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exists. In this case, E is called smooth. If the limit (1.1) is attained uniformly for
all x, y ∈ SE , then E is called uniformly smooth. The Banach space E is said to
be strictly convex if ∥x+y

2 ∥ < 1 whenever x, y ∈ SE and x ̸= y. It is well known
that E is uniformly convex if and only if E∗ is uniformly smooth. It is also known
that if E is reflexive, then E is strictly convex if and only if E∗ is smooth; for more
details, see [23, 24]. Recall that a Banach space E has the Kadec-Klee property if
for any sequence {xn}n∈N ⊂ E and x ∈ E, if xn ⇀ x and ∥xn∥ → ∥x∥, then xn → x
as n → ∞. For more information concerning the Kadec-Klee property the reader is
referred to [8] and the references therein. It is well known that if E is a uniformly
convex Banach space, then E has the Kadec-Klee property; the Banach space E is
uniformly smooth if and only if E∗ is uniformly convex.

Let C be a nonempty subset of E. Let T : C → E be a mapping. We denote
the set of fixed points of T by F (T ), i.e., F (T ) = {x ∈ C : Tx = x}. A mapping
T : C → E is said to be nonexpansive if ∥Tx − Ty∥ ≤ ∥x − y∥ for all x, y ∈ C. A
mapping T : C → E is said to be quasi-nonexpansive if F (T ) ̸= ∅ and ∥Tx− y∥ ≤
∥x − y∥ for all x ∈ C and y ∈ F (T ). The mapping T is called demicontinuous if
{xn}n∈N ⊂ C converging to x in the norm implies that {Txn}n∈N converges weakly
to Tx.

In recent years, several types of iterative schemes have been constructed and
proved in order to get strong convergence results for nonexpansive mappings in
various settings. One of the most important iterative algorithms for approximating
fixed points of a nonexpansive mapping T : C → C is Halpern iteration, where C is
a closed and convex subset of a Banach space E. Recall that the Halpern iteration
is given by the following formula

(1.2)

 u ∈ C, x1 ∈ C chosen arbitrarily,
yn = (1− βn)xn + βnTxn,
xn+1 = αnu+ (1− αn)yn,

where the sequences {βn}n∈N and {αn}n∈N satisfy some appropriate conditions. The
construction of fixed points of nonexpansive mappings via Halpern’s algorithm [9]
has been extensively investigated recently in the current literature (see, for example,
[20] and the references therein). Numerous results have been proved on Halpern’s
iterations for nonexpansive mappings in Hilbert and Banach spaces (see, e.g., [9, 2]).
Because of a simple construction, Halpern’s iterations are widely used to approx-
imate a solution of fixed points for nonexpansive mappings and other classes of
nonlinear mappings by many authors in different styles.

Let E be a strictly convex and reflexive Banach space. The normalized duality
mapping J : E → 2E

∗
is defined by

J(x) = {f ∈ E∗ : ⟨x, f⟩ = ∥x∥2, ∥x∥ = ∥f∥}, ∀x ∈ E.

Let C be a nonempty, closed and convex subset of E. The generalized projection
ΠC from E onto C is defined and denoted by

ΠC(x) = argminy∈Cϕ(y, x), ∀x ∈ E,
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where ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2; see [1, 12]. It is obvious from the definition
of the function ϕ that

(1.3) (∥x∥+ ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2, ∀x, y ∈ E.

It is also clear that
ϕ(x, y) = 0 ⇐⇒ x = y.

We have from the definition of ϕ that

(1.4) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, Jz − Jy⟩, ∀x, y, z ∈ E.

In particular, it can be easily seen that

(1.5) ϕ(x, y) = −ϕ(y, x) + 2⟨y − x, Jy − Jx⟩, ∀x, y ∈ E.

Indeed, by letting z = x in (1.4) and taking into account that ϕ(x, x) = 0, we get
the desired result. Let ϕ∗ : E

∗ × E∗ → R be the function defined by

(1.6) ϕ∗(x
∗, y∗) = ∥x∗∥2 − 2⟨J−1y∗, x∗⟩+ ∥y∗∥2

for x∗, y∗ ∈ E∗, where J is the duality mapping of E. It is easy to see that

(1.7) ϕ∗(Jy, Jx) = ϕ(x, y), ∀x, y ∈ E.

We have from the definition of ϕ∗ that
(1.8)
ϕ∗(x

∗, y∗) = ϕ∗(x
∗, z∗) + ϕ∗(z

∗, y∗) + 2⟨J−1x∗ − J−1z∗, z∗ − y∗⟩, ∀x∗, y∗, z∗ ∈ E∗.

In particular,

(1.9) ϕ∗(x
∗, y∗) = −ϕ∗(y

∗, x∗) + 2⟨J−1y∗ − J−1x∗, y∗ − x∗⟩, ∀x∗, y∗ ∈ E∗.

Indeed, there exist x, y, z ∈ E such that J(x) = x∗, J(y) = y∗ and J(z) = z∗.
Therefore,

ϕ∗(x
∗, y∗) = ϕ∗(Jx, Jy) = ϕ(y, x) = ϕ(y, z) + ϕ(z, x) + 2⟨y − z, Jz − Jx⟩

= ϕ∗(Jz, Jy) + ϕ∗(Jx, Jz) + 2⟨J−1y∗ − J−1z∗, z∗ − x∗⟩
= ϕ∗(z

∗, y∗) + ϕ∗(x
∗, z∗) + 2⟨J−1x∗ − J−1z∗, z∗ − y∗⟩.

Let C be a nonempty, closed and convex subset of a smooth Banach space E, and
let T be a mapping from C into itself. A point p ∈ C is said to be an asymptotic
fixed point [17] of T if there exists a sequence {xn}n∈N in C which converges weakly
to p and limn→∞ ∥xn − Txn∥ = 0. We denote the set of all asymptotic fixed points

of T by F̂ (T ).
Let E be a real Banach space and let g : E → (−∞,+∞] be a convex function.

The domain of g is denoted by dom g = {x ∈ E : g(x) < ∞}. Let x ∈ int dom g
and y ∈ E. The right-hand derivative of g at x in the direction y is defined and
denoted by

(1.10) go(x, y) = lim
t↓0

g(x+ ty)− g(x)

t
.

The function g is called be Gâteaux differentiable at x if limt→0
g(x+ty)−g(x)

t exists
for any y. In this case go(x, y) coincides with ∇g(x), the value of the gradient
∇g of g at x. The function g is said to be Gâteaux differentiable if it is Gâteaux
differentiable everywhere. The function g is said to be Fréchet differentiable at x
if this limit is attained uniformly in ∥y∥ = 1. The function g is said to be Fréchet



946 E. NARAGHIRAD AND W. TAKAHASHI

differentiable if it is Fréchet differentiable everywhere. It is well-known that if a
continuous convex function g : E → R is Gâteaux differentiable, then ∇g is norm-
to-weak∗ continuous (see, for example, [5, Proposition 1.1.10]). Also, it is known
that if g is Fréchet differentiable, then ∇g is norm-to-norm continuous (see, [14,
p. 508]). The function g is said to be bounded on bounded subsets of E if g(U)
is bounded for each bounded subset U of E. Finally, g is said to be uniformly
Fréchet differentiable on a subset X of E if the limit (1.10) is attained uniformly
for all x ∈ X and ∥y∥ = 1. In that case when E is a smooth Banach space, setting
g(x) = ∥x∥2 for all x ∈ E, we obtain that ∇g(x) = 2Jx for all x ∈ E.

