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IMPLICIT AND EXPLICIT ALGORITHMS FOR A SYSTEM OF
NONLINEAR VARIATIONAL INEQUALITIES
IN BANACH SPACES

LU-CHUAN CENG, HIMANSHU GUPTA, AND QAMRUL HASAN ANSARI

ABSTRACT. In this paper, we consider a general system of nonlinear variational
inequalities (in short, GSVI) in the setting of Banach spaces. We first establish
the equivalence between GSVI and a system of fixed point problems. By utilizing
this equivalence, we construct an implicit algorithm of Mann’s type for solving
GSNVI. We also propose another explicit algorithm of Mann’s type for solving
GSNVI. Finally, under very mild conditions, we prove the strong convergence of
the sequences generated by the proposed algorithms.

1. INTRODUCTION AND FORMULATIONS

Let X be a real Banach space with its topological dual X*. The normalized
duality mapping J : X — 2% is defined as

(1.1) @)= {pe X (p.0) = Jall? = g}, WoeX,

where (-, -) denotes the generalized duality pairing. For further details on normalized
duality, we refer to [1] and the references therein.

Let C C X be a nonempty, closed and convex set, A, B : C' — X be two nonlinear
mappings and A, p be two positive real numbers. The general system of nonlinear
variational inequalities (in short, GSNVI) is to find (z*,y*) € C' x C such that

(MNy* +2* —y*, j(z —2*)) >0, VxeC,

(1.2)
(uBx* +y* —a* j(x —y*)) 20, VaxeCl.

It is considered and studied by Yao et al. [29]. They proposed and analyzed im-
plicit and explicit iterative algorithms for solving the GSNVI (1.2). The equivalence
between GSNVI (1.2) and the fixed point problem of some nonexpansive mapping
defined on a Banach space is also established. By using this equivalence, they con-
structed an implicit iterative algorithm and another one explicit iterative algorithm
for solving the GSNVI (1.2), and proved the strong convergence of the sequences
generated by the proposed algorithms. It is worth to mention that the system
of variational inequalities plays an important role in game theory and economics.
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Namely, the Nash equilibrium problem can be formulated in the form of a system
of variational inequalities; See for example [2, 3, 9, 14] and the references therein.

If X is a real Hilbert space, then the GSNVI (1.2) is introduced and studied by
Ceng et al. [6]. In this case, for A = B, it is considered by Verma [25]. Further, in
this case, when x* = y*, problem (1.2) reduces to the following classical variational
inequality (VI) of finding z* € C such that

(1.3) (Az*,xz —2*) >0, Vrel.

This problem is a fundamental problem in the variational analysis; in particular,
in the optimization theory and mechanics; See for example [10, 16, 17, 18, 19] and
the references therein. A large number of algorithms for solving this problem are
essentially projection algorithms that employ projections onto the feasible set C' of
the VI, or onto some related set, so as to iteratively reach a solution. In particular,
Korpelevich [20] proposed an algorithm for solving the VI in Euclidean space, known
as the extragradient method (see also [9]). This method further has been improved
by several researchers; See for example [7, 13, 22] and the references therein.

In case of Banach space setting, that is, if A = B and z* = y*, the VI is defined
as

(1.4) (Az*,j(x — %)) >0, VzeCl.

Aoyama et al. [4] proposed an iterative scheme to find the approximate solution
of (1.4) and they proved the weak convergence of the sequences generated by the
proposed scheme. Note that this problem is connected with the fixed point problem
for nonlinear mapping, the problem of finding a zero point of a nonlinear operator
and so on.

It is an interesting problem how to construct some algorithms with strong con-
vergence for solving the GSNVI (1.2) which contains problem (1.4) as a special
case.

Our purpose in this paper is to continue the study of the iterative methods for
finding the solutions of GSNVI (1.2). By utilizing the equivalence between GSNVI
(1.2) and fixed point problem as mentioned as, we construct an implicit algorithm of
Mann’s type for solving GSNVI (1.2). We also propose another explicit algorithm of
Mann’s type for solving GSNVI (1.2). Finally, under very mild conditions, we prove
the strong convergence of the sequences generated by the proposed algorithms.

2. PRELIMINARIES

Let C be a nonempty closed convex subset of a real Banach space X. We write
xn, — x (respectively, x,, — x) to indicate that the sequence {x, } converges weakly
(respectively, strongly) to x.

A mapping F' with domain D(F') and range R(F) in X is called

(a) accretive if for each x,y € D(F), there exists j(z —y) € J(z — y) such that

where J is the normalized duality mapping;
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(b) d-strongly accretive if for each x,y € D(F'), there exists j(z —y) € J(z —y)
such that

(Fx — Fy,j(x —y)) > 6|z —y|*> for some & € (0,1).
(¢) a-inverse-strongly accretive if for each =,y € C, there exists j(x — y) €
J(x — y) such that
(Az — Ay, j(z —y)) > al|Az — Ay||?, for some a € (0,1).
(d) A-strictly pseudocontractive [5] if for each x,y € D(F'), there exists j(z—y) €
J(x — y) such that
(2.1) (Fz—Fy,j(z—y)) < |o—yl? ~Nlz—y— (Fz—Fy)|? for some A € (0,1).
It is easy to see that (2.1) can be written as [30]
(2.2) (I =F)z—(I-F)y.jlz—y)) 2 AN - F)z— (I - F)y|*.
Let U = {z € X : ||z|| = 1}. A Banach space X is said to be uniformly convex if
for each e € (0, 2], there exists 6 > 0 such that for any x,y € U,
lz—yl|>e = H%H <1-4.

