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APPROXIMATING COMMON SOLUTION OF A SYSTEM OF
EQUILIBRIUM PROBLEMS IN BANACH SPACES

ESKANDAR NARAGHIRAD* AND WATARU TAKAHASHI

ABSTRACT. In this paper we introduce new Halpern-type iterative algorithms for
finding a common solution of a system of equilibrium problems in Banach spaces.
We prove strong convergence of a modified Halpern-type scheme to an element
of the set of common solution of a system of equilibrium problems in a reflexive
Banach space and provide an affirmative answer to an open question raised by
Zegeye and Shahzad in their final remark of [Zegeye and Shahzad, Approximating
common solution of variational inequality problems for two monotone mappings
in Banach spaces, Optimization Letters, 5 (2011) 691-704]. This scheme has
an advantage that we do not use any generalized projection of a point on the
intersection of closed and convex sets which creates some difficulties in a practical
calculation of the iterative sequence. Some application of our results to the
problem of finding a minimizer of a continuously Fréchet differentiable and convex
function in a Banach space is presented. Our results improve and generalize many
known results in the current literature.

1. INTRODUCTION

The equilibrium problem, introduced by Blum and Oettli [4] in 1994, has been
attracting a growing attention of researchers; see, e.g., [18, 25] and the references
therein. Numerous problems in physics, optimization, and economics reduce to find
a solution of the equilibrium problem. In order to approximate the solution to this
problem, various types of iterative schemes have been proposed; see, for instance,
[17, 19]. Throughout this paper, we denote the set of real numbers and the set of
positive integers by R and N, respectively. Let E be a Banach space with the norm
||.|| and the dual space E*. For any « € E, we denote the value of z* € E* at «
by (z,z*). Let {z,}nen be a sequence in E, we denote the strong convergence of
{Zn}nen to z € E as n — oo by x,, — z and the weak convergence by x,, — x. The
modulus ¢ of convexity of E is denoted by

. r+y
o0 =int {1 ol < 1yl < 1,00 - 012

for every € with 0 < € < 2. A Banach space FE is said to be uniformly conver if
d(e) > 0 for every € > 0. Let Sg = {x € FE: ||z|| = 1}. The norm of F is said to be
Gateauz differentiable if for each z,y € Sg, the limit

- ety [
’ t—0 t
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exists. In this case, E is called smooth. If the limit (1.1) is attained uniformly for
all x,y € Sg, then F is called uniformly smooth. The Banach space F is said to
be strictly convez if |*F2|| < 1 whenever z,y € Sp and = # y. It is well known
that E is uniformly convex if and only if E* is uniformly smooth. It is also known
that if F is reflexive, then F is strictly convex if and only if £* is smooth; for more
details, see [23, 24]. Recall that a Banach space E has the Kadec-Klee property if
for any sequence {zy}ney C F and x € E, if z, — z and ||z,| — ||z||, then z, — =
as n — 0o. For more information concerning the Kadec-Klee property the reader is
referred to [8] and the references therein. It is well known that if £ is a uniformly
convex Banach space, then E has the Kadec-Klee property; the Banach space F is
uniformly smooth if and only if £* is uniformly convex.

Let C' be a nonempty subset of E. Let T': C — E be a mapping. We denote
the set of fixed points of T by F(T), i.e., F(T) ={xz € C : Tx = z}. A mapping
T : C — F is said to be nonezpansive if |Tx — Ty| < ||z — y|| for all z,y € C. A
mapping T : C — F is said to be quasi-nonexpansive if F(T) # 0 and [Tz — y|| <
|z —yl| for all x € C' and y € F(T). The mapping T is called demicontinuous if
{zn}nen C C converging to x in the norm implies that {Tx,, },en converges weakly
to T'x.

In recent years, several types of iterative schemes have been constructed and
proved in order to get strong convergence results for nonexpansive mappings in
various settings. One of the most important iterative algorithms for approximating
fixed points of a nonexpansive mapping 1" : C' — C'is Halpern iteration, where C' is
a closed and convex subset of a Banach space E. Recall that the Halpern iteration
is given by the following formula

u € C, r1 € C chosen arbitrarily,

Tpntl = Qpu + (1 - an)ynv

where the sequences {3, }nen and {a, }nen satisfy some appropriate conditions. The
construction of fixed points of nonexpansive mappings via Halpern’s algorithm [9]
has been extensively investigated recently in the current literature (see, for example,
[20] and the references therein). Numerous results have been proved on Halpern’s
iterations for nonexpansive mappings in Hilbert and Banach spaces (see, e.g., [9, 2]).
Because of a simple construction, Halpern’s iterations are widely used to approx-
imate a solution of fixed points for nonexpansive mappings and other classes of
nonlinear mappings by many authors in different styles.

Let E be a strictly convex and reflexive Banach space. The normalized duality
mapping J : E — 2F" is defined by

J(@)={f € E*: (z, ) = ||, llz]| = If|I}, ¥z € E.

Let C' be a nonempty, closed and convex subset of E. The generalized projection
IIo from E onto C' is defined and denoted by

Hg(r) = argmingcc¢(y, v), Vo € E,
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where ¢(x,y) = ||z||> — 2(z, Jy) + ||y||?; see [1, 12]. It is obvious from the definition
of the function ¢ that

(1.3) (lzll + llyI)? < é(z,9) < (l=]| + lyl)?, Yo,y € E.

It is also clear that
d(z,y) =0z =y.
We have from the definition of ¢ that

(1.4) o(@,y) = o, 2) + ¢(2,y) + 2(x — 2, Jz = Jy), Vo,y,2 € E.
In particular, it can be easily seen that
(15) gb(ﬂj‘,y) = _¢(y,$)+2<y_13, Jy—']$>7 V$,y€ E.

Indeed, by letting z = z in (1.4) and taking into account that ¢(x,z) = 0, we get
the desired result. Let ¢, : E* x E* — R be the function defined by

(1.6) Gu(a*,y*) = [l2*|* = 2071y ) + [y )12

for x*, y* € E*, where J is the duality mapping of E. It is easy to see that
We have from the definition of ¢, that

(1.8)

gb*(x*,y*) — ¢*($*,Z*) +¢>*(z*,y*) —|—2<J_1(L‘* . J_lz*,z* o y*>7 \V/ZL'*,y*,Z* c E*
In particular,
(1.9)  dula®y*) = —guly™ a™) +2(J 1y — T la*,y* — 2¥), Vat,y* € B

Indeed, there exist z,y,z € E such that J(z) = z*, J(y) = y* and J(z) = z*.
Therefore,

¢*($*a y*) =

¢*(Jxa Jy) = ¢(y7x) = ¢(y7 Z) + ¢(Z’x) + <y —2z,Jz — Jl‘)
bu(J 2, Jy) + Ou(Jw, J2) + 2(J Ly — J712% 2% — z*)
Gu(25 ") + dula®, 2%) + 2(T Nt — T 2 — ).