Let A : E → 2E
∗
be a set-valued mapping. We define the domain and range of A

by dom A = {x ∈ E : Ax ̸= Ø} and ran A = ∪x∈EAx, respectively. The graph of
A is denoted by G(A) = {(x, x∗) ∈ E × E∗ : x∗ ∈ Ax}. The mapping A ⊂ E × E∗

is said to be monotone [21] if ⟨x− y, x∗ − y∗⟩ ≥ 0 whenever (x, x∗), (y, y∗) ∈ A. It
is also said to be maximal monotone [22] if its graph is not contained in the graph
of any other monotone operator on E. If A ⊂ E × E∗ is maximal monotone, then
we can show that the set A−10 = {z ∈ E : 0 ∈ Az} is closed and convex.

Let C be a nonempty, closed and convex subset of a Banach space E. Let
f : C × C → R be a bifunction. Consider the following equilibrium problem [4]:
Find p ∈ C such that

(1.12) f(p, y) ≥ 0, ∀y ∈ C.

For solving the equilibrium problem, let us assume that f : C×C → R satisfies the
following conditions:
(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for each y ∈ C, the function x 7−→ f(x, y) is upper semicontinuous;
(A4) for each x ∈ C, the function y 7−→ f(x, y) is convex and lower semicontinuous.
The set of solutions of problem (1.10) is denoted by EP (f). Given a mapping
T : C → E∗, let f(x, y) = ⟨y − x, Tx⟩ for all x, y ∈ C. Then z ∈ EP (f) if and only
if ⟨y − z, Tx⟩ ≥ 0 for all y ∈ C, i.e., z is a solution of the variational inequality.

Following Matsushita and Takahashi [17], a mapping T : C → C is said to be quasi-
ϕ-nonexpansive if F (T ) is nonempty and ϕ(u, Tx) ≤ ϕ(u, x), ∀u ∈ F (T ), x ∈ C.
The mapping T is called relatively nonexpansive if the following conditions are
satisfied:
(1) F (T ) is nonempty;
(2) ϕ(u, Tx) ≤ ϕ(u, x), ∀u ∈ F (T ), x ∈ C;

(3) F̂ (T ) = F (T ).
Recently, Takahashi and Zembayashi [25] proved the following strong convergence

theorem for relatively nonexpansive mappings in a Banach space.

Theorem 1.1. Let C be a nonempty, closed and convex subset of a uniformly
smooth and strictly convex Banach space E. Let f be a bifunction from C × C to
R satisfying (A1)-(A4) and let T be a relatively nonexpansive mapping from C into
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itself such that F (T ) ∩ EP (f) ̸= Ø. Let {xn}n∈N be a sequence generated by
(1.13)

x1 = x ∈ C chosen arbitrarily,
yn = J−1(αnJxn + (1− αn)JTxn),
un ∈ C such that f(un, y) +

1
rn
⟨y − un, Jun − Jyn⟩ ≥ 0, ∀y ∈ C,

Cn = {z ∈ Cn : ϕ(z, un) ≤ ϕ(z, xn)},
Qn = {z ∈ C : ⟨xn − z, Jx− Jxn⟩ ≥ 0},
xn+1 = ΠCn∩Qnx

for every n ∈ N, where J is the normalized duality mapping on E, {αn}n∈N ⊂ [0, 1]
satisfies lim infn→∞ αn(1 − αn) > 0 and {rn}n∈N ⊂ [a,∞) for some a > 0. Then,
{xn}n∈N converges strongly to ΠF (T )∩EP (f)x as n → ∞.

In 2010, Plubtieng and Ungchiterakool [18] proved the following strong conver-
gence theorem for equilibrium problems in a Banach space.

Theorem 1.2. Let C be a nonempty, closed and convex subset of uniformly smooth
and uniformly convex Banach space E. Let f be a bifunction from C × C → R
satisfying (A1)-(A4) and EP (f) ̸= Ø. Let {xn}n∈N and {un}n∈N be sequences
generated by
(1.14)

x1 = x ∈ E,
un ∈ C = C1 such that f(un, y) +

1
rn
⟨y − un, Jun − Jxn⟩ ≥ 0, ∀y ∈ C,

yn = J−1(αnJxn + (1− αn)Jun),
Cn+1 = {z ∈ Cn : ϕ(z, yn) ≤ ϕ(z, xn)},
xn+1 = ΠCn+1x, n ∈ N ∪ {0},

where {αn}n∈N ⊂ [0, 1] satisfies either

(a) 0 ≤ αn < 1 for all n ∈ N and lim supn→∞ αn < 1 or,
(b) lim infn→∞ αn(1− αn) > 0.

Let {rn}n∈N be a sequence in (0,∞) such that lim infn→∞ rn > 0 and
∑∞

n=1 |rn+1−
rn| < ∞. Then {xn}n∈N, {un}n∈N, and {yn}n∈N converge strongly to ΠEP (f)x as
n → ∞.

Very recently, Zegeye and Shahzad [27] proved the following strong convergence
theorem for two monotone mappings in Banach spaces.

Theorem 1.3. Let C be a nonempty, closed and convex subset of a uniformly
smooth and strictly convex Banach space E which also enjoys Kadec-Klee prop-
erty. Let A1, A2 : C → E∗ be two continuous monotone mappings. Let F :=
∩2
i=1V I(C,Ai) ̸= Ø. Let {xn}n∈N be a sequence generated by

(1.15)


x1 = x ∈ C1 = C,
un = T1,γnxn; vn = T2,γnxn,
wn = J−1(βJun + (1− β)Jvn),
Cn+1 = {z ∈ Cn : ϕ(z, wn) ≤ ϕ(z, xn)},
xn+1 = ΠCn+1x, n ∈ N ∪ {0},
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where β ∈ (0, 1), {γn}n∈N ⊂ [c1,∞) for some c1 > 0 and Ti,γn(x) = {z ∈ C :
⟨y − z,Aiz⟩ + 1

γn
⟨y − z, Jz − Jx⟩ ≥ 0, ∀y ∈ C} for all x ∈ E, i = 1, 2. Then the

sequence {xn}n∈N defined by (1.15) converges strongly to ΠFx as n → ∞.

The following open question was raised by Zegeye and Shahzad in their final
remark of [27].

Open question 1.1. Is it possible to obtain a strongly convergent sequence {xn}n∈N
to a common solution of a variational inequality problem for two monotone operators
without using the generalized projection of a point x0 on the closed and convex sets
Cn+1 in more general Banach spaces?

Remark 1.4. Though the iteration processes (1.13)-(1.15) as introduced by the
authors mentioned above worked, it is easy to see that these processes seem cum-
bersome and complicated in the sense that at each stage of iteration, two different
sets Cn and Qn are computed and the next iterate taken as the generalized projec-
tion of x0 on the intersection of Cn and Qn. This seems difficult to do in application.
But it is worth mentioning that, in all the above results for nonexpansive type map-
pings, the computation of closed and convex sets Cn and Qn for each n ∈ N are
required.