It is known that an uniformly convex Banach space is reflexive and strictly convex.
Also, it is known that if a Banach space X is reflexive, then X is strictly convex if
and only if X* is smooth as well as X is smooth if and only if X* is strictly convex.
Here we define a function p : [0,00) — [0, 00) called the modulus of smoothness of
X as follows:

1
p(r) =sup {S (e +yll + e —yl) — 1: 2y € X, ol =1, gl =7

It is known that X is uniformly smooth if and only if lin% p(T)/7 = 0. Let ¢ be a
T—

fixed real number with 1 < ¢ < 2. Then a Banach space X is said to be g-uniformly
smooth if there exists a constant ¢ > 0 such that p(7) < ¢7? for all 7 > 0. For
further detail on geometry of Banach spaces, we refer to [1, 12] and the references
therein.

Remark 2.1. Takahashi, Hashimoto and Kato [24] reminded us of the fact that no
Banach space is g-uniformly smooth for ¢ > 2. So, in this paper, we focus on only
a 2-uniformly smooth Banach space as in [29].

In the sequel, we use the following lemmas to establish the main results of this
paper.
Lemma 2.2 ([27]). Let q be a given real number with 1 < q < 2 and let X be a
q-uniformly smooth Banach space. Then

[+ yl|* < 2|1 + ¢y, Jo(2)) + 2||ryll?,  Va,y € X,

where K is the g-uniformly smooth constant of X and J, is the generalized duality
mapping from X into 2% defined by

Jo(x) ={p € X*: {p,2) = |l2]%, |l = |17},
forallx € X.
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Let D be a subset of C' and let I be a mapping of C' into D. Then II is said to

be sunny if
I (x) + t(x — I(x))] = I(z),

whenever II(z) + t(x — II(z)) € C for x € C and t > 0. A mapping II of C into
itself is called a retraction if I1? = IT. If a mapping IT of C into itself is a retraction,
then I1(z) = z for each z € R(II), where R(II) is the range of II. A subset D of
C is called a sunny nonexpansive retract of C' if there exists a sunny nonexpansive
retraction from C onto D.

Lemma 2.3 ([21]). Let C be a closed convex subset of a smooth Banach space X,
let D be a nonempty subset of C and II be a retraction from C onto D. Then II is
sunny and nonexpansive if and only if

(u—1(u),j(y — (u))) <0,
forallue C andy € D.

Remark 2.4. (a) It is well known that if X is a Hilbert space, then a sunny
nonexpansive retraction Ilo coincides with the metric projection from X
onto C.

(b) Let C' be a nonempty closed convex subset of a uniformly convex and uni-
formly smooth Banach space X and let T' be a nonexpansive mapping of
C' into itself with the fixed point set Fix(T") # 0. Then the set Fix(T') is a
sunny nonexpansive retract of C'; See for example [29].

Lemma 2.5 ([11]). Let C' be a nonempty bounded closed convex subset of a uni-
formly convex Banach space X and let T be a nonexpansive mapping of C into itself.
If {x,} is a sequence of C such that x,, — = and x,, — Tx,, — 0, then x is a fived
point of T, that is, x € Fix(T).

Lemma 2.6 ([29]). Let C be a nonempty closed convex subset of a real Banach space
X. Assume that the mapping F : C — X is accretive and weakly continuous along
segments (that is, F(z +ty) — F(x) ast — 0). Then the variational inequality

z*eC, (Fz*,j(x—2%)) >0, Vexel
is equivalent to the following Minty type variational inequality:
z*eC, (Fz,jlx—2"))>0, VzxeCl.

Lemma 2.7 ([23]). Let {z,,} and {z,} be bounded sequences in a Banach space X
and let {an} be a sequence in [0,1] such that

0 < liminf o, < limsup o, < 1.
n—00 n—00
Suppose that T, 11 = apxy, + (1 — an)zn, ¥Yn >0 and
timsup (|21 = 20l] = l7nsr = 20l ) < 0.
n—oo

Then lim |z, — x| = 0.
n—oo
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Lemma 2.8 ([28]). Assume that {a,} is a sequence of nonnegative real numbers
such that

n+1 < (1 - 'Yn)an + 5n’ Vn > 0,

where {v,} is a sequence in (0,1) and {0,} is a sequence in R such that
oo
(i) Z Yn = 05
n=0
o0

(ii) limsup 0p/7m <0 or Z |0n| < 00.
n—oo n=0

Then, lim a, = 0.
n—oo

3. MAIN RESULTS

In this section, We study the iterative methods for computing the approximate
solutions of GSNVI (1.2). We introduce the implicit and explicit algorithms of
Mann’s type for solving the GSNVI (1.2). We show the strong converge theorems
for the sequences generated by the proposed algorithms.