Let C be a nonempty, closed and convex subset of a smooth Banach space F, and
let T' be a mapping from C into itself. A point p € C is said to be an asymptotic
fized point [17] of T if there exists a sequence {x;, },en in C which converges weakly
to p and lim,, o ||z, — Tz, || = 0. We denote the set of all asymptotic fixed points
of T by F(T).

Let E be a real Banach space and let g : E — (—00, 00| be a convex function.
The domain of g is denoted by dom g = {z € E : g(z) < co}. Let = € int dom g
and y € E. The right-hand derivative of g at x in the direction y is defined and
denoted by

0 _ 9@+ ty) —g(z)
(1.10) 9°(z,y) = fim n :
The function g is called be Gateaux differentiable at x if lim;_g w exists
for any y. In this case ¢g°(z,y) coincides with Vg(z), the value of the gradient
Vg of g at . The function g is said to be Gateaux differentiable if it is Gateaux
differentiable everywhere. The function g is said to be Fréchet differentiable at x
if this limit is attained uniformly in [|y|| = 1. The function g is said to be Fréchet
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differentiable if it is Fréchet differentiable everywhere. It is well-known that if a
continuous convex function g : £ — R is Gateaux differentiable, then Vg is norm-
to-weak™ continuous (see, for example, [5, Proposition 1.1.10]). Also, it is known
that if g is Fréchet differentiable, then Vg is norm-to-norm continuous (see, [14,
p. 508]). The function g is said to be bounded on bounded subsets of E if g(U)
is bounded for each bounded subset U of E. Finally, g is said to be uniformly
Fréchet differentiable on a subset X of E if the limit (1.10) is attained uniformly
for all z € X and |ly|| = 1. In that case when F is a smooth Banach space, setting
g(z) = ||z||? for all x € E, we obtain that Vg(z) = 2Jx for all z € E.

Let A : E — 2F" be a set-valued mapping. We define the domain and range of A
by dom A = {z € E: Az # @} and ran A = U,cpAx, respectively. The graph of
A is denoted by G(A) = {(z,2*) € E x E* : * € Az}. The mapping A C E x E*
is said to be monotone [21] if (z — y,z* — y*) > 0 whenever (z,z*), (y,y*) € A. It
is also said to be mazximal monotone [22] if its graph is not contained in the graph
of any other monotone operator on F. If A C E x E* is maximal monotone, then
we can show that the set A710 = {z € F:0 € Az} is closed and convex.

Let C' be a nonempty, closed and convex subset of a Banach space E. Let
f:C xC — R be a bifunction. Consider the following equilibrium problem [4]:
Find p € C such that

(1.12) flp,y) >0, VyeC.

For solving the equilibrium problem, let us assume that f : C' x C — R satisfies the
following conditions:

(A1) f(z,z) =0 for all z € C;

(A2) f is monotone, i.e., f(x,y) + f(y,z) <0 for all z,y € C;

(A3) for each y € C, the function x — f(z,y) is upper semicontinuous;

(A4) for each x € C, the function y — f(x,y) is convex and lower semicontinuous.
The set of solutions of problem (1.10) is denoted by EP(f). Given a mapping
T:C — E* let f(z,y) = (y —z,Tx) for all z,y € C. Then z € EP(f) if and only
if (y—2,Tx) >0 for all y € C, i.e., z is a solution of the variational inequality.

Following Matsushita and Takahashi [17], a mapping T : C' — C is said to be quasi-
¢-nonexpansive if F(T) is nonempty and ¢(u, Tx) < ¢(u,z), Yu € F(T), = € C.
The mapping T is called relatively nonerpansive if the following conditions are
satisfied:
(1) F(T) is nonempty;
(2) ¢(u, Tx) < Pp(u,z), Yu € F(T), x € C,
(3) F(T) = F(T).

Recently, Takahashi and Zembayashi [25] proved the following strong convergence
theorem for relatively nonexpansive mappings in a Banach space.

Theorem 1.1. Let C be a nonempty, closed and convex subset of a uniformly
smooth and strictly convex Banach space E. Let f be a bifunction from C x C to
R satisfying (A1)-(A4) and let T be a relatively nonexpansive mapping from C' into
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itself such that F(T) N EP(f) # @. Let {xy}nen be a sequence generated by
(1.13)

(21 =2 € C chosen arbitrarily,

yn = J HanJzn + (1 — ap)JT2y),

un € C such that  f(up,y) + %(y — Up, Jup — Jyn) >0, VyeC,
Ch={z€Cy:o(z,un) < o(z,2,)},
Qn=12€C:{(xy—2zJx— Jzx,) >0},

Tnt+1 = HCannl“

for every n € N, where J is the normalized duality mapping on E, {a,}nen C [0,1]
satisfies liminf,, o0 an (1 — ) > 0 and {rp}nen C [a,00) for some a > 0. Then,
{@n}nen converges strongly to Ilp(rynpp(f)T as n — oo.

In 2010, Plubtieng and Ungchiterakool [18] proved the following strong conver-
gence theorem for equilibrium problems in a Banach space.

Theorem 1.2. Let C be a nonempty, closed and convex subset of uniformly smooth
and uniformly conver Banach space E. Let f be a bifunction from C x C — R
satisfying (A1)-(A4) and EP(f) # O. Let {zp}nen and {u,}nen be sequences
generated by
(1.14)

r1=x€F,

u, € C=C1  such that f(up,y) + %(y — Up, Jup — Jxp) >0, Vyel,

yn = J HanJzn + (1 — an)Juy),

Chy1 = {Z €Cy: ¢(Zayn) < ¢(Z,.%'n)},

Tpy1 =g, 2, neNU{0},

where {an nen C [0,1] satisfies either

(a) 0 <ay <1 foralln €N and limsup,,_,., an <1 or,
(b) liminf, 0 an(1 — ay) > 0.