In this paper, we deal with a system of equilibrium problems in a uniformly
smooth and strictly convex Banach space. First, we consider disadvantages of the
iterative sequences in known results. Namely, generalized projections are not always
available in a practical calculation. We attempt to improve these schemes and, by
combining them with iterative method of the Halpern type, we obtain a new type of
strong convergence theorem, which overcomes the drawbacks of the previous results.
Next, we study Halpern type iterative schemes for finding common solutions of a
system of equilibrium problems in a uniformly smooth and strictly convex Banach
space. Then, we apply our results to the problem of finding a minimizer of a
continuously Fréchet differentiable and convex function in a Banach space under
suitable assumptions. The computation of closed and convex sets Cn and Qn for
each n ∈ N are not required. Consequently, the above question is answered in the
affirmative in a reflexive Banach space setting. Our results improve and generalize
many known results in the current literature; see, for example, [18, 25, 27].

2. Preliminaries

In this section, we begin by recalling some preliminaries and lemmas which will
be used in the sequel. The following lemma which is a generalization of Lemma 3.2
in [2] plays a key role in our results.

Lemma 2.1. Let E be a reflexive, smooth and strictly convex Banach space which
also enjoys the Kadec-Klee property. Let C be a nonempty subset of E and {Tn}n∈N
be a family of mappings from C into E. Suppose that for any bounded subset B of
C there exists a continuous increasing function hB : [0,∞) → [0,∞) such that
hB(0) = 0 and

(2.1) lim
k,l→∞

θkl = 0,
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where θkl := sup{hB(∥JTkz − JTlz∥) : z ∈ B} < ∞, for all k, l ∈ N. Then, for
each x ∈ C, {JTnx}n∈N converges strongly to some point of E∗. Moreover, let the
mapping T be defined by

Tx = lim
n→∞

Tnx, ∀x ∈ C.

Then, lim supn→∞{hB(∥JTnz − JTz∥) : z ∈ B} = 0.

Proof. We first show that {JTnx}n∈N is a Cauchy sequence for each x ∈ C. To this
end, let k, l ∈ N such that k > l. For any x ∈ C let B be a bounded subset of C
such that x ∈ B. Then we obtain

hB(∥JTkx− JTlx∥) ≤ θkl ,

which implies that

(2.2) lim
l→∞

hB(∥JTkx− JTlx∥) = 0.

From the properties of the mapping hB, we conclude that liml→∞ ∥JTkx−JTlx∥ =
0. This implies that {JTnx}n∈N is a Cauchy sequence in E∗. Since E∗ is a Banach
space, then there exists w∗ ∈ E∗ such that limn→∞ ∥JTnx − w∗∥ = 0. From
J(E) = E∗, it follows that there exists w ∈ E such that Jw = w∗. Thus we
have limn→∞ ∥JTnx − Jw∥ = 0. Since J−1 is demi-continuous, we conclude that
Tnx ⇀ w as n → ∞. In view of (1.6) and (1.7), we obtain

lim
n→∞

ϕ(Tnx,w) = lim
n→∞

ϕ∗(Jw, JTnx) = 0.

This, together with (1.3), implies that ∥Tnx∥ → ∥w∥ as n → ∞. By the Kadec-Klee
property of E, we deduce that limn→∞ ∥Tnx−w∥ = 0. Now, we define the function
T : C → C by

Tx = lim
n→∞

Tnx, ∀x ∈ C.

Let ϵ > 0 be fixed. It follows from (2.1) that there exists n0 ∈ N such that for all
k, l > n0

hB(∥JTky − JTly∥) <
ϵ

2
, ∀y ∈ B.

Let l be fixed and let k → ∞. By the continuity of hB and ∥.∥, we deduce that

hB(∥JTy − JTly∥) = hB(∥ lim
k→∞

JTky − JTly∥)

= lim
k→∞

hB(∥JTky − JTly∥) ≤
ϵ

2
, ∀y ∈ B.(2.3)

In view of (2.3), we conclude that sup{hB(∥JTy − JTly∥) : y ∈ B} ≤ ϵ
2 and hence

lim sup
l→∞

sup{hB(∥JTy − JTly∥) : y ∈ B} ≤ ϵ

2
< ϵ.

Since ϵ is arbitrary, we obtain that

lim sup
l→∞

sup{hB(∥JTy − JTly∥) : y ∈ B} = 0,

which completes the proof. □

The following two lemmas have been proved in [18].
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Lemma 2.2. Let C be a nonempty, closed and convex subset of a smooth, strictly
convex and reflexive Banach space E. Let T : C → C be a quasi-ϕ-nonexpansive
mapping. Then F (T ) is closed and convex.

Lemma 2.3. Let C be a nonempty, closed and convex subset of a smooth, strictly
convex and reflexive Banach space E and {Tn}n∈N an infinite family of quasi-ϕ-
nonexpansive mappings from C into itself such that F := ∩∞

n=1F (Tn) ̸= Ø. Let the
mapping T : C → C be defined by

Tx = lim
n→∞

Tnx.

Then, T is a quasi-ϕ-nonexpansive mapping.

The following result was first proved in [1] (see also [14]).

Lemma 2.4. Let E be a smooth, strictly convex and reflexive Banach space and let
V be the function defined by

V (x, x∗) = ∥x∥2 − ⟨x, x∗⟩+ ∥x∗∥2, ∀x ∈ E, ∀x∗ ∈ E∗.

Then the following assertions hold:

(1) ϕ(x, J−1x∗) = V (x, x∗) for all x ∈ E and x∗ ∈ E∗.
(2) V (x, x∗) + 2⟨J−1x∗ − x, y∗⟩ ≤ V (x, x∗ + y∗) for all x ∈ E and x∗, y∗ ∈ E∗.

The following result has been proved in [6].

Lemma 2.5. Let E be a uniformly convex Banach space and r > 0 be a constant.
Then there exists a continuous, strictly increasing and convex function h : [0,∞) →
[0,∞) such that ∥∥∥∥∥

∞∑
k=0

αkxk

∥∥∥∥∥
2

≤
∞∑
k=0

αk∥xk∥2 − αiαjh(∥xi − xj∥)

for all i, j ∈ N ∪ {0}, xk ∈ Br := {z ∈ E : ∥z∥ ≤ r}, αk ∈ (0, 1) and k ∈ N ∪ {0}
with

∑∞
k=0 αk = 1.

Lemma 2.6. Let E be a uniformly smooth and strictly convex Banach space. Let
s > 0 be a constant. Then there exists a continuous, strictly increasing and convex
function ρs : [0,∞) → [0,∞) such that

ρs(∥x∗ − y∗∥) ≤ ϕ∗(x
∗, y∗)

for any x∗, y∗ ∈ Bs := {z∗ ∈ E∗ : ∥z∗∥ ≤ s}.