The following proposition will be used frequently throughout the paper. For the
sake of completeness, we include its proof.

Proposition 3.1. Let X be a real smooth Banach space and F : C — X be a
mapping.
(a) If F is (-strictly pseudocontractive, then F is Lipschitz continuous with
constant (1 + %)
(b) If F is §-strongly accretive and (-strictly pseudocontractive with 6 + ¢ > 1,
then I — F is contractive with constant \/IT_‘; €(0,1).

(¢) If F is d-strongly accretive and (-strictly pseudocontractive with 6 + ¢ > 1,
then for any fized number 7 € (0,1), I — 7F is contractive with constant

1—7(1— 1%5) € (0,1).

Proof. (a) Utilizing the definition of the (-strict pseudocontraction F', we derive for
all z,y € C,

I = Fla— (I - Flyll* < (I

1

F)z
F)z

(I - F)y,](l’ - y))
(I = F)yllllz =yl

P
T P
which implies that

I(I = F)a— (I - F)y| < L]z — ]l
Thus

|Fo — Fy|| < [|[(I = F)z — (I — F)y| + [l — y||

< (1+ )kl

and so F' is Lipschitz continuous with constant (1 + %)
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(b) Since F' is d-strongly accretive and (-strictly pseudocontractive, we have
I = F)z—(I-Flyl?> <llz—yl*—(Fz — Fy,j(z —y))
< (1= 98)[lz — ylf*

Note that 6 +¢ > 1 & 1/1%5 € (0,1). Hence we obtain

1-46

=l

I = F)a— (1= Pyl < (

v

This implies that I — F is contractive with constant /2 4‘5 (0,1).

(c) Since I —F' is contractive with constant 4/ 1%5’ for each fixed number 7 € (0, 1),
we have

I@ =) = 7(Fa = Fy)ll = |[(1 = 1)@ — ) + (I = Fa — (1 - F)y]
<(U=lle -yl +7I( - >x—<f Fyy

= (1= (1= /=)l =l

This shows that I — 7F is contractive with constant 1 — T(l — 1;5) €(0,1). O

We recall several useful lemmas.

Lemma 3.2 ([29]). Let C be a nonempty closed convex subset of a real 2-uniformly
smooth Banach space X. Let the mappings A,B : C — X be a-inverse-strongly
accretive and B-inverse-strongly accretive, respectively. Then,

(I = XA)z — (I = AA)y|]* < ||z — y|* + 2X(s*X — ) || Az — Ay|)?,
and
I(I = pB)x — (I — uB)y|*> < ||z — y|I* + 2u(x*p — B)|| Bz — By|)*.

In particular, if 0 < A < %5 and 0 < p < %, then I — MA and I — uB are
nonexrpansive.

Lemma 3.3 ([29]). Let C be a nonempty closed convex subset of a real 2-uniformly
smooth Banach space X. Let Ilc be a sunny nonexpansive retraction from X onto
C. Let the mappings A, B : C — X be a-inverse-strongly accretive and [-inverse-
strongly accretive, respectively. Let G : C — C be a mapping defined by

G(z) = HC[HC(JU — puBzx) — Ml (x — pBz)], Yz e C.

IfO<A< 5 and 0 < p <S5, then G : C — C is nonexpansive.
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Lemma 3.4 ([29]). Let C be a nonempty closed convex subset of a real 2-uniformly
smooth Banach space X. Let Il be a sunny nonexpansive retraction from X onto
C. Let the mappings A, B : C — X be a-inverse-strongly accretive and [-inverse-
strongly accretive, respectively. For given x*,y* € C, (x*,y*) is a solution of the
GSNVI (1.2) if and only if x* = IIc(y* — NAy*) where y* = I (z* — pBx™).

Remark 3.5. From Lemma 3.4, we have
2" = llelllo(a” — pBa*) — NAllo(a™ — uBa),
which implies that «* is a fixed point of the mapping G.

Throughout the paper, the set of fixed points of the mapping G is denoted by {2.
In order to solve GSNVI (1.2), we first introduce an implicit algorithm of Mann’s
type. Let C be a nonempty closed convex subset of a uniformly convex and 2-
uniformly smooth Banach space X. Let IIo be a sunny nonexpansive retraction
from X onto C. Let the mappings A, B : C' — X be a-inverse-strongly accretive and
[-inverse-strongly accretive, respectively. Let F' : C' — X be é-strongly accretive

and (-strictly pseudocontractive with § + ¢ > 1. Assume that A € (O, %) and
w e (0, %) where £ is the 2-uniformly smooth constant of X (see Lemma 2.2). For
each t € (0, 1), choose a number 6; € (0, 1) arbitrarily. For any = € C, we consider
the following mapping

Wy = {tHc(I — AA) (I — uB)

(1 — ) o(I — 0,F) (I — NA) (I — uB)}a.

