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Namely, the Nash equilibrium problem can be formulated in the form of a system
of variational inequalities; See for example [2, 3, 9, 14] and the references therein.

If X is a real Hilbert space, then the GSNVI (1.2) is introduced and studied by
Ceng et al. [6]. In this case, for A ≡ B, it is considered by Verma [25]. Further, in
this case, when x∗ = y∗, problem (1.2) reduces to the following classical variational
inequality (VI) of finding x∗ ∈ C such that

(1.3) ⟨Ax∗, x− x∗⟩ ≥ 0, ∀x ∈ C.

This problem is a fundamental problem in the variational analysis; in particular,
in the optimization theory and mechanics; See for example [10, 16, 17, 18, 19] and
the references therein. A large number of algorithms for solving this problem are
essentially projection algorithms that employ projections onto the feasible set C of
the VI, or onto some related set, so as to iteratively reach a solution. In particular,
Korpelevich [20] proposed an algorithm for solving the VI in Euclidean space, known
as the extragradient method (see also [9]). This method further has been improved
by several researchers; See for example [7, 13, 22] and the references therein.

In case of Banach space setting, that is, if A ≡ B and x∗ = y∗, the VI is defined
as

(1.4) ⟨Ax∗, j(x− x∗)⟩ ≥ 0, ∀x ∈ C.

Aoyama et al. [4] proposed an iterative scheme to find the approximate solution
of (1.4) and they proved the weak convergence of the sequences generated by the
proposed scheme. Note that this problem is connected with the fixed point problem
for nonlinear mapping, the problem of finding a zero point of a nonlinear operator
and so on.

It is an interesting problem how to construct some algorithms with strong con-
vergence for solving the GSNVI (1.2) which contains problem (1.4) as a special
case.

Our purpose in this paper is to continue the study of the iterative methods for
finding the solutions of GSNVI (1.2). By utilizing the equivalence between GSNVI
(1.2) and fixed point problem as mentioned as, we construct an implicit algorithm of
Mann’s type for solving GSNVI (1.2). We also propose another explicit algorithm of
Mann’s type for solving GSNVI (1.2). Finally, under very mild conditions, we prove
the strong convergence of the sequences generated by the proposed algorithms.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Banach space X. We write
xn ⇀ x (respectively, xn → x) to indicate that the sequence {xn} converges weakly
(respectively, strongly) to x.

A mapping F with domain D(F ) and range R(F ) in X is called

(a) accretive if for each x, y ∈ D(F ), there exists j(x− y) ∈ J(x− y) such that

⟨Ax−Ay, j(x− y)⟩ ≥ 0,

where J is the normalized duality mapping;
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(b) δ-strongly accretive if for each x, y ∈ D(F ), there exists j(x− y) ∈ J(x− y)
such that

⟨Fx− Fy, j(x− y)⟩ ≥ δ∥x− y∥2 for some δ ∈ (0, 1).

(c) α-inverse-strongly accretive if for each x, y ∈ C, there exists j(x − y) ∈
J(x− y) such that

⟨Ax−Ay, j(x− y)⟩ ≥ α∥Ax−Ay∥2, for some α ∈ (0, 1).

(d) λ-strictly pseudocontractive [5] if for each x, y ∈ D(F ), there exists j(x−y) ∈
J(x− y) such that

(2.1) ⟨Fx−Fy, j(x−y)⟩ ≤ ∥x−y∥2−λ∥x−y− (Fx−Fy)∥2 for some λ ∈ (0, 1).

It is easy to see that (2.1) can be written as [30]

(2.2) ⟨(I − F )x− (I − F )y, j(x− y)⟩ ≥ λ∥(I − F )x− (I − F )y∥2.
Let U = {x ∈ X : ∥x∥ = 1}. A Banach space X is said to be uniformly convex if

for each ε ∈ (0, 2], there exists δ > 0 such that for any x, y ∈ U ,

∥x− y∥ ≥ ε ⇒
∥∥∥x+ y

2

∥∥∥ ≤ 1− δ.

It is known that an uniformly convex Banach space is reflexive and strictly convex.
Also, it is known that if a Banach space X is reflexive, then X is strictly convex if
and only if X∗ is smooth as well as X is smooth if and only if X∗ is strictly convex.
Here we define a function ρ : [0,∞) → [0,∞) called the modulus of smoothness of
X as follows:

ρ(τ) = sup
{1

2
(∥x+ y∥+ ∥x− y∥)− 1 : x, y ∈ X, ∥x∥ = 1, ∥y∥ = τ

}
.

It is known that X is uniformly smooth if and only if lim
τ→0

ρ(τ)/τ = 0. Let q be a

fixed real number with 1 < q ≤ 2. Then a Banach space X is said to be q-uniformly
smooth if there exists a constant c > 0 such that ρ(τ) ≤ cτ q for all τ > 0. For
further detail on geometry of Banach spaces, we refer to [1, 12] and the references
therein.

Remark 2.1. Takahashi, Hashimoto and Kato [24] reminded us of the fact that no
Banach space is q-uniformly smooth for q > 2. So, in this paper, we focus on only
a 2-uniformly smooth Banach space as in [29].