Proof. Since E is a uniformly smooth Banach space, E∗ is a uniformly convex
Banach space. Then, in view of Lemma 2.5, there exists a continuous, strictly
increasing and convex function ρs : [0,∞) → [0,∞) such that

∥αx∗ + (1− α)y∗∥2 ≤ α∥x∗∥2 + (1− α)∥y∗∥2 − α(1− α)ρs(∥x∗ − y∗∥)
for all x∗, y∗ ∈ Bs = {z∗ ∈ E∗ : ∥z∗∥ ≤ s} and all α ∈ (0, 1). If x∗, y∗ ∈ Bs, then we
obtain

∥αx∗ + (1− α)y∗∥2 − ∥y∗∥2

α
≤ ∥x∗∥2 − ∥y∗∥2 − (1− α)ρs(∥x∗ − y∗∥).
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Letting α → 0 in the above inequality, we arrive at

⟨2J−1y∗, x∗ − y∗⟩ ≤ ∥x∗∥2 − ∥y∗∥2 − ρs(∥x∗ − y∗∥).

This implies that

ρs(∥x∗ − y∗∥) ≤ ϕ∗(x
∗, y∗),

which completes the proof. □

Lemma 2.7. Let E be a uniformly smooth and strictly convex Banach space. Let
{x∗n}n∈N and {y∗n}n∈N be bounded sequences in E. Then the following assertions are
equivalent:

(1) limn→∞ ϕ∗(x
∗
n, y

∗
n) = 0.

(2) limn→∞ ∥x∗n − y∗n∥ = 0.

Proof. The implication (1) =⇒ (2) is an immediate consequence of Lemma 2.6. For
the converse implication, we assume that limn→∞ ∥x∗n − y∗n∥ = 0. Then, in view of
(1.9), we have

(2.4)
ϕ∗(x

∗
n, y

∗
n) = −ϕ∗(y

∗
n, x

∗
n) + 2⟨J−1y∗n − J−1x∗n, y

∗
n − x∗n⟩

≤ 2∥x∗n − y∗n∥∥J−1x∗n − J−1y∗n∥, ∀n ∈ N.

Since J−1 is bounded on bounded subsets of E∗ (see, for example, [23] for more
details). This, together with (2.4), implies that limn→∞ ϕ∗(x

∗
n, y

∗
n) = 0, which

completes the proof. □

Lemma 2.8 ([16]). Let {an}n∈N be a sequence of real numbers such that there exists
a subsequence {ni}i∈N of {n}n∈N such that ani < ani+1 for all i ∈ N. Then there
exists a subsequence {mk}n∈N ⊂ N such that mk → ∞ and the following properties
are satisfied by all (sufficiently large) numbers k ∈ N:

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{j ≤ k : aj < aj+1}.

Lemma 2.9 ([26]). Let {sn}n∈N be a sequence of nonnegative real numbers satis-
fying the inequality:

sn+1 ≤ (1− γn)sn + γnδn, ∀n ≥ 1,

where {γn}n∈N and {δn}n∈N satisfy the conditions:

(i) {γn}n∈N ⊂ [0, 1] and
∑∞

n=1 γn = ∞, or equivalently, Π∞
n=1(1− γn) = 0;

(ii) lim supn→∞ δn ≤ 1, or
(ii)′

∑∞
n=1 γnδn < ∞.

Then, limn→∞ sn = 0.

Lemma 2.10 ([12]). Let C be a nonempty, closed and convex subset of a reflexive,
strictly convex and smooth Banach space E, x ∈ W and z ∈ C. Then

(i) z = ΠCx if and only if ⟨y − z, Jx− Jz⟩ ≤ 0 for all y ∈ C;
(ii) ϕ(y,ΠCx) + ϕ(ΠCx, x) ≤ ϕ(y, x) for all y ∈ C.
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3. Equilibrium problems

In this section, we prove strong convergence theorems in a reflexive Banach space.
Let E be a Banach space and C be a nonempty, closed and convex subset of a
uniformly smooth and strictly convex Banach space E. Let f : C × C → R be a
bifunction satisfying (A1)-(A4) and EP (f) ̸= Ø. For r > 0, we define a mapping
Tr : E → C as follows:

(3.1) Tr(x) =

{
z ∈ C : f(z, y) +

1

r
⟨y − z, Jz − Jx⟩ ≥ 0 for all y ∈ C

}
for all x ∈ E.

Lemma 3.1 ([25]). Let C be a nonempty, closed and convex subset of a smooth,
strictly convex and reflexive Banach space E and let f : C ×C → R be a bifunction
satisfying (A1)-(A4). For r > 0, let Tr : E → C be the mapping defined by (3.1).
Then, dom (Tr) = E.

Lemma 3.2 ([25]). Let C be a nonempty, closed and convex subset of a smooth,
strictly convex and reflexive Banach space E and let f : C ×C → R be a bifunction
satisfying (A1)-(A4) such that EP (f) ̸= Ø. For r > 0, let Tr : E → C be the
mapping defined by (3.1). Then, the following statements hold:

(1) Tr is single-valued;
(2) Tr is a firmly nonexpansive mapping [25], i.e., for all x, y ∈ E,

⟨Trx− Try, JTrx− JTry⟩ ≤ ⟨Trx− Try, Jx− Jy⟩;

(3) F (Tr) = EP (f);
(4) EP (f) is closed and convex;
(5) Tr is a quasi-ϕ-nonexpansive mapping;
(6) ϕ(q, Trx) + ϕ(Trx, x) ≤ ϕ(q, x), ∀q ∈ F (Tr).

Using ideas in [7], we can prove the following result.

Theorem 3.3. Let C be a nonempty, closed and convex subset of a uniformly
smooth and strictly convex Banach space E which also enjoys Kadec-Klee property.
For any j ∈ N, let fj : C × C → R be a bifunction satisfying (A1)-(A4). For
r > 0 and j ∈ N, let Tr,j : E → C be the mapping defined by (3.1). Suppose that
F := ∩∞

j=1EP (fj) is a nonempty subset of C, where EP (fj) is the set of solutions

to the equilibrium problem (1.12). Let {αn}n∈N, {βn,j}n∈N,j∈N∪{0} be sequences in
[0, 1] satisfying the following control conditions:

(a) limn→∞ αn = 0;
(b)

∑∞
n=1 αn = ∞;

(c) βn,0 +
∑∞

j=1 βn,j = 1, ∀n ∈ N;
(d) lim infn→∞ βn,0βn,j > 0, ∀j ∈ N.
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Let {rn}n∈N be a sequence in (0,∞) such that lim infn→∞ rn > 0 and
∑∞

n=1 |rn+1−
rn| < ∞. Let {xn}n∈N be a sequence generated by

(3.2)


u ∈ C, x1 ∈ C chosen arbitrarily,
un,j ∈ C such that

fj(un,j , y) +
1
rn
⟨y − un,j , Jun,j − Jxn⟩ ≥ 0, ∀j ∈ N, y ∈ C,

yn = J−1[βn,0Jxn +
∑∞

j=1 βn,jJun,j ],

xn+1 = ΠC(J
−1[αnJu+ (1− αn)Jyn]) and n ∈ N.

Then the sequence {xn}n∈N defined in (3.2) converges strongly to ΠFu as n → ∞.

Proof. We divide the proof into several steps. In view of Lemma 3.2, we conclude
that F is closed and convex. Set

z = ΠFu.

