)), for each x ∈ X. Define an order ⪯φ on X by

x ⪯φ y ⇐⇒ d(x, y) ⪯ φ(y)− φ(x),

for any x, y ∈ X. We shall show that (X,⪯φ) has a minimal element and T fixes
the minimal element. Let C be a chain in X. The chain C can be considered as
a directed set induced by the reverse of ⪯φ and therefore it may be regarded as a
decreasing net C = {xα}α=xα∈C . For α ⪯φ β we have

(2.1) θ ⪯ d(xα, xβ) ⪯ φ(xβ)− φ(xα).

This implies that the net {φ(xα)}α∈C is a decreasing net and bounded from below in
E+. Since every closed regular cone is normal (see e.g., [9]; without loss of generality
let the normal constant M is equal to 1), the net {∥φ(xα)∥}α∈C is decreasing and
bounded below in R and therefore has an infimum. This allows us to find a countable
subnet {∥φ(xαn)∥} of {∥φ(xα)∥}α∈C . Now consider countable subnet {φ(xαn)} of
{φ(xα)}α∈C . From the regularity of the cone, {φ(xαn)} is convergent in norm and
therefore it is Cauchy in norm too. We claim that {φ(xα)}α∈C is Cauchy. To see
this, let ϵ > 0 be given. There exists αn0 such that for all αn, αm ⪯φ αn0 ,

∥φ(xαn)− φ(xαm)∥ < ϵ/3.

Let α, β ⪯φ αn0 . Since {φ(xα)} is decreasing, φ(xα) ⪯ φ(xαn0
). Also, {φ(xαn)}

is a subnet of {φ(xα)}, therefore there is a term φ(xαm) in the sequence {φ(xαn)}
with αm ⪯φ α such that φ(xαm) ⪯ φ(xα). Thus φ(xαm) ⪯ φ(xα) ⪯ φ(xαn0

). This
along with the compatibility of “⪯” with “+” in E imply that

θ ⪯ φ(xα)− φ(xαm) ⪯ φ(xαn0
)− φ(xαm),

and since the cone is normal, we get

0 ≤ ∥φ(xα)− φ(xαm)∥ ≤ ∥φ(xαn0
)− φ(xαm)∥.

In particular, we have ∥φ(xα)− φ(xαm)∥ < ϵ/3. With a similar argument, there is
αn with αn0 ⪰φ αn such that ∥φ(xβ)− φ(xαn)∥ < ϵ/3. Thus

∥φ(xα)− φ(xβ)∥ ≤ ∥φ(xα)− φ(xαm)∥+ ∥φ(xβm)− φ(xαn)∥
+ ∥φ(xαn)− φ(xβ)∥,
< ϵ/3 + ϵ/3 + ϵ/3,

< ϵ.
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From (2.1) we have ∥d(xα, xβ)∥ ≤ ∥φ(xα) − φ(xβ)∥ and therefore ∥d(xα, xβ)∥ <
ϵ. Thus, {xα} is Cauchy and since (X, d) is complete, {xα} is convergent. Let
limα xα = z. Now, we show that z is a lower bound for (C,⪯φ). Let xβ ∈ (C,⪯φ)
be fixed. For xα ∈ C, we have

d(xα, xβ) ⪯ d(xα, z) + d(z, xβ),

and

d(z, xβ) ⪯ d(z, xα) + d(xα, xβ).

Therefore

θ ⪯ d(z, xα) + d(xα, xβ)− d(z, xβ) ⪯ 2d(z, xα),

and the normality yields

∥d(z, xα) + d(xα, xβ)− d(z, xβ)∥ ≤ 2∥d(z, xα)∥.
Thus

∥d(xα, xβ)− d(z, xβ)∥ ≤ ∥d(xα, xβ)− d(z, xβ) + d(z, xα)∥+ ∥d(z, xα)∥,
≤ 3∥d(z, xα)∥.

This implies that limα d(xα, xβ) = d(z, xβ). For xα ⪯φ xβ, since φ is lsc, and E+ is
closed, we have

φ(z) ⪯ lim inf
α

φ(xα) = lim
α

φ(xα) ⪯ lim
α
(φ(xβ)− d(xα, xβ)) ⪯ φ(xβ)− d(z, xα),

that is z ⪯φ xβ. Because xβ was arbitrary, z is a lower bound for C. Zorn’s lemma
will ensure the existence of a minimal element w for X. Since for each x ∈ X we
have T (x) ⪯φ x, therefore T (w) = w. □

The contraction given in the preceding theorem was also investigated in [7] for
correspondences defined on cone metric spaces.