In the sequel, we use the following lemmas to establish the main results of this
paper.

Lemma 2.2 ([27]). Let q be a given real number with 1 < q ≤ 2 and let X be a
q-uniformly smooth Banach space. Then

∥x+ y∥q ≤ ∥x∥q + q⟨y, Jq(x)⟩+ 2∥κy∥q, ∀x, y ∈ X,

where κ is the q-uniformly smooth constant of X and Jq is the generalized duality

mapping from X into 2X
∗
defined by

Jq(x) = {φ ∈ X∗ : ⟨φ, x⟩ = ∥x∥q, ∥φ∥ = ∥x∥q−1},
for all x ∈ X.
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Let D be a subset of C and let Π be a mapping of C into D. Then Π is said to
be sunny if

Π [Π (x) + t(x−Π (x))] = Π (x),

whenever Π (x) + t(x − Π (x)) ∈ C for x ∈ C and t ≥ 0. A mapping Π of C into
itself is called a retraction if Π 2 = Π . If a mapping Π of C into itself is a retraction,
then Π (z) = z for each z ∈ R(Π ), where R(Π ) is the range of Π . A subset D of
C is called a sunny nonexpansive retract of C if there exists a sunny nonexpansive
retraction from C onto D.

Lemma 2.3 ([21]). Let C be a closed convex subset of a smooth Banach space X,
let D be a nonempty subset of C and Π be a retraction from C onto D. Then Π is
sunny and nonexpansive if and only if

⟨u−Π (u), j(y −Π (u))⟩ ≤ 0,

for all u ∈ C and y ∈ D.

Remark 2.4. (a) It is well known that if X is a Hilbert space, then a sunny
nonexpansive retraction ΠC coincides with the metric projection from X
onto C.

(b) Let C be a nonempty closed convex subset of a uniformly convex and uni-
formly smooth Banach space X and let T be a nonexpansive mapping of
C into itself with the fixed point set Fix(T ) ̸= ∅. Then the set Fix(T ) is a
sunny nonexpansive retract of C; See for example [29].

Lemma 2.5 ([11]). Let C be a nonempty bounded closed convex subset of a uni-
formly convex Banach space X and let T be a nonexpansive mapping of C into itself.
If {xn} is a sequence of C such that xn ⇀ x and xn − Txn → 0, then x is a fixed
point of T , that is, x ∈ Fix(T ).

Lemma 2.6 ([29]). Let C be a nonempty closed convex subset of a real Banach space
X. Assume that the mapping F : C → X is accretive and weakly continuous along
segments (that is, F (x+ ty) ⇀ F (x) as t → 0). Then the variational inequality

x∗ ∈ C, ⟨Fx∗, j(x− x∗)⟩ ≥ 0, ∀x ∈ C

is equivalent to the following Minty type variational inequality:

x∗ ∈ C, ⟨Fx, j(x− x∗)⟩ ≥ 0, ∀x ∈ C.

Lemma 2.7 ([23]). Let {xn} and {zn} be bounded sequences in a Banach space X
and let {αn} be a sequence in [0, 1] such that

0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1.

Suppose that xn+1 = αnxn + (1− αn)zn, ∀n ≥ 0 and

lim sup
n→∞

(
∥zn+1 − zn∥ − ∥xn+1 − xn∥

)
≤ 0.

Then lim
n→∞

∥zn − xn∥ = 0.
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Lemma 2.8 ([28]). Assume that {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− γn)an + δn, ∀n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)

∞∑
n=0

γn = ∞;

(ii) lim sup
n→∞

δn/γn ≤ 0 or

∞∑
n=0

|δn| < ∞.

Then, lim
n→∞

an = 0.

3. Main results

In this section, We study the iterative methods for computing the approximate
solutions of GSNVI (1.2). We introduce the implicit and explicit algorithms of
Mann’s type for solving the GSNVI (1.2). We show the strong converge theorems
for the sequences generated by the proposed algorithms.

The following proposition will be used frequently throughout the paper. For the
sake of completeness, we include its proof.

Proposition 3.1. Let X be a real smooth Banach space and F : C → X be a
mapping.

(a) If F is ζ-strictly pseudocontractive, then F is Lipschitz continuous with
constant (1 + 1

ζ ).

(b) If F is δ-strongly accretive and ζ-strictly pseudocontractive with δ + ζ > 1,

then I − F is contractive with constant
√

1−δ
ζ ∈ (0, 1).

(c) If F is δ-strongly accretive and ζ-strictly pseudocontractive with δ + ζ > 1,
then for any fixed number τ ∈ (0, 1), I − τF is contractive with constant

1− τ
(
1−

√
1−δ
ζ

)
∈ (0, 1).

Proof. (a) Utilizing the definition of the ζ-strict pseudocontraction F , we derive for
all x, y ∈ C,

ζ∥(I − F )x− (I − F )y∥2 ≤ ⟨(I − F )x− (I − F )y, j(x− y)⟩
≤ ∥(I − F )x− (I − F )y∥∥x− y∥,

which implies that

∥(I − F )x− (I − F )y∥ ≤ 1

ζ
∥x− y∥.