Let {rp}nen be a sequence in (0,00) such that iminf, o ry >0 and > 07 [rpqe1 —
| < 00. Then {Tn}neN, {Unlnen, and {yntnen converge strongly to llgppz as
n — oo.

Very recently, Zegeye and Shahzad [27] proved the following strong convergence
theorem for two monotone mappings in Banach spaces.

Theorem 1.3. Let C be a nonempty, closed and convex subset of a uniformly
smooth and strictly convexr Banach space E which also enjoys Kadec-Klee prop-
erty. Let Ay, As : C — E* be two continuous monotone mappings. Let F :=
N2 VI(C,A;) # @. Let {xn}nen be a sequence generated by

1L =€ Cl = C,
Up = Tl,'yninn; Up = T2,'ynxna
(1.15) wy, = J Y (BJup, + (1 — B)Jvy,),
Cny1 =1{2€ Cy: 9(z,wn) < d(2,20)},
Tn4+1 = HCn+1$, neNU {O},
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where € (0,1), {yn}nen C [c1,00) for some ¢y > 0 and Tj, (x) = {z € C :
(y — z,Ajz) + %L(y —z,Jz—Jz) >0, Yy € C} forallz € E, i =1,2. Then the
sequence {Tp tnen defined by (1.15) converges strongly to llpx as n — oo.

The following open question was raised by Zegeye and Shahzad in their final
remark of [27].

Open question 1.1. s it possible to obtain a strongly convergent sequence {xy }neN
to a common solution of a variational inequality problem for two monotone operators
without using the generalized projection of a point xo on the closed and convex sets
Ch+1 in more general Banach spaces?

Remark 1.4. Though the iteration processes (1.13)-(1.15) as introduced by the
authors mentioned above worked, it is easy to see that these processes seem cum-
bersome and complicated in the sense that at each stage of iteration, two different
sets C), and @Q,, are computed and the next iterate taken as the generalized projec-
tion of zy on the intersection of C), and @,,. This seems difficult to do in application.
But it is worth mentioning that, in all the above results for nonexpansive type map-
pings, the computation of closed and convex sets C, and @, for each n € N are
required.

In this paper, we deal with a system of equilibrium problems in a uniformly
smooth and strictly convex Banach space. First, we consider disadvantages of the
iterative sequences in known results. Namely, generalized projections are not always
available in a practical calculation. We attempt to improve these schemes and, by
combining them with iterative method of the Halpern type, we obtain a new type of
strong convergence theorem, which overcomes the drawbacks of the previous results.
Next, we study Halpern type iterative schemes for finding common solutions of a
system of equilibrium problems in a uniformly smooth and strictly convex Banach
space. Then, we apply our results to the problem of finding a minimizer of a
continuously Fréchet differentiable and convex function in a Banach space under
suitable assumptions. The computation of closed and convex sets C,, and @), for
each n € N are not required. Consequently, the above question is answered in the
affirmative in a reflexive Banach space setting. Our results improve and generalize
many known results in the current literature; see, for example, [18, 25, 27].

2. PRELIMINARIES

In this section, we begin by recalling some preliminaries and lemmas which will
be used in the sequel. The following lemma which is a generalization of Lemma 3.2
in [2] plays a key role in our results.

Lemma 2.1. Let E be a reflexive, smooth and strictly convex Banach space which
also enjoys the Kadec-Klee property. Let C' be a nonempty subset of E and {T}, } nen
be a family of mappings from C into E. Suppose that for any bounded subset B of
C' there exists a continuous increasing function hp : [0,00) — [0,00) such that
hp(0) =0 and

(2.1) lim 6F =0,

k,l—0c0
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where 0F = sup{hp(|JTxz — JT)z||) : = € B} < oo, for all k,l € N. Then, for
each x € C, {JT,x}nen converges strongly to some point of E*. Moreover, let the
mapping T be defined by

Tx = lim Thx, VzeC.
n—o0
Then, limsup,,_,{hB(||JThz — JTz||): z € B} = 0.

Proof. We first show that {JT,z},en is a Cauchy sequence for each z € C. To this
end, let k,1 € N such that k£ > [. For any « € C let B be a bounded subset of C
such that z € B. Then we obtain

his (|| Tha — JTizel]) < 0f,
which implies that
(2.2) lim hp(||JTkx — JTz|) = 0.
l—00

From the properties of the mapping hp, we conclude that lim;_, ., ||J Tz — JTiz|| =
0. This implies that {JT,,x},en is a Cauchy sequence in E*. Since E* is a Banach

space, then there exists w* € E* such that lim, , ||/Thz — w*|| = 0. From
J(E) = E*, it follows that there exists w € E such that Jw = w*. Thus we
have lim,, oo ||JTpx — Jw|| = 0. Since J~! is demi-continuous, we conclude that

Th,x — w as n — oo. In view of (1.6) and (1.7), we obtain
lim ¢(Thx,w) = lim ¢.(Jw, JT,x) = 0.
n—oo n—oo

This, together with (1.3), implies that ||T,,z|| — [|w|| as n — oo. By the Kadec-Klee
property of E, we deduce that lim,,_, || T, —w|| = 0. Now, we define the function
T:C — C by
Tx = lim Tz, VzreC.
n—oo

Let € > 0 be fixed. It follows from (2.1) that there exists ng € N such that for all
k,l > ng

€
he(|JTey — JTiyll) < 5, Yy € B.
Let [ be fixed and let k — oco. By the continuity of hp and ||.||, we deduce that
hi([JTy = JTiyll) = hp (]| lim JThy — JTiy|)

(2.3) = lim hp(|JThy — JTiy) < Yy € B.
—00

N

In view of (2.3), we conclude that sup{hp(||JTy — JTiy||) : y € B} < § and hence

timsup sup{(|JTy — JTiy) -y € B) < 5 <«

l—00

Since € is arbitrary, we obtain that

limsup sup{hp(|JTy — JTiy||) : y € B} =0,
l—o00

which completes the proof. Il

The following two lemmas have been proved in [18].
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Lemma 2.2. Let C' be a nonempty, closed and convex subset of a smooth, strictly
convexr and reflexive Banach space E. Let T : C — C be a quasi-¢-nonexpansive
mapping. Then F(T) is closed and convex.