Step 1. We prove that {xn}n∈N, {yn}n∈N and {un,j}n,j∈N are bounded sequences
in E. We first show that {xn}n∈N is bounded. Let p ∈ ∩∞

j=1EP (fj) be fixed. In

view of Lemmas 2.4, 3.2 and (3.2), we have

(3.3)

ϕ(p, yn) = ϕ(p, J−1[βn,0Jxn +

∞∑
j=1

βn,jJTrn,jxn])

= V (p, βn,0Jxn +
∞∑
j=1

βn,jJTrn,jxn)

≤ βn,0V (p, Jxn) +

∞∑
j=1

βn,jV (p, JTrn,jxn)

= βn,0ϕ(p, xn) +

∞∑
j=1

βn,jϕ(p, Trn,jxn)

≤ βn,0ϕ(p, xn) +
∞∑
j=1

βn,jϕ(p, xn)

= ϕ(p, xn).

This implies that

(3.4)

ϕ(p, xn+1) = ϕ(p,ΠC(J
−1[αnJu+ (1− αn)Jyn]))

≤ ϕ(p, J−1[αnJu+ (1− αn)Jyn])

= V (p, αnJu+ (1− αn)Jyn)

≤ αnV (p, Ju) + (1− αn)V (p, Jyn)

= αnϕ(p, u) + (1− αn)ϕ(p, yn)

≤ αnϕ(p, u) + (1− αn)ϕ(p, yn)

≤ αnϕ(p, u) + (1− αn)ϕ(p, xn)

≤ max{ϕ(p, u), ϕ(p, xn)}.
By induction, we obtain

(3.5) ϕ(p, xn+1) ≤ max{ϕ(p, u), ϕ(p, x1)}
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for all n ∈ N. It follows from (3.5) that the sequence {ϕ(xn, x)}n∈N is bounded and
hence there exists M0 > 0 such that

(3.6) ϕ(xn, x) ≤ M0, ∀n ∈ N.

In view of (1.3), we conclude that the sequence {xn}n∈N is bounded. Since {Trn,j}n,j∈N
is an infinite family of relatively nonexpansive mappings from C into itself, we de-
duce that

(3.7) ϕ(p, um,j) = ϕ(p, Trn,jxm) ≤ ϕ(p, xm), ∀n,m, j ∈ N.

This, together with (1.3) and the boundedness of {xn}n∈N, implies that {Trn,jxn}n,j∈N
is bounded. Since J is also bounded on bounded subsets of E, the sequences
{Jxn}n∈N, {Jyn}n∈N and {JTrn,jxn}n∈N are bounded in E∗.

Step 2. We show that, for any j ∈ N, there exists a mapping Tj : C → C such that

Tjx = lim
n→∞

Trn,jx, ∀x ∈ C

and

F (Tj) = ∩∞
n=1F (Trn,j) = ∩∞

n=1F̂ (Trn,j) = F̂ (Tj).

Since Trn,j is a quasi-ϕ-nonexpansive mapping, we have

ϕ(z, Trn,jv) ≤ ϕ(z, v), ∀v ∈ E, n, j ∈ N.

This, together with (1.3), implies that for any bounded subsetB of E with {xn}n∈N ⊂
B, {Trn,jv : v ∈ B} is bounded. For any v ∈ E, we set vn,j = Trn,jv. Then we get

(3.8) fj(vl,j , y) +
1

rl
⟨y − vl,j , Jvl,j − Jv⟩ ≥ 0, ∀y ∈ C

and

(3.9) fj(vk,j , y) +
1

rk
⟨y − vk,j , Jvk,j − Jv⟩ ≥ 0, ∀y ∈ C.

Letting y = vk,j in (3.8) and y = vl,j in (3.9), we conclude that

fj(vl,j , vk,j) +
1

rl
⟨vk,j − vl,j , Jvl,j − Jv⟩ ≥ 0

and

fj(vk,j , vl,j) +
1

rk
⟨vl,j − vk,j , Jvk,j − Jv⟩ ≥ 0.

Now, in view of (A2) we obtain⟨
vk,j − vl,j ,

Jvl,j − Jv

rl
−

Jvk,j − Jv

rk

⟩
≥ 0

and hence ⟨
vk,j − vl,j , Jvl,j − Jv − rl

rk
(Jvk,j − Jv)

⟩
≥ 0.

Therefore,

⟨vk,j − vl,j , Jvk,j − Jvl,j⟩+
⟨
vk,j − vl,j ,

(
1− rl

rk

)
(Jvk,j − Jv)

⟩
≥ 0.
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Without loss of generality, we may assume that there exists a real number a such
that rn > a for all n ∈ N. Then we have

⟨vk,j − vl,j , Jvk,j − Jvl,j⟩ ≤
⟨
vk,j − vl,j ,

(
1− rl

rk

)
(Jvl,j − Jv)

⟩
≤ 1

a
∥vk,j − vl,j∥|rk − rl|∥Jvk,j − Jv∥

=
1

a
∥Trk,jv − Trl,jv∥∥JTrk,jv − JTrl,jv∥|rk − rl|.

In view of Lemma 3.2, we have EP (fj) = ∩∞
n=1F (Trn,j). Let

M1 = sup
{1

a
∥Trk,jv − Trl,jv∥∥JTrk,jv − JTrl,jv∥ : v ∈ B, j, k, l ∈ N

}
.

Putting s1 = sup{∥Trk,jv∥, ∥Trl,jv∥, ∥JTrk,jv∥, ∥JTrl,jv∥, ∥v∥, ∥Jv∥ : k, l, j ∈ N, v ∈
B}, in view of Lemma 2.6, there exists a strictly increasing, continuous and convex
function ρs1 : [0,∞) → [0,∞) such that for all v ∈ B,

ρs1(∥JTrk,jv − JTrl,jv∥) = ρs1(∥Jvk,j − Jvl,j∥) ≤ ϕ∗(Jvk,j , Jvl,j)

= −ϕ∗(Jvl, Jvk) + 2⟨vk − vl, Jvk − Jvl⟩
≤ 2∥vk,j − vl,j∥∥Jvk,j − Jvl,j∥ ≤ M1|rk − rl|

≤ 2M1

k−1∑
n=l

|rn+1 − rn| ≤ 2M1

∞∑
n=l

|rn+1 − rn| < ∞.

Let

θkl := sup{ρs1(∥JTrk,jv − JTrl,jv∥) : j ∈ N, v ∈ B} ≤ 2M1

∞∑
n=l

|rn+1 − rn| < ∞.

Letting l → ∞ in the above inequality, we get limk,l→∞ θkl = 0. This implies
that, for any x ∈ E, limk,l→∞ ∥JTrk,jx − JTrl,jx∥ = 0. Since E∗ is a Banach
space, then there exists w∗

j ∈ E∗ such that limn→∞ ∥JTrn,jx − w∗
j∥ = 0. From

J(E) = E∗, it follows that there exists wj ∈ E such that Jwj = w∗
j . Thus we

have limn→∞ ∥JTrn,jx− Jwj∥ = 0. Since J−1 is demicontinuous, we conclude that
Trn,jx ⇀ wj as n → ∞. In view of (1.6) and (1.7), we obtain

lim
n→∞

ϕ(Trn,jx,wj) = lim
n→∞

ϕ∗(Jwj , JTrn,jx) = 0.