Thus

∥Fx− Fy∥ ≤ ∥(I − F )x− (I − F )y∥+ ∥x− y∥

≤
(
1 +

1

ζ

)
∥x− y∥,

and so F is Lipschitz continuous with constant (1 + 1
ζ ).
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(b) Since F is δ-strongly accretive and ζ-strictly pseudocontractive, we have

ζ∥(I − F )x− (I − F )y∥2 ≤ ∥x− y∥2 − ⟨Fx− Fy, j(x− y)⟩
≤ (1− δ)∥x− y∥2.

Note that δ + ζ > 1 ⇔
√

1−δ
ζ ∈ (0, 1). Hence we obtain

∥(I − F )x− (I − F )y∥ ≤
(√1− δ

ζ

)
∥x− y∥.

This implies that I − F is contractive with constant
√

1−δ
ζ ∈ (0, 1).

(c) Since I−F is contractive with constant
√

1−δ
ζ , for each fixed number τ ∈ (0, 1),

we have

∥(x− y)− τ(Fx− Fy)∥ =
∥∥∥(1− τ)(x− y) + τ [(I − F )x− (I − F )y]

∥∥∥
≤ (1− τ)∥x− y∥+ τ∥(I − F )x− (I − F )y∥

≤ (1− τ)∥x− y∥+ τ
(√1− δ

ζ

)
∥x− y∥

=
(
1− τ

(
1−

√
1− δ

ζ

))
∥x− y∥.

This shows that I − τF is contractive with constant 1− τ
(
1−

√
1−δ
ζ

)
∈ (0, 1). □

We recall several useful lemmas.

Lemma 3.2 ([29]). Let C be a nonempty closed convex subset of a real 2-uniformly
smooth Banach space X. Let the mappings A,B : C → X be α-inverse-strongly
accretive and β-inverse-strongly accretive, respectively. Then,

∥(I − λA)x− (I − λA)y∥2 ≤ ∥x− y∥2 + 2λ(κ2λ− α)∥Ax−Ay∥2,

and

∥(I − µB)x− (I − µB)y∥2 ≤ ∥x− y∥2 + 2µ(κ2µ− β)∥Bx−By∥2.

In particular, if 0 ≤ λ ≤ α
κ2 and 0 ≤ µ ≤ β

κ2 , then I − λA and I − µB are
nonexpansive.

Lemma 3.3 ([29]). Let C be a nonempty closed convex subset of a real 2-uniformly
smooth Banach space X. Let ΠC be a sunny nonexpansive retraction from X onto
C. Let the mappings A,B : C → X be α-inverse-strongly accretive and β-inverse-
strongly accretive, respectively. Let G : C → C be a mapping defined by

G(x) = ΠC [ΠC(x− µBx)− λAΠC(x− µBx)], ∀x ∈ C.

If 0 ≤ λ ≤ α
κ2 and 0 ≤ µ ≤ β

κ2 , then G : C → C is nonexpansive.
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Lemma 3.4 ([29]). Let C be a nonempty closed convex subset of a real 2-uniformly
smooth Banach space X. Let ΠC be a sunny nonexpansive retraction from X onto
C. Let the mappings A,B : C → X be α-inverse-strongly accretive and β-inverse-
strongly accretive, respectively. For given x∗, y∗ ∈ C, (x∗, y∗) is a solution of the
GSNVI (1.2) if and only if x∗ = ΠC(y

∗ − λAy∗) where y∗ = ΠC(x
∗ − µBx∗).

Remark 3.5. From Lemma 3.4, we have

x∗ = ΠC [ΠC(x
∗ − µBx∗)− λAΠC(x

∗ − µBx∗)],

which implies that x∗ is a fixed point of the mapping G.

Throughout the paper, the set of fixed points of the mapping G is denoted by Ω .
In order to solve GSNVI (1.2), we first introduce an implicit algorithm of Mann’s

type. Let C be a nonempty closed convex subset of a uniformly convex and 2-
uniformly smooth Banach space X. Let ΠC be a sunny nonexpansive retraction
fromX onto C. Let the mappings A,B : C → X be α-inverse-strongly accretive and
β-inverse-strongly accretive, respectively. Let F : C → X be δ-strongly accretive

and ζ-strictly pseudocontractive with δ + ζ > 1. Assume that λ ∈
(
0, α

κ2

)
and

µ ∈ (0, β
κ2 ) where κ is the 2-uniformly smooth constant of X (see Lemma 2.2). For

each t ∈ (0, 1), choose a number θt ∈ (0, 1) arbitrarily. For any x ∈ C, we consider
the following mapping

(3.1)
Wtx := {tΠC(I − λA)ΠC(I − µB)

+(1− t)ΠC(I − θtF )ΠC(I − λA)ΠC(I − µB)}x.

We note that ΠC(I − λA) and ΠC(I − µB) are nonexpansive (by Lemma 3.2),
G = ΠC(I − λA)ΠC(I − µB) is also nonexpansive (by Lemma 3.3), and I − θtF

is contractive with coefficient 1 − θt

(
1 −

√
1−δ
ζ

)
∈ (0, 1) (by Proposition 3.1 (c)).