Lemma 2.3. Let C' be a nonempty, closed and convex subset of a smooth, strictly
convezr and reflexive Banach space E and {T,}nen an infinite family of quasi-¢-
nonexpansiwe mappings from C into itself such that F := N2, F(T,,) # O. Let the
mapping T : C' — C be defined by

Tx = lim T,x.
n—oo

Then, T is a quasi-¢-nonerpansive mapping.
The following result was first proved in [1] (see also [14]).

Lemma 2.4. Let E be a smooth, strictly conver and reflexive Banach space and let

V' be the function defined by
V(z,z*) = ||z||> = (z,z*) + ||=*|?>, Vz € E, Va* € E*.
Then the following assertions hold:

(1) ¢(z, J1a*) = V(x,2*) for all z € E and z* € E*.
(2) V(z,z*) +2(J ta* — 2,9*) < V(z,2* +y*) for all z € E and z*,y* € E*.

The following result has been proved in [6].

Lemma 2.5. Let E be a uniformly conver Banach space and r > 0 be a constant.
Then there exists a continuous, strictly increasing and convex function h : [0, 00) —
[0,00) such that

2 o
< alwil® — cieih(||zi — a4)

00
E QLT
k=0 k=0

foralli,j e NU{0}, 2 € B, :={2 € E : ||z]| <r}, ap € (0,1) and k € NU {0}
with Elzi() A — 1.

Lemma 2.6. Let E be a uniformly smooth and strictly convex Banach space. Let
s > 0 be a constant. Then there exists a continuous, strictly increasing and convex
function ps : [0,00) — [0,00) such that

ps(llz* = y7ll) < ou(a™, y7)
for any x*,y* € By :={z* € E* : ||z*| < s}.
Proof. Since E is a uniformly smooth Banach space, E* is a uniformly convex

Banach space. Then, in view of Lemma 2.5, there exists a continuous, strictly
increasing and convex function ps : [0,00) — [0, 00) such that

laz™ + (1 = a)y*|* < alla”|* + (1 = )lly* > = a1 = a)ps(lla” = o)
for all z*,y* € Bg = {2" € E* : [|z*]| < s} and all @ € (0,1). If z*, y* € By, then we
obtain

Joz* + (1= a)y*|I? = 1y

. < [l = [l 1 = (1 = e)ps(ll=™ = 7).
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Letting a — 0 in the above inequality, we arrive at

277 " 2" =) < 22 =yt l1? = ps(llz™ =yl
This implies that
ps(llz” = y*l) < ¢ul(a™,y"),
which completes the proof. O

Lemma 2.7. Let E be a uniformly smooth and strictly convex Banach space. Let
{z} }nen and {y}; }nen be bounded sequences in E. Then the following assertions are
equivalent:

(1) limy 00 ds (), 9) = 0.
(2) limp—eo |27, — ynll = 0.

Proof. The implication (1) = (2) is an immediate consequence of Lemma 2.6. For
the converse implication, we assume that lim,_,~ ||z} — v} | = 0. Then, in view of
(1.9), we have

—¢u (Y, ) + 200 Yyl — Tk — )

' < 2llzy —yplllJ ey — Tyl YneN.

Since J~! is bounded on bounded subsets of E* (see, for example, [23] for more
details). This, together with (2.4), implies that lim, . ¢«(x},y5) = 0, which
completes the proof. O

Lemma 2.8 ([16]). Let {an}nen be a sequence of real numbers such that there exists
a subsequence {n;}ien of {n}tnen such that an, < an,+1 for all i € N. Then there
exists a subsequence {mytnen C N such that my — oo and the following properties
are satisfied by all (sufficiently large) numbers k € N:

Ay, < Qmy+1 and ap < Amy+1-
In fact, m, = max{j < k:a; <ajp1}.

Lemma 2.9 ([26]). Let {sn}nen be a sequence of nonnegative real numbers satis-
fying the inequality:

Sn+1 < (1 - '}’n)sn +7n5na Vn > 1,

where {yn}nen and {0y }nen satisfy the conditions:

(i) {}tnen C [0,1] and Zzo:l Tn = 00, or equivalently, 119° (1 —~,) = 0;
(ii) limsup,,_ o, 0n < 1, or
(i) >0 mdn < co.

Then, lim,_ .o s, = 0.
Lemma 2.10 ([12]). Let C be a nonempty, closed and convex subset of a reflexive,
strictly convex and smooth Banach space E, x € W and z € C. Then

(i) z =Uex if and only if (y — z, Jx — Jz) <0 for ally € C;

(ii) ¢(y,Hex) + o(llgz, x) < ¢d(y,z) for ally € C.
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3. EQUILIBRIUM PROBLEMS

In this section, we prove strong convergence theorems in a reflexive Banach space.
Let E be a Banach space and C be a nonempty, closed and convex subset of a
uniformly smooth and strictly convex Banach space E. Let f: C x C — R be a
bifunction satisfying (A1)-(A4) and EP(f) # . For r > 0, we define a mapping
T, : E — C as follows:

(3.1) T, (x) = {z eC: f(z,y)+ %(y —z,Jz—Jx) >0 forall y € C}

for all z € E.

Lemma 3.1 ([25]). Let C be a nonempty, closed and convexr subset of a smooth,
strictly conver and reflexive Banach space E and let f: C' x C'— R be a bifunction
satisfying (A1)-(A4). Forr >0, let T, : E — C be the mapping defined by (3.1).
Then, dom (T,) = E.

Lemma 3.2 ([25]). Let C' be a nonempty, closed and convexr subset of a smooth,
strictly convex and reflexive Banach space E and let f: C x C — R be a bifunction
satisfying (A1)-(A4) such that EP(f) # ©@. Forr > 0, let T, : E — C be the
mapping defined by (3.1). Then, the following statements hold:

(1) T, is single-valued;
(2) T, is a firmly nonexpansive mapping [25], i.e., for all x, y € E,

(Thx — Ty, JTrx — JTy) < (Trx — Tyy, Jo — Jy);

(3) F(Ty) = EP(f);

(4) EP(f) is closed and convex;

(5) T} is a quasi-¢-nonexpansive mapping;

(6) ¢(q, Tra) + ¢(Trw,x) < ¢(q,x), Vg € F(T7).

Using ideas in [7], we can prove the following result.