We note that IIo(I — MA) and IIo(I — uB) are nonexpansive (by Lemma 3.2),
G = Hc(I — NA)IIo(I — pB) is also nonexpansive (by Lemma 3.3), and I — 6, F
is contractive with coefficient 1 — 9t<1 - ,/1—_‘5) € (0,1) (by Proposition 3.1 (c)).

(3.1)

¢
Hence for all z,y € C,

Wiz — Wiyl = [{tllc(I — NA) o (I — uB)

+ (1= ) I(I — 6,F) (I — AAYIIo(I — uB) Y

—{tllc(I = AA) (I — pB)

+ (1 =) (I — 0. F) (I — NA) (I — puB) ||
= [[t(G(z) = G(y)) + (1 = )[lIc(I — 0. F)G(x) — Hc(I — 6:F)G(y)]||
<t|G(x) = G + (1 =D — 0. F)G(z) — (I — 0. F)G(y)||
<tllz =yl + A =) - 0:F)G(x) — (I = 6:F)G(y)]

15

<tle =yl + 0= (1-6(1- /=) 16t - Gw)l

<tle -yl +a-0(1-0(1-120))la -y

= [i-a=00(1- 222 I -l
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Since 6, € (0,1), Vt € (0,1) and § + ¢ > 1 with §,( € (0,1), we obtain

0<et(1— 1E‘S)<1,

0<1—(1—t)0t<1—1/125)<1.

This means that the mapping W, is a contraction. Therefore, the following implicit
algorithm of Mann’s type for solving GSNVI (1.2) is well defined.

and so,

Algorithm 3.6. For each ¢t € (0,1), choose a number 6; € (0,1) arbitrarily. The
net {z;} is generated by the implicit method
(3.2)
xp = {tlo(I — AA) (I — pB)
+(1 = ) Io(I — 0,F) (I — AAYIIo(I — puB)}ay, Vi€ (0,1),

where z; is a unique fixed point of the contraction
Wy =tllo(I — MNA) (I — pB) + (1 —t)lIc(I — 0. F) (I — NA)Ilo(I — uB).

We prove that the sequences generated by the Algorithm 3.6 converge strongly
to a solution of a VI.

Theorem 3.7. The net {x;} generated by Algorithm 3.6 converges in norm, as
t — 0%, to the unique solution T of the following VI:
(3.3) ze R, (F(z),j(x—=2)<0, Vzel,

provided lim 6; = 0.
t—0+

Proof. Set z; = Ilo(I — puB)xy and y = (I — MNA)z for all ¢ € (0,1). Then we
have z; =ty + (1 — t)[Ic(I — 6. F)y;. Let x* € {2, then from Lemma 3.4, we have
x* = Ho[llo(x* — pBx™) — NAllg(x* — pBx™)).

Set y* = lc(x* — pBx™*). Then z* = I (y* — NAy*).
From Lemma 3.2, we know that IIo(I — AA) and IIc (I — pB) are nonexpansive.
Hence, we have

lye — ™|l = [Ho(I = M)z = llc(I = AA)y*||
<llze =yl = oI — pB)zy — lo(I — pB)a™|
< e — 2]l

So, by Proposition 3.1 (c), we get
e —2%|| = lltye + (1 = ) o (I = 6:F)y, — (ta” + (1 — ) o (")) |
= [lt(ye — %) + (1 = ) (e (I — 6:F)ye — e (a7))]|
< tllye — ¥ + (1 = O eI = 0. F )y — Ho(x")]|
S tlley —2¥| + (1= = 0:F)yr — 27|
=tlae — 2" + (L= = 6:F)ye — (I — 0 F)z" — 6,1 (27|
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< tlae = 2| + (L= ) (I = 6:F)yn — (L = 0F)a" | + 6] F(a)]))

< e~ + (1= [ (1= 00 (1 = \[Z22) o o + 0 F ) |
<t~ + (1= 0)[(1=00(1 =\ [F22) e = 2”1+ 8L
= [1- =0 (1= 220l - a4 (1= 08 F G
It follows that
ool < (1= 42 20) T IF@L

Therefore, {x;} is bounded. Hence {y:}, {2}, {Ay:}, {Bx¢} and {F(y;)} are also
bounded. We observe that

e = yell = Nty + (1 = ) (I = 6. F )y — (tye + (1 — t) Hoy)||
=1 =) — 0. F)y: — Hey|
(3.4) < (I = 0F)ye — wi|
=0:|F(y)|| = 0ast— 0",
From Lemma 3.3, it is known that G : C — C' is nonexpansive. Thus, we have
lye = G(yo) | = | e[ Ho(xe — pBxy) — AAllg (2 — pBxy)] — Gy ||
= [|G(z¢) — G(y) ||
< ||zt —yel| = 0ast—0F.
Therefore,

(3.5) lim 2, — G(ar)| = 0.