Hence for all x, y ∈ C,

∥Wtx−Wty∥ = ∥{tΠC(I − λA)ΠC(I − µB)

+ (1− t)ΠC(I − θtF )ΠC(I − λA)ΠC(I − µB)}x
− {tΠC(I − λA)ΠC(I − µB)

+ (1− t)ΠC(I − θtF )ΠC(I − λA)ΠC(I − µB)}y∥
= ∥t(G(x)−G(y)) + (1− t)[ΠC(I − θtF )G(x)−ΠC(I − θtF )G(y)]∥
≤ t∥G(x)−G(y)∥+ (1− t)∥ΠC(I − θtF )G(x)−ΠC(I − θtF )G(y)∥
≤ t∥x− y∥+ (1− t)∥(I − θtF )G(x)− (I − θtF )G(y)∥

≤ t∥x− y∥+ (1− t)
(
1− θt

(
1−

√
1− δ

ζ

))
∥G(x)−G(y)∥

≤ t∥x− y∥+ (1− t)
(
1− θt

(
1−

√
1− δ

ζ

))
∥x− y∥

=
[
1− (1− t)θt

(
1−

√
1− δ

ζ

)]
∥x− y∥.
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Since θt ∈ (0, 1), ∀t ∈ (0, 1) and δ + ζ > 1 with δ, ζ ∈ (0, 1), we obtain

0 < θt

(
1−

√
1− δ

ζ

)
< 1,

and so,

0 < 1− (1− t)θt

(
1−

√
1− δ

ζ

)
< 1.

This means that the mapping Wt is a contraction. Therefore, the following implicit
algorithm of Mann’s type for solving GSNVI (1.2) is well defined.

Algorithm 3.6. For each t ∈ (0, 1), choose a number θt ∈ (0, 1) arbitrarily. The
net {xt} is generated by the implicit method
(3.2)

xt = {tΠC(I − λA)ΠC(I − µB)
+(1− t)ΠC(I − θtF )ΠC(I − λA)ΠC(I − µB)}xt, ∀t ∈ (0, 1),

where xt is a unique fixed point of the contraction

Wt = tΠC(I − λA)ΠC(I − µB) + (1− t)ΠC(I − θtF )ΠC(I − λA)ΠC(I − µB).

We prove that the sequences generated by the Algorithm 3.6 converge strongly
to a solution of a VI.

Theorem 3.7. The net {xt} generated by Algorithm 3.6 converges in norm, as
t → 0+, to the unique solution x̃ of the following VI:

(3.3) x̃ ∈ Ω , ⟨F (x̃), j(x̃− z)⟩ ≤ 0, ∀z ∈ Ω ,

provided lim
t→0+

θt = 0.

Proof. Set zt = ΠC(I − µB)xt and yt = ΠC(I − λA)zt for all t ∈ (0, 1). Then we
have xt = tyt + (1− t)ΠC(I − θtF )yt. Let x

∗ ∈ Ω , then from Lemma 3.4, we have

x∗ = ΠC [ΠC(x
∗ − µBx∗)− λAΠC(x

∗ − µBx∗)].

Set y∗ = ΠC(x
∗ − µBx∗). Then x∗ = ΠC(y

∗ − λAy∗).
From Lemma 3.2, we know that ΠC(I − λA) and ΠC(I − µB) are nonexpansive.

Hence, we have

∥yt − x∗∥ = ∥ΠC(I − λA)zt −ΠC(I − λA)y∗∥
≤ ∥zt − y∗∥ = ∥ΠC(I − µB)xt −ΠC(I − µB)x∗∥
≤ ∥xt − x∗∥.

So, by Proposition 3.1 (c), we get

∥xt − x∗∥ = ∥tyt + (1− t)ΠC(I − θtF )yt − (tx∗ + (1− t)ΠC(x
∗))∥

= ∥t(yt − x∗) + (1− t)(ΠC(I − θtF )yt −ΠC(x
∗))∥

≤ t∥yt − x∗∥+ (1− t)∥ΠC(I − θtF )yt −ΠC(x
∗)∥

≤ t∥xt − x∗∥+ (1− t)∥(I − θtF )yt − x∗∥

= t∥xt − x∗∥+ (1− t)∥(I − θtF )yt − (I − θtF )x∗ − θtF (x∗)∥



ALGORITHMS FOR A SYSTEM OF NONLINEAR VARIATIONAL INEQUALITIES 973

≤ t∥xt − x∗∥+ (1− t)
(
∥(I − θtF )yt − (I − θtF )x∗∥+ θt∥F (x∗)∥

)
≤ t∥xt − x∗∥+ (1− t)

[(
1− θt

(
1−

√
1− δ

ζ

))
∥yt − x∗∥+ θt∥F (x∗)∥

]

≤ t∥xt − x∗∥+ (1− t)
[(

1− θt

(
1−

√
1− δ

ζ

))
∥xt − x∗∥+ θt∥F (x∗)∥

]

=
[
1− (1− t)θt

(
1−

√
1− δ

ζ

)]
∥xt − x∗∥+ (1− t)θt∥F (x∗)∥.