Theorem 3.3. Let C be a nonempty, closed and convex subset of a uniformly
smooth and strictly conver Banach space E which also enjoys Kadec-Klee property.
For any j € N, let f; : C x C — R be a bifunction satisfying (A1)-(A4). For
r>0andjeN,letT,;: E— C be the mapping defined by (3.1). Suppose that
F = ﬂj‘?‘;lEP(fj) is a nonempty subset of C, where EP(f;) is the set of solutions
to the equilibrium problem (1.12). Let {an}neN; {Bn,j}nen,jenuio} be sequences in
[0, 1] satisfying the following control conditions:

( ) limy, 00 aty = 0;

(b) Zn 1 O¥n = OQ;

(c) ﬁno—i—zj 1Bnj =1, VneN;
(d) liminf, oo BnoBn,; >0, Vj € N.
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Let {rp}nen be a sequence in (0,00) such that iminf, o ry >0 and > 07 [rpqe1 —
rn| < 00. Let {xy}nen be a sequence generated by

u € C, x1 € C  chosen arbitrarily,

Un,; € C' such that

(3.2) fi(unj,y) + %(y — Upj, JUn — Jzn) >0, VjeN, yedC,

Yn = I [Bro T + Y321 B tin, ),
1 = Mo (T anJu + (1 — an)Jyn]) and n € N.

Then the sequence {xy}nen defined in (3.2) converges strongly to llpu as n — oo.

Proof. We divide the proof into several steps. In view of Lemma 3.2, we conclude
that I is closed and convex. Set

z = HFu.

Step 1. We prove that {z, }nen, {¥n}tnen and {u, j}n jen are bounded sequences
in £. We first show that {x,},en is bounded. Let p € N2, EP(f;) be fixed. In
view of Lemmas 2.4, 3.2 and (3.2), we have

¢(p7 yn) = ¢(P, Jﬁl[/Bn,Oan + Z 5n,jJTrn,jxn])
j=1

=V (p, BnoJxn + > B Tr, jtn)
j=1

< Bn,OV(pa an) + Z Bn,jv(p7 JTTan”)
j=1

= 5n,0¢(pa Tp) + Z Bn,j¢(pa Trn,jxn)

j=1
< Bn,0¢(p; xn) + Z Bn,j¢(pa xn)

j=1
= ¢(p, Tn)-
This implies that

o(p,Tny1) = o(p, HC(J_I[O‘TLJU + (1 = an)Jyn]))
< ¢(p, J_l[anju + (1 — an)Jyn))
=V(p,anJu+ (1 —ap)Jyn)
< anV(p, Ju) + (1 — )V (p, Jyn)
= and(p,u) + (1 — an)o(p, yn)
< and(p,u) + (1 — an)o(p, yn)
< ang(psu) + (1 — an)d(p, xn)
< max{¢(p, u), ¢(p, zn)}-

By induction, we obtain

(3.5) ¢(p, Tnt1) < max{¢(p,u), ¢(p, 1)}
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for all n € N. Tt follows from (3.5) that the sequence {¢(z, ) }nen is bounded and
hence there exists My > 0 such that

(3.6) ¢(zp,x) < My, VneN.

In view of (1.3), we conclude that the sequence {xy, } nen is bounded. Since {T}., j}n jen
is an infinite family of relatively nonexpansive mappings from C into itself, we de-
duce that

(3.7) (D, Um j) = &, Ty, jTm) < (P, Tm),  Yn,m,j € N.

This, together with (1.3) and the boundedness of {x, }nen, implies that {1}, jT, }n jen
is bounded. Since J is also bounded on bounded subsets of E, the sequences
{Jxptnen, {JYntnen and {JT,, jxn}nen are bounded in E*.

Step 2. We show that, for any j € N, there exists a mapping 7); : C' — C such that
Tix = lim T, ;x, VxeC

n—oo
and
F(Ty) = pi (T, ) = MRty F (T, 5) = F(T))
Since T, ;j is a quasi-¢-nonexpansive mapping, we have
é(2, Ty, jv) < P(z,v), YveE, n,jeN.

This, together with (1.3), implies that for any bounded subset B of E with {z, }nen C
B, {T;, ;v : v € B} is bounded. For any v € E, we set vy, ; = T, jv. Then we get

1
(3.8) fi(vg,y) + r—l(y -, Ju; —Jv) >0, VyeC
and

1
(3.9) fi(e,y) + a(y — v, Jur; —Ju)y >0, Vyel.

Letting y = v ; in (3.8) and y = v;; in (3.9), we conclude that

1
ﬁmeﬂ+E@w—Wmﬁw—JWZO

and

1
fi(okj,v15) + E@l,j — Vg, Jog,j — Jv) > 0.

Now, in view of (A2) we obtain

Ju ;i —Jv  Jug; — Ju
<vkj—vlj, L — ok > >0
’ ’ ] Tk
and hence

<Uk,j — Ul,j; Jvl?j —Jv — %(J’Uk’j - JU)> Z 0.
Therefore,

m
<%J—meWJ—Jwﬁ+<wJ—wm(P—E)U%J—JW>20
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Without loss of generality, we may assume that there exists a real number a such
that r, > a for all n € N. Then we have

(Vk,j — v, Jog,; — Ju;) < <Uk,j — v, (1 — :—i) (Ju; — Jv)>
< <o — gl = rilll T — ol
= 1Ty 50 = gl T g0 = Ty golllre = il
In view of Lemma 3.2, we have EP(f;) = N5, F (T}, ;). Let
M; = sup {2||Trk,jv = Ty ol T 0 = I Ty 50ll v € B, jiok L€ N},

Putting 51 = sup{| Ty, joll, | T gl 7T, ol 17Tl ol 70 < kG € N, v e
B}, in view of Lemma 2.6, there exists a strictly increasing, continuous and convex
function pg, : [0,00) — [0, 00) such that for all v € B,

Psi (T v = Iy joll) = psy ([[Jok,; — Juill) < du(Jog g, Joi )
= —¢*(Jvl, J’Uk) + 2<’Uk — vy, Jvk — J’Ul>
< 2||vk,; — v llll vk — Jugll < Mafry, — il

k-1 00
< 2M; Z |1 — | < 2My Z |Tn41 — 7| < 00.
n=l n=l

Let

o
0F := sup{ps, (| J Ty, ;0 — JTp50|) : 5 € Nyv € B} < 2M; Z |Tnt1 — | < 00

n=l

Letting [ — oo in the above inequality, we get limg ;o le = 0. This implies
that, for any = € E, limy; oo [|[JTy, jo — JT), j2| = 0. Since E* is a Banach

space, then there exists w; € E* such that lim, . [|JT, ;o — wj|| = 0. From
J(E) = E*, it follows that there exists w; € E such that Jw; = w;. Thus we
have limy, o || J T, jo — Jw;|| = 0. Since J~! is demicontinuous, we conclude that