Next, we show that {z;} is relatively norm-compact as ¢ — 0. Assume that
{t,} C (0,1) is such that ¢, — 0T as n — oo. Put z, := z,, yn = y, and
Oy, := 0,. It follows from (3.5) that

(3.6) |xn — G(xn)|| = 0 asn— oo.
We can rewrite (3.2) as
zr = tye + (1 — 1) [UC(I G, F)y — (I — 0 F )y + (I — 0,F)yy .
For any z* € 2 C C, by Lemma 2.3, we have
(xp — (I — O F )y, j(xy — ™))
=ty — (I = )y, j(we — 7))
+ Q=) {IIc(I -0 F)ys — (I — 0. F )y, j(xe — x¥))
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= t0:(F (yt), j(ze — 27))
+ (1 =)l = 0. F)yr — (I — 0. F )y, j(Hc (I — 0, F )y, — x%))
+ eI = 0 F)ye — (I = 0. F )y, j (e — x%) — j(Ho(I — 6 F )y — a*))]
< 0 (F(ye), j(xe — 7)) + (1 = t){Hc(I — 0. F )y
— (I =0 F )y, j(xy — ) — j(IIc(I — 0. F )y, — ™))
< 0 (F(ye), j(we — %)) + (1= )| Hc(I — 0. F)y,
— (I =0 F)ye|llj (e — 27) — j(Hc(I = 0. F)ye — %) ||
S 0(F(ye), j(xe — %)) + (L = ) (| (I — 0:F )y — Hoy:||
+ Ol F () D (e — 2%) = G (o (I — 6 F )y, — x7)|
S 0 (F(ye), j(xe — %)) + (L= )(|(1 = O F )y — wel|
+ O E () DN (e — 2%) — j(Hc(I — 0 F )y, — %) ||
< O F (ye) [ lwe — 27| + 20| F (ye) [l (e — &%) — (L (I = 6:F)ye — 7).
With this fact, we deduce that
o = (o - a” e - )
= (x¢ — (I — O F )y, j(xe — %)) + (I — O F)ys — 2, j(ze — 7))
< 0L F (ye) [ lwe — 27| + 20| F (ye) 15 (e — 27) = j(He (I = 6:F)ye — %) ||
+ (I = 0 F)yr — 27, j(xe — 27))
= 0| F (y)llllwe — 2™ + 20| F (ye) [ |5 (e — %) — j(Ho (I — 0, F )y, — x7)]|
+ (I = 6eF )y — (I = 6 F)a”™, j(my — 27)) — O (F (27), j(me — 27))

(87) < OlIF(we)llliee — || + 20| (o)l (e — 2%) = (I (I = :F )y — )|
+ (I = 8F)y — (I = 8F)a" [l — 2| — 6,(F ("), j(a, — )
<0 P () e — | + 264 F(ye) |13 (e — 27) = j(ITe (I = 6 F )y, — 2|

+(1-0(1- 12%NM—me—wW—@meﬂm—ﬁ»

SO F (yo) [l — 27| 4 266 F (ye) |15 (e — 27) = j(Ho (I = 0.F )y, — =¥

n (1 - 9t<1 - 12‘5)) e — 2|2 — B(F (z*), j(z¢ — z)).

It turns out that

e =22 < (1~ ﬁf)ﬁwmmﬂﬁmwﬂwwwmﬁn

+ 2| F(ye) 7 (2 — %) = j(He(I = 0, F )y, — 2*)]|], Va* € 2.
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In particular,

fon =21 < (1= [ 520) T HF GGG = 20) + tallFCn) [ — o]

(3.8) + 2[[F(yn) i (zn — 27) — j(Ho(I = 0 F)yn — ™)}, V™ € £2.
Since {z,} is bounded, without loss of generality we may assume that {z,} con-

verges weakly to a point & € C. Noticing (3.6) we can use Lemma 2.5 to get & € (2.
Therefore, we can substitute Z for z* in (3.8) to get

fon =3l < (1= 220) 7 @), - 2} + tall F) o 31
(39) 2| (n — ) — eI~ 8.F)yo — D).
Note that

I — ) = (oI = 0aF)ga — &)l = ln — eI = 8 F )yl

= thHCyn - HC(I - enF)ynH
< thyn - (I - enF)ynH
= tnOn||F(yn)|| = 0 asn — oo.
Since X is uniformly smooth, we get that
7 (xn — &) — j(HIc(L — 0 F)yn — T)|| = 0 as n — oc.
Consequently, the weak convergence of {x,} to Z together with (3.9), actually im-
plies that z,, — & strongly. This has proved the relative norm compactness of the
net {x;} ast — 0F.
We next show that Z solves the variational inequality (3.3). From (3.2), we have
Ty = tyt + (1 — t) [HC(I — HtF)yt — (I — QtF)yt + (I — QtF)yt]
= x =ty + (1 — t)[ﬂc([ — HtF)yt — (I — etF)yt
— (I = 0:F )z — (I — 0. F)yy) + 2 — 0,1 (24)]

t(oy —ye) 1
—2 2t (I — 0, F)y; — (I — 0. F
(1 — t)et + Qt[ C( 91‘/ )yt ( et )yt

— (I = 0:F)zy — (I — 0:F)y)].