This, together with (1.3), implies that ∥Trn,jx∥ → ∥wj∥ as n → ∞. By the Kadec-
Klee property of E, we deduce that limn→∞ ∥Trn,jx−wj∥ = 0. Now, for any j ∈ N,
we define the mapping Tj : C → C by

Tjx = lim
n→∞

Trn,jx, ∀x ∈ C.

We prove that

(3.10) F (Tj) = ∩∞
n=1F (Trn,j) = ∩∞

n=1F̂ (Trn,j) = F̂ (Tj).

We first note that the following assertions are obvious:
(1) ∩∞

n=1F (Trn,j) = ∩∞
n=1F̂ (Trn,j) = F̂ (Tj).

(2) ∩∞
n=1F (Trn,j) ⊂ F (Tj) and ∩∞

n=1F̂ (Trn,j) ⊂ F̂ (Tj).
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It remains to prove that (3) F (Tj) ⊂ ∩∞
n=1F (Trn,j) and (4) F̂ (T ) ⊂ ∩∞

n=1F̂ (Trn,j).
(3) Let p ∈ F (Tj) be fixed. In view of the definition of Tr, we have

fj(Trn,jp, y) +
1

rn
⟨y − Trn,jp, JTrn,jp− Jp⟩ ≥ 0, ∀y ∈ C.

In view of (A2), we obtain

1

rn
⟨y − Trn,jp, JTrn,jp− Jp⟩ ≥ fj(y, Trn,jp), ∀y ∈ C.

Since Trn,jp → Tjp = p as n → ∞, J is uniformly continuous on bounded subsets of
E and fj(y, .) is lower semicontinuous, we conclude that fj(y, p) ≤ 0 for all y ∈ C.
Take any y ∈ C and set xt = ty + (1− t)p, for t ∈ (0, 1]. Then, we obtain

0 ≤ fj(xt, xt) ≤ tfj(xt, y) + (1− t)fj(xt, p) ≤ tfj(xt, y).

This implies that fj(xt, y) ≥ 0. Letting t ↓ 0 and taking into account (A3), we get
fj(p, y) ≥ 0 for all y ∈ C and hence p ∈ EP (fj) = ∩∞

n=1F (Trn,j).

(4) Let q ∈ F̂ (Tj). Then, there exists a sequence {vn}n∈N ⊂ E such that vn ⇀ q
as n → ∞ and limn→∞ ∥vn − Tjvn∥ = 0. This implies that Tjvn ⇀ q as n → ∞.
Hence q ∈ C. Since J is uniformly continuous on bounded subsets of E, we conclude
that limn→∞ ∥Jvn − JTjvn∥ = 0. For any m ∈ N, it follows from the definition of
Trm,j that

fj(Trm,jvn, y) +
1

rm
⟨y − Trm,jvn, JTrm,jvn − Jvn⟩ ≥ 0, ∀y ∈ C.

In view of (A2) and taking into account 1
rm

≤ 1
a , we obtain

fj(y, Trm,jvn) ≤ 1

rm
⟨y − Trm,jvn, JTrm,jzn − Jzn⟩

≤ 1

a
∥y − Trm,jvn∥∥JTrm,jvn − Jvn∥, ∀y ∈ C.

Since limm→∞ Trm,jvn = Tjvn and fj(y, .) is lower semicontinuous, we arrive at

fj(y, Tvn) ≤
1

a
∥y − Tjvn∥∥JTjvn − Jvn∥ ∀y ∈ C.

Since Tjvn ⇀ q as n → ∞, limn→∞ ∥vn − Tjvn∥ = 0 and fj(y, .) is lower semicon-
tinuous, we deduce that fj(y, q) ≤ 0 for all y ∈ C. By the same manner as above

we conclude that fj(q, y) ≥ 0 for all y ∈ C. Therefore, q ∈ EP (fj) = ∩∞
n=1F̂ (Trn,j).

Step 3. We prove that there exists a continuous, strictly increasing and convex
function h : [0,∞) → [0,∞) such that for any n ∈ N

(3.11) ϕ(z, yn) ≤ ϕ(z, xn)− βn,0βn,jh(∥Jxn − JTrn,jxn∥), ∀j ∈ N.
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Let us show (3.11). Let n, j ∈ N be fixed. In view of the Lemma 2.5 there exists a
continuous, strictly increasing and convex function h : [0,∞) → [0,∞) such that

ϕ(p, yn) = ϕ(p, J−1[βn,0Jxn +

∞∑
j=1

βn,jJTrn,jxn])

= ∥p∥2 − 2⟨p, βn,0Jxn +

∞∑
j=1

βn,jJTrn,jxn)⟩

+∥βn,0Jxn +
∞∑
j=1

βn,jJTrn,jxn)∥2

≤ ∥p∥2 − 2⟨p, βn,0Jxn⟩ − 2

∞∑
j=1

βn,j⟨p, JTrn,jxn)⟩

+∥βn,0Jxn +

∞∑
j=1

βn,jJTrn,jxn)∥2

≤ ∥p∥2 − 2βn,0⟨p, Jxn⟩ − 2
∞∑
j=1

βn,j⟨p, JTrn,jxn)⟩

+βn,0∥Jxn∥2 +
∞∑
j=1

βn,j∥JTrn,jxn)∥2 − βn,0βn,jh(∥Jxn − JTrn,jxn∥)

= βn,0ϕ(p, xn) +

∞∑
j=1

βn,jϕ(p, Trn,jxn)− βn,0βn,jh(∥Jxn − JTrn,jxn∥)

≤ βn,0ϕ(p, xn) +
∞∑
j=1

βn,jϕ(p, xn)− βn,0βn,jh(∥Jxn − JTrn,jxn∥)

= ϕ(p, xn)− βn,0βn,jh(∥Jxn − JTrn,jxn∥).

In view of Lemma 2.4 and (3.11), we obtain

(3.12)

ϕ(z, xn+1) = ϕ(p,ΠC(J
−1[αnJu+ (1− αn)Jyn]))

≤ ϕ(z, J−1[αnJz + (1− αn)Jyn])

= V (z, αnJu+ (1− αn)Jyn)

≤ αnV (z, Ju) + (1− αn)V (z, Jyn)

= αnϕ(z, u) + (1− αn)ϕ(z, yn)

≤ αnϕ(z, u) + (1− αn)ϕ(z, yn)

≤ αnϕ(z, u)

+(1− αn)[ϕ(z, xn)− βn,0βn,jg(∥Jxn − JTrn,jxn∥)].