It follows that

∥xt − x∗∥ ≤
(
1−

√
1− δ

ζ

)−1
∥F (x∗)∥.

Therefore, {xt} is bounded. Hence {yt}, {zt}, {Ayt}, {Bxt} and {F (yt)} are also
bounded. We observe that

∥xt − yt∥ = ∥tyt + (1− t)ΠC(I − θtF )yt − (tyt + (1− t)ΠCyt)∥

= (1− t)∥ΠC(I − θtF )yt −ΠCyt∥

≤ ∥(I − θtF )yt − yt∥(3.4)

= θt∥F (yt)∥ → 0 as t → 0+.

From Lemma 3.3, it is known that G : C → C is nonexpansive. Thus, we have

∥yt −G(yt)∥ = ∥ΠC [ΠC(xt − µBxt)− λAΠC(xt − µBxt)]−G(yt)∥

= ∥G(xt)−G(yt)∥

≤ ∥xt − yt∥ → 0 as t → 0+.

Therefore,

(3.5) lim
t→0+

∥xt −G(xt)∥ = 0.

Next, we show that {xt} is relatively norm-compact as t → 0+. Assume that
{tn} ⊂ (0, 1) is such that tn → 0+ as n → ∞. Put xn := xtn , yn := ytn and
θn := θtn . It follows from (3.5) that

(3.6) ∥xn −G(xn)∥ → 0 as n → ∞.

We can rewrite (3.2) as

xt = tyt + (1− t)
[
ΠC(I − θtF )yt − (I − θtF )yt + (I − θtF )yt

]
.

For any x∗ ∈ Ω ⊂ C, by Lemma 2.3, we have

⟨xt − (I − θtF )yt, j(xt − x∗)⟩

= t⟨yt − (I − θtF )yt, j(xt − x∗)⟩

+ (1− t)⟨ΠC(I − θtF )yt − (I − θtF )yt, j(xt − x∗)⟩
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= tθt⟨F (yt), j(xt − x∗)⟩

+ (1− t)[⟨ΠC(I − θtF )yt − (I − θtF )yt, j(ΠC(I − θtF )yt − x∗)⟩

+ ⟨ΠC(I − θtF )yt − (I − θtF )yt, j(xt − x∗)− j(ΠC(I − θtF )yt − x∗)⟩]

≤ tθt⟨F (yt), j(xt − x∗)⟩+ (1− t)⟨ΠC(I − θtF )yt

− (I − θtF )yt, j(xt − x∗)− j(ΠC(I − θtF )yt − x∗)⟩

≤ tθt⟨F (yt), j(xt − x∗)⟩+ (1− t)∥ΠC(I − θtF )yt

− (I − θtF )yt∥∥j(xt − x∗)− j(ΠC(I − θtF )yt − x∗)∥

≤ tθt⟨F (yt), j(xt − x∗)⟩+ (1− t)(∥ΠC(I − θtF )yt −ΠCyt∥
+ θt∥F (yt)∥)∥j(xt − x∗)− j(ΠC(I − θtF )yt − x∗)∥

≤ tθt⟨F (yt), j(xt − x∗)⟩+ (1− t)(∥(I − θtF )yt − yt∥
+ θt∥F (yt)∥)∥j(xt − x∗)− j(ΠC(I − θtF )yt − x∗)∥

≤ tθt∥F (yt)∥∥xt − x∗∥+ 2θt∥F (yt)∥∥j(xt − x∗)− j(ΠC(I − θtF )yt − x∗)∥.

With this fact, we deduce that

∥xt − x∗∥2 = ⟨xt − x∗, j(xt − x∗)⟩
= ⟨xt − (I − θtF )yt, j(xt − x∗)⟩+ ⟨(I − θtF )yt − x∗, j(xt − x∗)⟩
≤ tθt∥F (yt)∥∥xt − x∗∥+ 2θt∥F (yt)∥∥j(xt − x∗)− j(ΠC(I − θtF )yt − x∗)∥
+ ⟨(I − θtF )yt − x∗, j(xt − x∗)⟩

= tθt∥F (yt)∥∥xt − x∗∥+ 2θt∥F (yt)∥∥j(xt − x∗)− j(ΠC(I − θtF )yt − x∗)∥
+ ⟨(I − θtF )yt − (I − θtF )x∗, j(xt − x∗)⟩ − θt⟨F (x∗), j(xt − x∗)⟩

≤ tθt∥F (yt)∥∥xt − x∗∥+ 2θt∥F (yt)∥∥j(xt − x∗)− j(ΠC(I − θtF )yt − x∗)∥(3.7)

+ ∥(I − θtF )yt − (I − θtF )x∗∥∥xt − x∗∥ − θt⟨F (x∗), j(xt − x∗)⟩
≤ tθt∥F (yt)∥∥xt − x∗∥+ 2θt∥F (yt)∥∥j(xt − x∗)− j(ΠC(I − θtF )yt − x∗)∥

+
(
1− θt

(
1−

√
1− δ

ζ

))
∥yt − x∗∥∥xt − x∗∥ − θt⟨F (x∗), j(xt − x∗)⟩

≤ tθt∥F (yt)∥∥xt − x∗∥+ 2θt∥F (yt)∥∥j(xt − x∗)− j(ΠC(I − θtF )yt − x∗)∥

+
(
1− θt

(
1−

√
1− δ

ζ

))
∥xt − x∗∥2 − θt⟨F (x∗), j(xt − x∗)⟩.