For any z € {2, we have

:>F(33‘t):—

(F(xt),j(me — 2)) = _(1—tt)9t<xt — i, j(xr — 2))

+ LI = 0F )y — (I — 6, F )y (0 — 2))
— AT = O F )y — (I = 0:F)yr), j (e — 2))

_ .t %, (wy — yg, j (2 — 2)) + ;(Hc(f — 0 F)y,
(3.10) — (I =0 F)y, j(IIc(I — 0, F )y, — z))
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+ 61t<]]C(I — 0t F )y — (I — 0. F )y, j(z — 2)
— j(Io(I — 0, F )y, — 2))

— A = 0 F) e — (I — 0:F)yr), (e — 2))
— (I = 0Py, j(Lc(I — O F )y — 2))
+ 2([ F(y)llllj (e — 2) — j(Hc(I — 0. F )y — 2)||

. (xt —yt), j(we — 2))

0,
+ (F(zt) — F(yt), j (v — 2)).

Now we prove that (r: — y¢),j(z+ — 2z)) > 0. Indeed, we can write y: = G(x¢). At
the same time, we note that z = G(z). So,

(@r =y, § (2 = 2)) = (2 = Glae) = (2 = G(2)), 5 (21 = 2)).
Since I — G is accretive (this is due to the nonexpansivity of G), we can deduce
immediately that

(w0 =y, (20 — 2)) = (20 — Gay) — (2 = G(2)),4(z — 2)) 2 0.
Furthermore, utilizing Lemma 2.3 and Proposition 3.1 (a), we have
(eI = 0 F)ye — (I — 0.F )y, j(Lc (I — 0 F )y — 2)) <0
and

17 () = Pl < (1+ ¢)llee = ul,

It follows from (3.10) that
(F(@t), (@ — 2)) <2[|F(ye)||l7(@e — 2) — j(He(I — 0 F )y — 2)||

(3.11) + (14 2=l 1.

Since F' is d-strongly accretive, we have
0 < Oz — 2)1* < (F(xe) = F(2), j(xe — 2)).
Therefore,
(3.12) (F(2),j(xr — 2)) < (F(21), (2 = 2))-
Combining (3.11) and (3.12), we get
(F(2),4(x: — 2)) <2/ F(ye)[[ll3 (e — 2) = j(Hc(I = 0, F)y, — 2)|
1
(3.13) (1 ) e = el — 21
Replacing ¢ in (3.13) with ¢,, and noticing that as n — oo, x, — ¥, — 0 and
i@, — =) — j(Hc(I = 04, F)yr, — z) — 0, we obtain
(F(2),j(Z—2)) <0, Vzel,
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which is equivalent to the Minty type variational inequality (see Lemma 2.6)
(3.14) (F(Z),j(z—2)) <0, Vzell

That is, & € {2 is a solution of (3.3).
Now we show that the solution set of (3.3) is a singleton. As a matter of fact, we
assume that z € (2 is also a solution of (3.3). Then, we have

(F(z),j(z —2)) <0.
From (3.14), we have
(F(z),j(z —x)) <0.
So, by §-strong accretiveness of F', we have
(F(z),j(x —2)) + (F(2),j( — 7)) <0
= (F(z) - F(2),j(z — %)) <0
=6z —z|* <o0.

Therefore, £ = Z. In summary, we have shown that each cluster point of {z;} (as
t — 0) equals to Z. Therefore, x; — Z as t — 0. [

We next introduce an explicit method which is the discretization of the implicit
method (3.2).

Algorithm 3.8. Let C' be a nonempty closed convex subset of a real smooth Banach
space X. Let Il be a sunny nonexpansive retraction from X onto C. Let A, B, F :
C — X be three nonlinear mappings. For arbitrarily given xo € C, let the sequence
{zn} be generated iteratively by

Tn+1 = ﬁnxn + ’YnHC(I - )\A)HC(I — /LB)JZ,—L
+(1 = Bn — ) (I — anF) (I — AA)c(I — pB)zn,

where {ay}, {Bn} and {v,} are three sequences in [0, 1] such that £, + v, < 1,
Vn > 0, and A, u are two real numbers.
In particular, if A = B, then (3.15) reduces to the following iterative scheme:

Ipt+1 = ﬂnl‘n + 'VnHC(I - )\A)HC(I — ,uA)xn
(1= B — ) (I — anFYHe(I — AV Io(I — pA)an.

(3.15)

(3.16)

Theorem 3.9. Let C be a nonempty closed convex subset of a uniformly convex and
2-uniformly smooth Banach space X and let Lo be a sunny nonexpansive retraction
from X onto C. Let the mappings A, B : C' — X be a-inverse-strongly accretive
and B-inverse-strongly accretive, respectively. Let F' : C'— X be §-strongly accretive
and (-strictly pseudocontractive with 6 + ( > 1. For given zo € C, let the sequence
{zn} be generated iteratively by (3.15). Suppose that the sequences {an}, {fn} and
{n} satisfy the following conditions:

oo
(i) nlggo an, =0 and Z Qy = 005

( Tntl  Un ):0,
1_5714-1 1_671 '

0) 5%,
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(iii) 0 < liminf 3, <limsup(8, + ) < 1.
n— oo

n—00

Then, the sequence {x,} converges strongly to & € {2 which solves the variational
inequality (3.3).