Corollary 2.2. Let (X, d) be a complete vvms over E, and let φ : X → E+ be an
lsc map. Then any map T : X → X such that

d(x, T (x)) ⪯ φ(x)− φ(y),

for any x ∈ X, has a fixed point.

The following remark says why the Corollary 2.2 is a generalization of Theorem
1.3.

Remark 2.3. In every order continuous Banach lattice, the (positive) cone E+ is
closed and regular. In fact, let {an} be a decreasing sequence in E which is bounded
from below. Since every order continuous Banach lattice E is order complete (see
e.g., [5, Corollary 9.24]), {an} has an infimum, say, a. Since infn(an − a) = 0, the
order continuity implies taht infn ∥an−a∥ = 0. Thus {an} has a subsequence {ank

}
converging to a. Since {an − a} is decreasing and E is a Banach lattice, we have
∥an − a∥ → 0. That is the cone E+ is regular. To see the closeness of E+, let {an}
be a sequence in E+ which is convergent to b. Since an ⪰ 0 and E is order complete,
infimum {an} exists. Let infn an = a ⪰ θ. A similar reasoning shows that {an} has
a subsequence which is convergent to a and therefore convergent to b.
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The following example shows that the regularity of E+ is essential in Theorem
2.1 and may not be dropped. Also, this example contradicts the Theorem 1.2.

Example 2.4. Consider the Banach space l∞(R) with usual pointwise order in-
duced by R. Let E+ = {(xn) ∈ l∞(R) : xn ≥ 0 for all n ∈ N} be its cone. It is
not difficult to see that l∞(R) is order complete and E+ is normal with nonempty
interior. Let B be a subset of l∞(R) consisting of all (xn) which are nondecreasing
and converging to 1 with 1/2 ≤ xn ≤ 1, for all n ∈ N. Define d : B ×B → E+ by

d((xn), (yn)) = (|x1 − y1|, . . . , |xn − yn|, . . .),

for every (xn), (yn) ∈ B. It is not hard to check that (B, d) is a complete vvms.
Now define the map T : B → B by

T ((xn)) = (1/2, x1, x2, . . .),

for every (xn) ∈ B. Let φ : B → E+ be the inclusion map. It is clear that φ is lsc
and T satisfies (1.1). Indeed,

d((xn), T ((xn))) = (|x1 − 1/2|, . . . , |xi+1 − xi| . . .),
= (x1 − 1/2, . . . , xi+1 − xi, . . .)

= φ((xn))− φ(T ((xn))),

for every (xn) ∈ B. Thus all assumptions of Theorem 1.2 and Theorem 2.1 are
fulfilled but T is a fixed point free map on B since the possible fixed point of T is
(1/2, 1/2, . . .) which does not belong to B.

The next example shows that the supremum property is not necessarily valid in
vvms’s. It clarifies the existed gap in the proof of Theorem 1.1 and Theorem 1.2.

Example 2.5. Consider the Banach lattice E = R2 with E+ = {(a, b) ∈ R2 : a, b ∈
[0,+∞)}. The subset A = {(1/n,−1/n) : n ∈ N} of R2 has supremum (1, 0). The
element c = (1/3, 1/3) is an interior point of E+ but there is no element (a, b) of A
such that (a, b) ⪰ (2/3,−1/3) = supA − c. Therefore the Banach lattice R2 does
not have supremum property.

Hence, the statement of Theorem 1.1 remains true because of Theorem 2.1 which
is a generalization of it. Theorem 2.1 would be a generalization of Theorem 1.2 if
in the latter the normality could be replaced with the regularity of the cone.

The following example contradicts [1, Lemma 1, (i) ] and [2, Lemma 9, (i)].
It shows that order completeness and normality are not sufficient conditions for
regularity of a cone.

Example 2.6. Consider the Banach space l∞(R) and E+ as given in Example 2.4.
Suppose that the sequence {an} is defined as

an = (1, . . . , 1︸ ︷︷ ︸
n

, 0, 0, . . .),

for each n ∈ N. Although {an} is nondecreasing and bounded from above but it is
not convergent.
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