It turns out that

∥xt − x∗∥2 ≤
(
1−

√
1− δ

ζ

)−1[
⟨F (x∗), j(x∗ − xt)⟩+ t∥F (yt)∥∥xt − x∗∥

+ 2∥F (yt)∥∥j(xt − x∗)− j(ΠC(I − θtF )yt − x∗)∥
]
, ∀x∗ ∈ Ω .



ALGORITHMS FOR A SYSTEM OF NONLINEAR VARIATIONAL INEQUALITIES 975

In particular,

∥xn − x∗∥2 ≤
(
1−

√
1− δ

ζ

)−1
[⟨F (x∗), j(x∗ − xn)⟩+ tn∥F (yn)∥∥xn − x∗∥

+ 2∥F (yn)∥∥j(xn − x∗)− j(ΠC(I − θnF )yn − x∗)∥], ∀x∗ ∈ Ω .(3.8)

Since {xn} is bounded, without loss of generality we may assume that {xn} con-
verges weakly to a point x̃ ∈ C. Noticing (3.6) we can use Lemma 2.5 to get x̃ ∈ Ω .
Therefore, we can substitute x̃ for x∗ in (3.8) to get

∥xn − x̃∥2 ≤
(
1−

√
1− δ

ζ

)−1[
⟨F (x̃), j(x̃− xn)⟩+ tn∥F (yn)∥∥xn − x̃∥

+ 2∥F (yn)∥∥j(xn − x̃)− j(ΠC(I − θnF )yn − x̃)∥
]
.(3.9)

Note that

∥(xn − x̃)− (ΠC(I − θnF )yn − x̃)∥ = ∥xn −ΠC(I − θnF )yn∥
= tn∥ΠCyn −ΠC(I − θnF )yn∥
≤ tn∥yn − (I − θnF )yn∥
= tnθn∥F (yn)∥ → 0 as n → ∞.

Since X is uniformly smooth, we get that

∥j(xn − x̃)− j(ΠC(I − θnF )yn − x̃)∥ → 0 as n → ∞.

Consequently, the weak convergence of {xn} to x̃ together with (3.9), actually im-
plies that xn → x̃ strongly. This has proved the relative norm compactness of the
net {xt} as t → 0+.

We next show that x̃ solves the variational inequality (3.3). From (3.2), we have

xt = tyt + (1− t)[ΠC(I − θtF )yt − (I − θtF )yt + (I − θtF )yt]

⇒ xt = tyt + (1− t)[ΠC(I − θtF )yt − (I − θtF )yt

− ((I − θtF )xt − (I − θtF )yt) + xt − θtF (xt)]

⇒ F (xt) = − t(xt − yt)

(1− t)θt
+

1

θt
[ΠC(I − θtF )yt − (I − θtF )yt

− ((I − θtF )xt − (I − θtF )yt)].

For any z ∈ Ω , we have

⟨F (xt), j(xt − z)⟩ = − t

(1− t)θt
⟨xt − yt, j(xt − z)⟩

+
1

θt
⟨ΠC(I − θtF )yt − (I − θtF )yt, j(xt − z)⟩

− 1

θt
⟨(I − θtF )xt − (I − θtF )yt), j(xt − z)⟩

= − t

(1− t)θt
⟨xt − yt, j(xt − z)⟩+ 1

θt
⟨ΠC(I − θtF )yt

− (I − θtF )yt, j(ΠC(I − θtF )yt − z)⟩(3.10)
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+
1

θt
⟨ΠC(I − θtF )yt − (I − θtF )yt, j(xt − z)

− j(ΠC(I − θtF )yt − z)⟩

− 1

θt
⟨(I − θtF )xt − (I − θtF )yt), j(xt − z)⟩

≤ − t

(1− t)θt
⟨xt − yt, j(xt − z)⟩+ 1

θt
⟨ΠC(I − θtF )yt

− (I − θtF )yt, j(ΠC(I − θtF )yt − z)⟩
+ 2∥F (yt)∥∥j(xt − z)− j(ΠC(I − θtF )yt − z)∥

− 1

θt
⟨xt − yt), j(xt − z)⟩

+ ⟨F (xt)− F (yt), j(xt − z)⟩.

Now we prove that ⟨xt − yt), j(xt − z)⟩ ≥ 0. Indeed, we can write yt = G(xt). At
the same time, we note that z = G(z). So,

⟨xt − yt, j(xt − z)⟩ = ⟨xt −G(xt)− (z −G(z)), j(xt − z)⟩.
Since I − G is accretive (this is due to the nonexpansivity of G), we can deduce
immediately that

⟨xt − yt, j(xt − z)⟩ = ⟨xt −G(xt)− (z −G(z)), j(xt − z)⟩ ≥ 0.