T, jx — w; as n — oo. In view of (1.6) and (1.7), we obtain
nh_)ng() o(Ty, jx, wj) = nh_)ngo O« (Jwy, JT;., jx) = 0.
This, together with (1.3), implies that |7}, jz| — ||lw;| as n — oco. By the Kadec-

Klee property of E, we deduce that lim, o ||}, ;2 — w;|| = 0. Now, for any j € N,
we define the mapping T : C' — C by

Tijx = lim T, jz, VxeC.
n—o0
We prove that
(3.10) F(Tj) = L F(Ty, ) = Moy F(T, 5) = F(T).

We first note that the following assertions are obvious:
(1) ML F(Tr, ) = Mo F(T, 5) = F(T).
(2) ML P (T, 5) € F(T) and 002, F(T, 5) € F(T5).
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It remains to prove that (3) F(T}) C N, F(T,, ;) and (4) F(T) C N, F(T,,, ;).
(3) Let p € F(T}) be fixed. In view of the definition of 7}, we have

1
fi (T, v y) + 7<y — T, 0, JT,, jp— Jp) >0, VyeC.

n
In view of (A2), we obtain

1

7<y -1, 0, JT;, jp — Jp) > fi(y, Ty, 50), Yy € C.
n

Since 1., jp — Tjp = p as n — oo, J is uniformly continuous on bounded subsets of

E and f;(y,.) is lower semicontinuous, we conclude that f;(y,p) < 0 for all y € C.
Take any y € C' and set z; =ty + (1 — ¢)p, for t € (0, 1]. Then, we obtain

0 < fi(xe, we) < tfi(xe,y) + (1 —1t) fi(ze,p) < tfj(we,y).

This implies that fj(x,y) > 0. Letting ¢ | 0 and taking into account (A3), we get
fi(p,y) >0 for all y € C and hence p € EP(f;) = N5 F (T}, 5)-

(4) Let ¢ € F(Tj). Then, there exists a sequence {vy }neny C E such that v, — ¢
as n — oo and limy, 0 [|vy, — Tjv,|| = 0. This implies that Tjv, — g as n — oo.
Hence g € C'. Since J is uniformly continuous on bounded subsets of E, we conclude
that lim,, o || Jvn, — JTjv,|| = 0. For any m € N, it follows from the definition of
Trm,j that

1
fi(Trn in,y) + —(y — T, jon, J T}, jon — Jup) >0,  Vye C.

T'm
In view of (A2) and taking into account i < 1 we obtain
1
[i@, T gon) < ——(y = Trp jVns JTrp 20 — J 2n)

Tm

< 2y = Ty onll |9 Ty gtn = Junll, ¥y € C.
Since limy,—o0 T7,, jUn = Tjv, and f;(y,.) is lower semicontinuous, we arrive at
5w Tow) < lly = Tyl Tyen = Junl| - Vy € C.
Since Tjv, — g as n — 00, limy, o0 ||vn, — Tjvy|| = 0 and f;(y,.) is lower semicon-

tinuous, we deduce that f;(y,q) < 0 for all y € C. By the same manner as above
we conclude that f;(q,y) > 0 for all y € C. Therefore, ¢ € EP(f;) = N5 F(T5, ;)-

Step 3. We prove that there exists a continuous, strictly increasing and convex
function A : [0, 00) — [0, 00) such that for any n € N

(311) ¢(Z7yn) < d)(zvxn) - Bn,OBn,jh(Han - JTrn,jan)v Vj eN.
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Let us show (3.11). Let n,j € N be fixed. In view of the Lemma 2.5 there exists a
continuous, strictly increasing and convex function h : [0, 00) — [0, 00) such that

¢(pu yn) = ¢(p7 J_I[Bn,ﬂj$n + Z ﬁn,jJTrn,jl'n])

j= 1
||pH2 _2<p7 BnOJmn‘i’Zﬁn] Tn7]$n)>
7j=1
+H6n,0<]33n + Z Bn,jJTrn,jxn)HQ
j=1
< HpH2 - 2<p7 /Bn,OJ-Tn> -2 Z 6n,j <p7 JTrn,jl'n»
j=1
+|Bn,0Jzn + Z B I Tr i) ||
j=1
<IplI* = 2B0.0(p, Jxn) =2 Bnj(p, JTr, jn))
j=1
+ﬁn,0||<]mn”2 + Zﬁn,jHJTTn,jxn”F - 5n,05n,jh(||J$n - JTrn,jan)
j=1
= /Bn,Od)(p» Tp) + Z Bn,jﬁb(p» Trn,jxn) - ﬁn,Oﬂn,jh(HJ% - JTrn,jxn”)
j=1
< /Bn,O(b(p? xn) + Z Bn,j¢(p7 xn) - ,Bn,(]ﬁn,jh(Han - JTrn,jan)
j=1

= (b(pa xn) - Bn,Oﬁn,jh(Han - JTT‘n,jan)'

In view of Lemma 2.4 and (3.11), we obtain

Oz, 2n11) = ¢(p, Mo (J  anJu+ (1 — an)Jyn]))
< oz, J anJz + (1 — an)Jyn))
=V(z,anJu+ (1 — an)Jyn)
< a,V(z,Ju) + (1 — an)V(z, Jyn)
= and(z,u) + (1 — an)9(2, yn)
< and(z,u) + (1 — an)d(z, yn)
< and(z,u)

+(1 = ) [#(2, %n) = Bnobnjg(|T2n — J Ty, jn)].