Proof. Set z, = lIc(I — uB)xy, and y, = (I — AA)z, for all n > 0. Then
Tn+1 = ﬁnxn + YnYn + (1 — Bn — ’Vn)HC(I - anF)yna Vn > 0.
We take a point z* € {2 arbitrarily.

From Lemma 3.2, we know that ITo(I — AA) and IIo(I — pB) are nonexpansive.
Hence, we have

lyn —2*[| = [Hlc(I = AA)zn — Ho(I = AA)y*|
< lzn = y*ll = e (I — pB)an — Ho(I — pB)™|
< lwn — 2.

So, by Proposition 3.1 (c), we get

[Znt1 — 2| = 1Bn@n + Wyn + (1 = B — v ) Ic(I — an F)yn — 27|

< Bullzn — 2| + llyn — 27|
+ (1 = Bn — )l (I — anF)y, — o™

< Bullzn — 2| + mllzn — 27|
+ (1 =B =) — anF)yn — (I — anF)z"™ — anF(z7)||

< B +v)llon — 2% + (1 = B = W)l — anF)yn — (I — )™ ||
+ an(l = By — )| F(z")]|

< (Bn +y)ll@n — ¥

+(1_5n_’7n)(1_an(1_ 1E(s>)”yn_55*H
+ an(l = By — )| F(z")]|
< [1-an == ) (1= [ 522) o = o)
-6 z*
+ an(l = Bn — ) (1 - ! ¢ ) (1Hf( 1)!_|6>

By induction, we conclude that

. . 1—-6\—1 .
onsr =@l < max {flag = 2"l (1= /=) IF @I}
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Therefore, {x,} is bounded. Hence {y,}, {z}, {Ayn} and { Bz, } are also bounded.
We observe that

[Ynr1 = ynll = eI = AA)zpt1 — Ho(I = AA)z ||
< [l2n+1 — znll
= [[Ic(I = pB)xni1 — Ho(I — pB)ay|
< [|#nt1 — @]
Set Ty 1 = Bnn + (1 — By)vy, for all n > 0.
Then v, = Y+ (1= B = ) oI = oan)yn' Note that
1— B
T (I — any1 F)yny1 — Ho(I — anF)y,||
< H(I - an+1F)yn+1 - (I - O‘nF)ynH
= lyn+1 — Un — 1 F(Ynt1) + anF(yn) ||
< [ynt1 = ynll + antall F(yn)ll + ol F(yn)|
< N@nt1 = zoll + a1 [ F (Y1) | + anl[ F(yn) |-

Hence

V41 — vn |

_ H Yt 1Ynt1 + (1 = Bny1 — Yur1) o — ang 1 F)ynt1

1 - Bns1
_ TnYn + (1= Bn — ) (I — anF)y,
1- Bn

Tn+1 Tn
o IR
1- BnJrl n—i— 1- ﬁn "

1— _
+ H ( BnJrl 7n+1) HC(I - an-HF)yn-i-l -
1 - Bny1

(A= Bn—m)
1*ﬁn
Tn

lyn+all + 1- 5, [Yn+1 = ynll

HC(I - anF)yn

Tn+1

Tn
- 1_/8n+1 1_/671

n ‘ (1-— fn_—l—lﬁ;:’n-&-l) _ (1 _16—7162%) e (I — 1 F)yn+ |
+ WHHC(I — i1 E)yns1 = lo(I = anF)yn||
= ‘1 Znﬁtﬂjﬂ 1 jnﬁn ‘ (Hyn+1” + [ e (I - Oln+1F)yn+1||)
12 N =l
+ W(||$n+l = Zpll + a1 [[F (yn) | + anl[F(yn))
< Int+l

S (P PATR
i s, 14 lyn+1ll + [[ (I — ant1 F)yna ||
+ |1 Tns1 — 2ol + ang1 | F(Yns1) || + anll F(yn) |-
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Since {yn} and {F(y,)} are bounded, we have that {||y,| + || Ic(I — anF)ynl| } is
bounded. So it follows from conditions (i) and (ii) that

limsup(flvnt1 = vnll = [[Zn41 — 24l) < 0.
n—oo
Hence, by Lemma 2.7, we get ||v, — x| — 0. Consequently,
Tim et =l = Tim (1= 8o — 2] = 0.

We also note that
YnYn + (1 — Bn — ’Yn)HC(I - O‘nF)yn

IIwn—ynHZ‘ =5, ~ Yn
_ ’ YnYn + (1 — Bn — ’Yn)HC(I - anF)yn - (1 - 5n)yn
B 1- Bn
= 222 e (1~ )y — gl
- 5n
< ||HC(I - anF)yn - HCynH
< ap||F(yn)|]| — 0 asn — oo.

It follows that
lim ||z, —yn| = 0.
n—oo
From Lemma 3.3, we know that G : C'— C is nonexpansive. Thus, we have
lyn = Gyn)ll = Hlclo(xn — pBan) — Ao (@n — pBan)] — G(yn) |
= G(zn) — G(yn)ll
<||zn —ynl| =0 asn — oo.
Therefore, le |z, — G(x,)|| = 0.
Set uy, = (I — anF)yy, for all n > 0. We note that
[un = Gun)|| < llun — nll + [[2n — G(an)[| + |G(@n) — G(un)||
< 2un, — xp|| + |2n — G(4) ||

(3.17) =2\l (I — anF)yn — Hown|| + |20 — Glan)||
< 2(llyn = znll + anllF(yn)l]) + llzn — Gza)|| = 0
as n — Q.