Furthermore, utilizing Lemma 2.3 and Proposition 3.1 (a), we have

⟨ΠC(I − θtF )yt − (I − θtF )yt, j(ΠC(I − θtF )yt − z)⟩ ≤ 0

and

∥F (xt)− F (yt)∥ ≤
(
1 +

1

ζ

)
∥xt − yt∥.

It follows from (3.10) that

⟨F (xt), j(xt − z)⟩ ≤2∥F (yt)∥∥j(xt − z)− j(ΠC(I − θtF )yt − z)∥

+
(
1 +

1

ζ

)
∥xt − yt∥∥xt − z∥.(3.11)

Since F is δ-strongly accretive, we have

0 ≤ δ∥xt − z∥2 ≤ ⟨F (xt)− F (z), j(xt − z)⟩.
Therefore,

(3.12) ⟨F (z), j(xt − z)⟩ ≤ ⟨F (xt), j(xt − z)⟩.
Combining (3.11) and (3.12), we get

⟨F (z), j(xt − z)⟩ ≤2∥F (yt)∥∥j(xt − z)− j(ΠC(I − θtF )yt − z)∥

+
(
1 +

1

ζ

)
∥xt − yt∥∥xt − z∥.(3.13)

Replacing t in (3.13) with tn, and noticing that as n → ∞, xtn − ytn → 0 and
j(xtn − z)− j(ΠC(I − θtnF )ytn − z) → 0, we obtain

⟨F (z), j(x̃− z)⟩ ≤ 0, ∀z ∈ Ω ,
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which is equivalent to the Minty type variational inequality (see Lemma 2.6)

(3.14) ⟨F (x̃), j(x̃− z)⟩ ≤ 0, ∀z ∈ Ω .

That is, x̃ ∈ Ω is a solution of (3.3).
Now we show that the solution set of (3.3) is a singleton. As a matter of fact, we

assume that x̄ ∈ Ω is also a solution of (3.3). Then, we have

⟨F (x̄), j(x̄− x̃)⟩ ≤ 0.

From (3.14), we have

⟨F (x̃), j(x̃− x̄)⟩ ≤ 0.

So, by δ-strong accretiveness of F , we have

⟨F (x̄), j(x̄− x̃)⟩+ ⟨F (x̃), j(x̃− x̄)⟩ ≤ 0

⇒ ⟨F (x̄)− F (x̃), j(x̄− x̃)⟩ ≤ 0

⇒ δ∥x̄− x̃∥2 ≤ 0.

Therefore, x̄ = x̃. In summary, we have shown that each cluster point of {xt} (as
t → 0) equals to x̃. Therefore, xt → x̃ as t → 0. □

We next introduce an explicit method which is the discretization of the implicit
method (3.2).

Algorithm 3.8. Let C be a nonempty closed convex subset of a real smooth Banach
space X. Let ΠC be a sunny nonexpansive retraction from X onto C. Let A,B, F :
C → X be three nonlinear mappings. For arbitrarily given x0 ∈ C, let the sequence
{xn} be generated iteratively by

(3.15)
xn+1 = βnxn + γnΠC(I − λA)ΠC(I − µB)xn

+(1− βn − γn)ΠC(I − αnF )ΠC(I − λA)ΠC(I − µB)xn,

where {αn}, {βn} and {γn} are three sequences in [0, 1] such that βn + γn ≤ 1,
∀n ≥ 0, and λ, µ are two real numbers.

In particular, if A ≡ B, then (3.15) reduces to the following iterative scheme:

(3.16)
xn+1 = βnxn + γnΠC(I − λA)ΠC(I − µA)xn

+(1− βn − γn)ΠC(I − αnF )ΠC(I − λA)ΠC(I − µA)xn.

Theorem 3.9. Let C be a nonempty closed convex subset of a uniformly convex and
2-uniformly smooth Banach space X and let ΠC be a sunny nonexpansive retraction
from X onto C. Let the mappings A,B : C → X be α-inverse-strongly accretive
and β-inverse-strongly accretive, respectively. Let F : C → X be δ-strongly accretive
and ζ-strictly pseudocontractive with δ + ζ > 1. For given x0 ∈ C, let the sequence
{xn} be generated iteratively by (3.15). Suppose that the sequences {αn}, {βn} and
{γn} satisfy the following conditions:

(i) lim
n→∞

αn = 0 and

∞∑
n=0

αn = ∞;

(ii) lim
n→∞

( γn+1

1− βn+1
− γn

1− βn

)
= 0;
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(iii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

(βn + γn) < 1.

Then, the sequence {xn} converges strongly to x̃ ∈ Ω which solves the variational
inequality (3.3).

Proof. Set zn = ΠC(I − µB)xn and yn = ΠC(I − λA)zn for all n ≥ 0. Then

xn+1 = βnxn + γnyn + (1− βn − γn)ΠC(I − αnF )yn, ∀n ≥ 0.

We take a point x∗ ∈ Ω arbitrarily.
From Lemma 3.2, we know that ΠC(I − λA) and ΠC(I − µB) are nonexpansive.

Hence, we have

∥yn − x∗∥ = ∥ΠC(I − λA)zn −ΠC(I − λA)y∗∥
≤ ∥zn − y∗∥ = ∥ΠC(I − µB)xn −ΠC(I − µB)x∗∥
≤ ∥xn − x∗∥.