(3.12)

Let My := sup{|¢(z,u) — ¢(z,2p)| + BnoBnjh(|Jxn — JT;, jznl|) : n,j € N}, It
follows from (3.12) that

(813)  BuoBugh(l|Jan — JTr, jaul) < 0z, 20) — Bz, @ns1) + My, Vj € N.
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Let z, = J YanJu + (1 — ay)Jys]. Then z,,1 = IIo(zy,) for all n € N. In view of
Lemma 2.2 and (3.11) we obtain

¢(2,2n41) = ¢(p, Mo (T HanJu + (1 — an) Jyn]))
< Dy(z, J HanJu + (1 — o) Jyn))
=V(z,anJu+ (1 —oy)Jyn)
<V(z,anJu+ (1 — an)Jyn — an(Ju — Jz))

—(J  anJu+ (1 — an)Jyn] — 2, —an(Ju — Jz2))
=V(z,anJz+ (1 —an)Jyn) + an(zn — 2z, Ju — J2)
= ¢(z,J HonJz + (1 — o) Jyn))

+on(zn — 2, Ju — Jz)
< and(z,2) + (1 — an)d(z,yn) + an(zn — 2z, Ju — J2)
= (1 —apn)P(z,2p) + an(zn — 2, Ju — Jz).

(3.14)

Step 4. We show that x,, — z as n — oo.

The rest of the proof will be divided into two parts:

Case 1. 1If there exists ng € N such that {¢(z,z,)};2,,, is nonincreasing, then
{é(z,n) }nen is convergent. Thus, we have ¢(z,z,) — ¢(z,2nt1) — 0 as n — oo.
This, together with conditions (c) and (d), implies that

nh_)rgoh(Han—JT jZnl]) = 0.

Tn,
Therefore, from the property of h we deduce that
lim ||Jz,, — JT, jxn| = 0.
n—oo
We notice that by Step 2, we get that
lim 6f := lim sup{ps, (||JTr, ;0 — JTr jv|)) : j € Nyu € B} = 0.
k,l—o0

k,l—o0

Then, in view of Lemma 2.1, we conclude that

lim sup sup{ps, (||JTr, jy — JTjyl) : y € B} =0, Vj € N.

n—oo

On the other hand, we have
1 1 1
iHan — JTjan| < §”an = JTr, jnll + §||JT7‘n7j$n — JTjan|.
This implies that
1 1 1
pur (1920 =TTzl ) < pos (5100 =TT gwall) + pos (515, 2n = T Tyl
1
< om0 = JT;, g2l
1
g sup{pa, (17T, v — JTyol)) - v € BY.
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Exploiting Lemma 2.3, we obtain

i p, (|l — T Ty ) = 0.
By the properties of ps,, we conclude that
(3.15) |Jan — JTjz,| = 0.

lim
n—oo
Since {zp }nen is bounded, there exists a subsequence {xy, }ien of {Zy, }nen such that
xn; — Yy € C. Using the lower semi-continuity of the norm, we get that
0 <liminf ¢(zn,,y) < limsup ¢(zn,,y) < ¢(y,y) = 0.

1—00 ;

11— 00

This, together with (1.3), implies that ||z,,|| — ||y|| as ¢ — co. By the Kadec-Klee
property of E, we conclude that z,, — y as i — oco. Thus we have ||Jz,, —Jy|| = 0
as ¢ — oo. This, together with (3.15), implies that ||JT;z,, — Jy|| — 0 as i — oo.
Since J~1 is demi-continuous, we obtain that Tjx,, — y as i — co. It follows from
Lemma 2.7 that lim;_,o ¢«(Jy, JTjzp,) = 0 and hence lim;_,oc ¢(Tjan,;,y) = 0.
This, together with (1.3), implies that ||Tjz,,|| = |ly|| as i — oco. Using the Kadec-
Klee property of E, we deduce that ||Tjz,, —y| — 0 as i — oo. Thus we have
|Jxn;, — Jy|| = 0 as i — oo. Therefore, lim; o ||Tj2n, — @n,|| = 0, which implies
that y € F (1) for all j € N. This, together with Lemma 3.2 and (3.12), implies
that y € F(T;) = NS F (T}, ;) = EP(f;). On the other hand, we have
limsup(z,, — z, Jx — Jz) = lim (z,, — 2, Jx — Jz).
n—oo 71— 00
This, together with Lemma 2.10, implies that
limsup(zy, — z,Jr — Jz) = (y — 2z, Jx — Jz) < 0.
n—oo
From Lemma 2.10, we have that
lim sup(z, — z, Ju — Jz) = limsup(z,, — z, Ju — Jz) < 0.
n—o0 n—oo

Thus we have the desired result by Lemma 2.9.
Case 2. If there exists a subsequence {n;};en of {n},en such that
¢(Z> xm) < ¢(Z> xnﬂrl)

for all i € N, then by Lemma 2.8, there exists a nondecreasing sequence {my }xen C
N such that my — oo,

¢(za xmk) < ¢(Zv ﬂl‘mk+1) and ¢(zv :Ek) < Cb('z’ xmk+1)
for all £ € N. This, together with (3.13), implies that
5mk70ﬁmk7jh(||‘]xmk - JTka,jxmk||) < @(Z,l‘mk) - ¢(z7 xkarl) + amkM2 < O‘mk]\42
for all £ € N. Then, by conditions (a) and (c), we get
klgr;o h(||J2m,, — J Ty, jTm, ) = O.

By the same argument, as in Case 1, we arrive at

lim sup(zy,, — 2, Ju — Jz) = limsup(zy,, — 2z, Ju — Jz) <O0.
k—ro0 k—ro0
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It follows from (3.14) that
(3.16) D2, Tmp+1) < (1= )0(2, Ty, ) + Qg (2, — 2, Ju — J2).
Since ¢(z, Ty, ) < O(2, Tm,+1), we have that

amkqﬁ(z,xmk) < ¢(Z,$mk) - ¢(za wmk-l-l) + am,, (ka —z,Ju — JZ>

(3.17)
< am, (Zm, — 2, Ju— Jz).

In particular, since a,,, > 0, we obtain
O(2,2m,,) < (2my, — 2, Ju — J2).
In view of (3.16), we deduce that
lim ¢(z,xm,) = 0.

k—o0

This, together with (3.17), implies that

kh_}rglo Dy(z,2my+1) = 0.