Next we show that
lim sup(F(7), j(F — un)) <0,

n—o0

where & € {2 is the unique solution of the VI (3.3).
Indeed, we first take a subsequence {uy, } of {u,} such that

lim sup(F (), j(F — wn)) = lim (F(E), (3 = un,)

n—o0

We may also assume that u,, — z. Note that z € {2 by virtue of Lemma 2.5 and
(3.17). It follows from the variational inequality (3.3) that

limsup(F (@), (3 = 1)) = lim (F(@),5(@ = ua)) = (F(2),(z = 2)) <0,
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Since uy, = IIo(I — a, F)yy, according to Lemma 2.3, we have
(3.18) (I — anF)yp — (I — anF)yn, j(& — uyp)) < 0.
From (3.18), we have
lun — (1> = (He(I = anF)yn — & j(un — 7))
= (IIc(I — anF)yn — (I — anF)yn, j(un, — T))
+ <(I - anF)yn - ](un - i')>
<A — anF)yn — 7, j(un — 7))
= (I —anF)yn — (I — anF)Z, j(un — ) + an(F(2), j(T — un))
-0

¢

1 1—0\\2 .
S(1—an(1- )l — &

A\
—
—
|

Q
3
—
—
|
[am—

)l = &lllun = ) + an(F (@), §(F = un))

IN

It follows that

(3.19) llwn — 50‘\2 < (1 — an<l — E)) llyn — 5”2 + 20, (F (), j(F — un))

< (1 - an(l - \/?)) 2n — Z||2 + 200 (F(2), §(Z — un)).

Finally, we prove x,, — Z. As a matter of fact, from (3.2) and (3.19), we have
241 — 2|
< Bullzn = Zl* + mllyn — 1% + (1 = B — ) llun — 2|
< Bullwn — 212 + yullen — 2|2
1-9

0= B =) (1= an (1= =57) )l = 1P + 2000F (@), 5(F — )

(3.20)

= |1—an(1- B8, —fyn)(l — 125)] 20 — ||

Fan(1 = By~ )1 - lg%{@_21?>W@%ﬂf—w»}

o
Since Zan = 00, limsup(B, + ) < 1 and 1 — /1= C € (0,1), we get
n=0

n—00

[e.9]

Soan(1= =) (1= 7)==

n=0



982 L.-C. CENG, H. GUPTA, AND Q. H. ANSARI

Taking into account limsup(F(Z), j(Z — up)) < 0, we can apply Lemma 2.8 to the

n—00
relation (3.20) and conclude that z,, — . O

We use I' to denote the solution set of the variational inequality (1.4). We can
derive easily the following corollaries.
Corollary 3.10. Let 6, € (0,1), Vt € (0,1) such that tl_i}r(% 0, = 0. The net {x}
generated by the implicit method
(3.21) @y = {tHc(I-NA) (I —pA)+(1—t) e (1 —60,.F) I (I—ANA) o (I — pA) by,

for all t € (0,1), converges in norm, ast — 07, to ¥ € I' which is the unique
solution of the following variational inequality:

rel : (F(2),j(@—2)<0, Vzel.

Corollary 3.11. Let C be a nonempty closed convexr subset of a uniformly con-
vex and 2-uniformly smooth Banach space X and let Ilo be a sunny nonexpansive
retraction from X onto C. Let the mapping A : C — X be a-inverse-strongly ac-
cretive. Let F': C — X be d-strongly accretive and (-strictly pseudocontractive with
d+¢ > 1. For given xy € C, let the sequence {x,} be generated iteratively by (3.16).
Suppose that the sequences {an}, {Bn} and {vn} satisfy the following conditions:

(i) lim a, =0 and Z Oy, = 00;
n=0

n—oo
.. . Yn+1 Tn
ii) lim ( - ) =0,
()nﬁoo 1_571—1—1 1_Bn
(iii) 0 < liminf B, <limsup(B, + 7,) < 1.
n—00 n—00

Then, the sequence {x,} converges strongly to & € I', which solves the following
variational inequality:

el : (F(),j(#—2)<0, Vzel.

CONCLUSIONS.

In the present paper, we considered and studied a general system of nonlinear
variational inequalities (1.2) in the setting of Banach spaces. We proposed Mann
type implicit and explicit algorithms for solving the GSNVI (1.2). We studied the
strong convergence of the sequences generated by the proposed algorithms to a
solution of GSNVT (1.2). We extended strongly positive linear bounded operator
F in the implicit and explicit algorithms of [29] to nonlinear strongly accretive and
strictly pseudocontractive mapping F', and also the implicit and explicit algorithms
of [29] are extended to develop our implicit and explicit algorithms of Mann’s type.
Our proofs contain some new techniques which are very different from those in [29].
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