Let M2 := sup{|ϕ(z, u) − ϕ(z, xn)| + βn,0βn,jh(∥Jxn − JTrn,jxn∥) : n, j ∈ N}. It
follows from (3.12) that

(3.13) βn,0βn,jh(∥Jxn − JTrn,jxn∥) ≤ ϕ(z, xn)− ϕ(z, xn+1) + αnM2, ∀j ∈ N.
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Let zn = J−1[αnJu+ (1− αn)Jyn]. Then xn+1 = ΠC(zn) for all n ∈ N. In view of
Lemma 2.2 and (3.11) we obtain

(3.14)

ϕ(z, xn+1) = ϕ(p,ΠC(J
−1[αnJu+ (1− αn)Jyn]))

≤ Dg(z, J
−1[αnJu+ (1− αn)Jyn])

= V (z, αnJu+ (1− αn)Jyn)

≤ V (z, αnJu+ (1− αn)Jyn − αn(Ju− Jz))

−⟨J−1[αnJu+ (1− αn)Jyn]− z,−αn(Ju− Jz)⟩
= V (z, αnJz + (1− αn)Jyn) + αn⟨zn − z, Ju− Jz⟩
= ϕ(z, J−1[αnJz + (1− αn)Jyn])

+αn⟨zn − z, Ju− Jz⟩
≤ αnϕ(z, z) + (1− αn)ϕ(z, yn) + αn⟨zn − z, Ju− Jz⟩
= (1− αn)ϕ(z, xn) + αn⟨zn − z, Ju− Jz⟩.

Step 4. We show that xn → z as n → ∞.

The rest of the proof will be divided into two parts:

Case 1. If there exists n0 ∈ N such that {ϕ(z, xn)}∞n=n0
is nonincreasing, then

{ϕ(z, xn)}n∈N is convergent. Thus, we have ϕ(z, xn) − ϕ(z, xn+1) → 0 as n → ∞.
This, together with conditions (c) and (d), implies that

lim
n→∞

h(∥Jxn − JTrn,jxn∥) = 0.

Therefore, from the property of h we deduce that

lim
n→∞

∥Jxn − JTrn,jxn∥ = 0.

We notice that by Step 2, we get that

lim
k,l→∞

θkl := lim
k,l→∞

sup{ρs1(∥JTrk,jv − JTrl,jv∥) : j ∈ N, v ∈ B} = 0.

Then, in view of Lemma 2.1, we conclude that

lim sup
n→∞

sup{ρs1(∥JTrn,jy − JTjy∥) : y ∈ B} = 0, ∀j ∈ N.

On the other hand, we have

1

2
∥Jxn − JTjxn∥ ≤ 1

2
∥Jxn − JTrn,jxn∥+

1

2
∥JTrn,jxn − JTjxn∥.

This implies that

ρs1

(1
2
∥Jxn − JTjxn∥

)
≤ ρs1

(1
2
∥Jxn − JTrn,jxn∥

)
+ ρs1

(1
2
∥JTrn,jxn − JTjxn∥

)
≤ 1

2
ρs1(∥Jxn − JTrn,jxn∥)

+
1

2
sup{ρs1(∥JTrn,jv − JTjv∥) : v ∈ B}.
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Exploiting Lemma 2.3, we obtain

lim
n→∞

ρs1(∥Jxn − JTjxn∥) = 0.

By the properties of ρs1 , we conclude that

(3.15) lim
n→∞

∥Jxn − JTjxn∥ = 0.

Since {xn}n∈N is bounded, there exists a subsequence {xni}i∈N of {xn}n∈N such that
xni ⇀ y ∈ C. Using the lower semi-continuity of the norm, we get that

0 ≤ lim inf
i→∞

ϕ(xni , y) ≤ lim sup
i→∞

ϕ(xni , y) ≤ ϕ(y, y) = 0.

This, together with (1.3), implies that ∥xni∥ → ∥y∥ as i → ∞. By the Kadec-Klee
property of E, we conclude that xni → y as i → ∞. Thus we have ∥Jxni −Jy∥ → 0
as i → ∞. This, together with (3.15), implies that ∥JTjxni − Jy∥ → 0 as i → ∞.
Since J−1 is demi-continuous, we obtain that Tjxni ⇀ y as i → ∞. It follows from
Lemma 2.7 that limi→∞ ϕ∗(Jy, JTjxni) = 0 and hence limi→∞ ϕ(Tjxni , y) = 0.
This, together with (1.3), implies that ∥Tjxni∥ → ∥y∥ as i → ∞. Using the Kadec-
Klee property of E, we deduce that ∥Tjxni − y∥ → 0 as i → ∞. Thus we have
∥Jxni − Jy∥ → 0 as i → ∞. Therefore, limi→∞ ∥Tjxni − xni∥ = 0, which implies
that y ∈ F (Tj) for all j ∈ N. This, together with Lemma 3.2 and (3.12), implies
that y ∈ F (Tj) = ∩∞

n=1F (Trn,j) = EP (fj). On the other hand, we have

lim sup
n→∞

⟨xn − z, Jx− Jz⟩ = lim
i→∞

⟨xni − z, Jx− Jz⟩.

This, together with Lemma 2.10, implies that

lim sup
n→∞

⟨xn − z, Jx− Jz⟩ = ⟨y − z, Jx− Jz⟩ ≤ 0.

From Lemma 2.10, we have that

lim sup
n→∞

⟨zn − z, Ju− Jz⟩ = lim sup
n→∞

⟨xn − z, Ju− Jz⟩ ≤ 0.

Thus we have the desired result by Lemma 2.9.

Case 2. If there exists a subsequence {ni}i∈N of {n}n∈N such that

ϕ(z, xni) < ϕ(z, xni+1)

for all i ∈ N, then by Lemma 2.8, there exists a nondecreasing sequence {mk}k∈N ⊂
N such that mk → ∞,

ϕ(z, xmk
) < ϕ(z, xmk+1) and ϕ(z, xk) ≤ ϕ(z, xmk+1)

for all k ∈ N. This, together with (3.13), implies that

βmk,0βmk,jh(∥Jxmk
− JTrmk,jxmk

∥) ≤ ϕ(z, xmk
)− ϕ(z, xmk+1) + αmk

M2 ≤ αmk
M2

for all k ∈ N. Then, by conditions (a) and (c), we get

lim
k→∞

h(∥Jxmk
− JTmk,jxmk

∥) = 0.

By the same argument, as in Case 1, we arrive at

lim sup
k→∞

⟨zmk
− z, Ju− Jz⟩ = lim sup

k→∞
⟨xmk

− z, Ju− Jz⟩ ≤ 0.
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It follows from (3.14) that

(3.16) ϕ(z, xmk+1) ≤ (1− αmk
)ϕ(z, xmk

) + αmk
⟨zmk

− z, Ju− Jz⟩.
Since ϕ(z, xmk

) ≤ ϕ(z, xmk+1), we have that

(3.17)
αmk

ϕ(z, xmk
) ≤ ϕ(z, xmk

)− ϕ(z, xmk+1) + αmk
⟨zmk

− z, Ju− Jz⟩
≤ αmk

⟨zmk
− z, Ju− Jz⟩.

In particular, since αmk
> 0, we obtain

ϕ(z, xmk
) ≤ ⟨zmk

− z, Ju− Jz⟩.
In view of (3.16), we deduce that

lim
k→∞

ϕ(z, xmk
) = 0.

This, together with (3.17), implies that

lim
k→∞

Dg(z, xmk+1) = 0.

On the other hand, we have ϕ(z, xk) ≤ ϕ(z, xmk+1) for all k ∈ N which implies that
ϕ(z, xn) → 0 as n → ∞. In view of (1.3), we obtain that ∥xn∥ → ∥z∥ as n → ∞.
On the other hand, in view of (1.6), we have

lim
n→∞

ϕ∗(Jz, Jxn) = lim
n→∞

ϕ(xn, z) = 0.