On the other hand, we have ¢(z, x;) < ¢(z, T, +1) for all & € N which implies that
¢(z,xn) — 0 as n — oo. In view of (1.3), we obtain that ||z,| — ||z| as n — oc.
On the other hand, in view of (1.6), we have

lim ¢.(Jz, Jx,) = lim ¢(zp,2) =0.
n—oo n—oo
Applying Lemma 2.7 we obtain that

lim ||Jz — Jz,| = 0.
n—oo

Since J~! is demi-continuous, we get that a,, — z, which implies that y = z. Hence,
by the Kadec-Klee property of F, we conclude that x,,, — 2 as i — oo. Thus, for any
subsequence {xy, }ien of {zp }nen, there exists a subsequence {z,, }ien of {@y, hien
such that z,, — z as i — oo. Therefore, x,, =+ 2z as n — 00 which completes the
proof. ' O

Let F be a smooth Banach space and let C' be a nonempty, closed and convex
subset of E. A mapping T : C — C is called generalized nonexpansive [10, 11] if
F(T) # O and

o(Tx,p) < d(z,p)

for each z € C' and p € F(T). Let D be a nonempty closed subset of a real Banach
space E. A mapping R : E — D is said to be sunny if

R(Rx +t(x — Rz)) = Rz

for each x € F. A mapping R : £ — D is said to be a retraction if Rx = x
for each z € D. If F is smooth and strictly convex, then a sunny generalized
nonexpansive retraction of E onto C is uniquely determined (see [10, 11, 15]). Then,
such a sunny generalized nonexpansive retraction of E onto D is denoted by Rp.
A nonempty subset D of E is said to be a sunny generalized nonexpansive retract
(resp. a generalized nonexpansive retract) of E if there exists a sunny generalized
nonexpansive retraction (resp. a generalized nonexpansive retraction) of E onto D.
The set of all fixed points of such a sunny generalized nonexpansive retraction of £
onto D is, of course, D.
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Theorem 3.4 ([10, 11]). Let E be a reflexive, strictly conver and smooth Banach
space and let D be a nmonempty subset of E. Then the following statements are
equivalent:

(1) D is a sunny generalized nonexpansive retract of E;

(2) D is a generalized nonexpansive retract of E;

(3) JC is closed and convez.

In this case, D is closed.
Using Theorems 3.3 and 3.4, we can prove the following result.

Corollary 3.5. Let E be a uniformly smooth and strictly convex Banach space E
which also enjoys Kadec-Klee property. Let C' be a nonempty, closed and convex
subset of E such that JC' is closed and convex. For any j € N, let f; : C x C — R
be a bifunction satisfying (A1)-(A4). Forr >0, let T, ; : E — C be the mapping
defined by (3.1). Suppose that F := ﬂ;’ilEP(fj) s a nonempty subset of C, where
EP(f;j) is the set of solutions to the equilibrium problem (1.12). Let {a}nen,
{Bn.jtnenjenugoy be sequences in [0, 1] satisfying the following control conditions:

(a) limy, o0 y = 0;

(b) o2y an = oo;

(€) Bno+ 252 Bnj =1, Vn e N;

(d) lim inf,, Bn,Oﬁn,j >0, Vs €N.
Let {rp}nen be a sequence in (0,00) such that iminf, o ry >0 and Y 07 [rpqe1 —
rn| < 00. Let {xy}nen be a sequence generated by

( weC, x1€C chosen arbitrarily,

un; € C such that
(3.18) fi(unj,y) + %(y — Unj, Jun; — Jrn) >0, VjeN, yeC,

Yn = J_l[ﬂn,OJl'n + Z;.il /Bn,jjun,j]a
Tpy1 = J HanJu + (1 — ay)Jyy] and n € N.

Then the sequence {xy}nen defined in (3.18) converges strongly to lpu as n — oo.

Remark 3.6. (1) In Theorem 3.3 and Corollary 3.5, we present two strong con-
vergence results for a system of equilibrium problems with new algorithms and new
control conditions. This is complementary to Theorem 1.2. In addition, our scheme
in Corollary 3.5 has an advantage that we do not use any projections which create
some difficulties in a practical calculation of the iterative sequence. Indeed, we pro-
pose a different approach, based on Halpern algorithm, to solve the problem without
projecting onto intersection of closed and convex sets which is not problematic in
applications. Therefore, Corollary 3.5 provides a positive answer to open question
1.1.

(2) Theorem 3.3 and Corollary 3.5 improve Theorems 1.1 and 1.2 in the following
aspects:

(i) For the algorithm, we remove the sets C,, and @,, in Theorems 1.1 and 1.2.
(ii) The iterative schemes (3.2) and (3.18) in our Theorem 3.3 and Corollary 3.5
have more advantageous and are more flexible than the iterative schemes of
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[27] because they both are based on Halpern iteration schemes and involve
no computation of generalized projection of a point onto the closed and
convex sets ), which are huge optimization problems.

4. APPLICATION

In this section, we study the problem of finding a minimizer of a continuously
Fréchet differentiable and convex function in a Banach space. For some properties
of the gradient of continuously Fréchet differentiable and convex functions we refer
the reader to [3].

Theorem 4.1. Let C' be a nonempty, closed and convex subset of a uniformly
smooth and strictly convex Banach space E which also enjoys Kadec-Klee prop-
erty. Let {gj}jen be an infinite family of continuously Fréchet differentiable and
convex functions on E such that the gradient of g;, Vg; is continuous and mono-
tone for each j € N. Assume that Q := N32 arg min,cpg;(y) = {2 € £ : gj(z) =
M52, mingec g; (y)} # 0. Let {an}tnen, {Bnjlnenjenvfoy be sequences in [0,1] sat-
isfying the following control conditions:

(a) limy, o0 y = 05

(b) 327y = o0

(€) Bno+ 22521 Pnj =1, VneN;

(d) liminf, o BnoBn; >0, Vj € N.
Let {rp}nen be a sequence in (0,00) such that iminf, o ry >0 and Y07 [rpe1 —
rn| < 00. Let {xp}nen be a sequence generated by

ue FE, x1 € C chosen arbitrarily,

Un,; € C such that

(4.1) (Y = tng, Vgj(tng)) + 7oy = tng, Jung — Jan) 20, Yy €C,
Yn = J B0 xn + Z;ﬁ1 Bn.jJtn, 5],

Tpy1 = He(J HapJu + (1 — ay)Jy,)) and n € N.

Then the sequence {xp}nen defined in (4.1) converges strongly to llqu as n — oo.

Remark 4.2. We propose a new type of iterative scheme for common solutions of
an infinite family of monotone mappings in a uniformly smooth and strictly convex
Banach space. A strong convergence theorem by a new Halpern-type method for
the approximation of common solutions of an infinite family of monotone mappings
in a uniformly smooth and strictly convex Banach space is also derived.
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