Applying Lemma 2.7 we obtain that

lim
n→∞

∥Jz − Jxn∥ = 0.

Since J−1 is demi-continuous, we get that xn ⇀ z, which implies that y = z. Hence,
by the Kadec-Klee property of E, we conclude that xni → z as i → ∞. Thus, for any
subsequence {xnl

}l∈N of {xn}n∈N, there exists a subsequence {xnli
}i∈N of {xnl

}l∈N
such that xnli

→ z as i → ∞. Therefore, xn → z as n → ∞ which completes the
proof. □

Let E be a smooth Banach space and let C be a nonempty, closed and convex
subset of E. A mapping T : C → C is called generalized nonexpansive [10, 11] if
F (T ) ̸= Ø and

ϕ(Tx, p) ≤ ϕ(x, p)

for each x ∈ C and p ∈ F (T ). Let D be a nonempty closed subset of a real Banach
space E. A mapping R : E → D is said to be sunny if

R(Rx+ t(x−Rx)) = Rx

for each x ∈ E. A mapping R : E → D is said to be a retraction if Rx = x
for each x ∈ D. If E is smooth and strictly convex, then a sunny generalized
nonexpansive retraction of E onto C is uniquely determined (see [10, 11, 15]). Then,
such a sunny generalized nonexpansive retraction of E onto D is denoted by RD.
A nonempty subset D of E is said to be a sunny generalized nonexpansive retract
(resp. a generalized nonexpansive retract) of E if there exists a sunny generalized
nonexpansive retraction (resp. a generalized nonexpansive retraction) of E onto D.
The set of all fixed points of such a sunny generalized nonexpansive retraction of E
onto D is, of course, D.
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Theorem 3.4 ([10, 11]). Let E be a reflexive, strictly convex and smooth Banach
space and let D be a nonempty subset of E. Then the following statements are
equivalent:

(1) D is a sunny generalized nonexpansive retract of E;
(2) D is a generalized nonexpansive retract of E;
(3) JC is closed and convex.

In this case, D is closed.

Using Theorems 3.3 and 3.4, we can prove the following result.

Corollary 3.5. Let E be a uniformly smooth and strictly convex Banach space E
which also enjoys Kadec-Klee property. Let C be a nonempty, closed and convex
subset of E such that JC is closed and convex. For any j ∈ N, let fj : C × C → R
be a bifunction satisfying (A1)-(A4). For r > 0, let Tr,j : E → C be the mapping
defined by (3.1). Suppose that F := ∩∞

j=1EP (fj) is a nonempty subset of C, where

EP (fj) is the set of solutions to the equilibrium problem (1.12). Let {αn}n∈N,
{βn,j}n∈N,j∈N∪{0} be sequences in [0, 1] satisfying the following control conditions:

(a) limn→∞ αn = 0;
(b)

∑∞
n=1 αn = ∞;

(c) βn,0 +
∑∞

j=1 βn,j = 1, ∀n ∈ N;
(d) lim infn→∞ βn,0βn,j > 0, ∀j ∈ N.

Let {rn}n∈N be a sequence in (0,∞) such that lim infn→∞ rn > 0 and
∑∞

n=1 |rn+1−
rn| < ∞. Let {xn}n∈N be a sequence generated by

(3.18)



u ∈ C, x1 ∈ C chosen arbitrarily,

un,j ∈ C such that

fj(un,j , y) +
1
rn
⟨y − un,j , Jun,j − Jxn⟩ ≥ 0, ∀j ∈ N, y ∈ C,

yn = J−1[βn,0Jxn +
∑∞

j=1 βn,jJun,j ],

xn+1 = J−1[αnJu+ (1− αn)Jyn] and n ∈ N.

Then the sequence {xn}n∈N defined in (3.18) converges strongly to ΠFu as n → ∞.

Remark 3.6. (1) In Theorem 3.3 and Corollary 3.5, we present two strong con-
vergence results for a system of equilibrium problems with new algorithms and new
control conditions. This is complementary to Theorem 1.2. In addition, our scheme
in Corollary 3.5 has an advantage that we do not use any projections which create
some difficulties in a practical calculation of the iterative sequence. Indeed, we pro-
pose a different approach, based on Halpern algorithm, to solve the problem without
projecting onto intersection of closed and convex sets which is not problematic in
applications. Therefore, Corollary 3.5 provides a positive answer to open question
1.1.

(2) Theorem 3.3 and Corollary 3.5 improve Theorems 1.1 and 1.2 in the following
aspects:

(i) For the algorithm, we remove the sets Cn and Qn in Theorems 1.1 and 1.2.
(ii) The iterative schemes (3.2) and (3.18) in our Theorem 3.3 and Corollary 3.5

have more advantageous and are more flexible than the iterative schemes of
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[27] because they both are based on Halpern iteration schemes and involve
no computation of generalized projection of a point onto the closed and
convex sets Cn which are huge optimization problems.

4. Application

In this section, we study the problem of finding a minimizer of a continuously
Fréchet differentiable and convex function in a Banach space. For some properties
of the gradient of continuously Fréchet differentiable and convex functions we refer
the reader to [3].

Theorem 4.1. Let C be a nonempty, closed and convex subset of a uniformly
smooth and strictly convex Banach space E which also enjoys Kadec-Klee prop-
erty. Let {gj}j∈N be an infinite family of continuously Fréchet differentiable and
convex functions on E such that the gradient of gj, ∇gj is continuous and mono-
tone for each j ∈ N. Assume that Ω := ∩∞

j=1arg miny∈Egj(y) = {z ∈ E : gj(z) =

∩∞
j=1miny∈C gj(y)} ̸= Ø. Let {αn}n∈N, {βn,j}n∈N,j∈N∪{0} be sequences in [0, 1] sat-

isfying the following control conditions:

(a) limn→∞ αn = 0;
(b)

∑∞
n=1 αn = ∞;

(c) βn,0 +
∑∞

j=1 βn,j = 1, ∀n ∈ N;
(d) lim infn→∞ βn,0βn,j > 0, ∀j ∈ N.

Let {rn}n∈N be a sequence in (0,∞) such that lim infn→∞ rn > 0 and
∑∞

n=1 |rn+1−
rn| < ∞. Let {xn}n∈N be a sequence generated by

(4.1)



u ∈ E, x1 ∈ C chosen arbitrarily,

un,j ∈ C such that

⟨y − un,j ,∇gj(un,j)⟩+ 1
rn
⟨y − un,j , Jun,j − Jxn⟩ ≥ 0, ∀y ∈ C,

yn = J−1[βn,0Jxn +
∑∞

j=1 βn,jJun,j ],

xn+1 = ΠC(J
−1[αnJu+ (1− αn)Jyn]) and n ∈ N.

Then the sequence {xn}n∈N defined in (4.1) converges strongly to ΠΩu as n → ∞.

Remark 4.2. We propose a new type of iterative scheme for common solutions of
an infinite family of monotone mappings in a uniformly smooth and strictly convex
Banach space. A strong convergence theorem by a new Halpern-type method for
the approximation of common solutions of an infinite family of monotone mappings
in a uniformly smooth and strictly convex Banach space is also derived.
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