So, by Proposition 3.1 (c), we get

∥xn+1 − x∗∥ = ∥βnxn + γnyn + (1− βn − γn)ΠC(I − αnF )yn − x∗∥
≤ βn∥xn − x∗∥+ γn∥yn − x∗∥
+ (1− βn − γn)∥ΠC(I − αnF )yn −ΠCx

∗∥
≤ βn∥xn − x∗∥+ γn∥xn − x∗∥
+ (1− βn − γn)∥(I − αnF )yn − (I − αnF )x∗ − αnF (x∗)∥

≤ (βn + γn)∥xn − x∗∥+ (1− βn − γn)∥(I − αnF )yn − (I − αnF )x∗∥
+ αn(1− βn − γn)∥F (x∗)∥

≤ (βn + γn)∥xn − x∗∥

+ (1− βn − γn)
(
1− αn

(
1−

√
1− δ

ζ

))
∥yn − x∗∥

+ αn(1− βn − γn)∥F (x∗)∥

≤
[
1− αn(1− βn − γn)

(
1−

√
1− δ

ζ

)]
∥xn − x∗∥

+ αn(1− βn − γn)
(
1−

√
1− δ

ζ

) ∥F (x∗)∥(
1−

√
1−δ
ζ

) .
By induction, we conclude that

∥xn+1 − x∗∥ ≤ max
{
∥x0 − x∗∥,

(
1−

√
1− δ

ζ

)−1
∥F (x∗)∥

}
.
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Therefore, {xn} is bounded. Hence {yn}, {zn}, {Ayn} and {Bxn} are also bounded.
We observe that

∥yn+1 − yn∥ = ∥ΠC(I − λA)zn+1 −ΠC(I − λA)zn∥
≤ ∥zn+1 − zn∥
= ∥ΠC(I − µB)xn+1 −ΠC(I − µB)xn∥
≤ ∥xn+1 − xn∥.

Set xn+1 = βnxn + (1− βn)vn for all n ≥ 0.

Then vn =
γnyn + (1− βn − γn)ΠC(I − αnF )yn

1− βn
. Note that

∥ΠC(I − αn+1F )yn+1 −ΠC(I − αnF )yn∥
≤ ∥(I − αn+1F )yn+1 − (I − αnF )yn∥
= ∥yn+1 − yn − αn+1F (yn+1) + αnF (yn)∥
≤ ∥yn+1 − yn∥+ αn+1∥F (yn+1)∥+ αn∥F (yn)∥
≤ ∥xn+1 − xn∥+ αn+1∥F (yn+1)∥+ αn∥F (yn)∥.

Hence

∥vn+1 − vn∥

=
∥∥∥γn+1yn+1 + (1− βn+1 − γn+1)ΠC(I − αn+1F )yn+1

1− βn+1

− γnyn + (1− βn − γn)ΠC(I − αnF )yn
1− βn

∥∥∥
≤

∥∥∥ γn+1

1− βn+1
yn+1 −

γn
1− βn

yn

∥∥∥
+

∥∥∥(1− βn+1 − γn+1)

1− βn+1
ΠC(I − αn+1F )yn+1 −

(1− βn − γn)

1− βn
ΠC(I − αnF )yn

∥∥∥
≤

∣∣∣ γn+1

1− βn+1
− γn

1− βn

∣∣∣∥yn+1∥+
γn

1− βn
∥yn+1 − yn∥

+
∣∣∣(1− βn+1 − γn+1)

1− βn+1
− (1− βn − γn)

1− βn

∣∣∣∥ΠC(I − αn+1F )yn+1∥

+
(1− βn − γn)

1− βn
∥ΠC(I − αn+1F )yn+1 −ΠC(I − αnF )yn∥

≤
∣∣∣ γn+1

1− βn+1
− γn

1− βn

∣∣∣(∥yn+1∥+ ∥ΠC(I − αn+1F )yn+1∥
)

+
γn

1− βn
∥xn+1 − xn∥

+
(1− βn − γn)

1− βn
(∥xn+1 − xn∥+ αn+1∥F (yn+1)∥+ αn∥F (yn)∥)

≤
∣∣∣ γn+1

1− βn+1
− γn

1− βn

∣∣∣(∥yn+1∥+ ∥ΠC(I − αn+1F )yn+1∥
)

+ ∥xn+1 − xn∥+ αn+1∥F (yn+1)∥+ αn∥F (yn)∥.
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Since {yn} and {F (yn)} are bounded, we have that {∥yn∥ + ∥ΠC(I − αnF )yn∥} is
bounded. So it follows from conditions (i) and (ii) that

lim sup
n→∞

(∥vn+1 − vn∥ − ∥xn+1 − xn∥) ≤ 0.

Hence, by Lemma 2.7, we get ∥vn − xn∥ → 0. Consequently,

lim
n→∞

∥xn+1 − xn∥ = lim
n→∞

(1− βn)∥vn − xn∥ = 0.

We also note that

∥xn − yn∥ =
∥∥∥γnyn + (1− βn − γn)ΠC(I − αnF )yn

1− βn
− yn

∥∥∥
=

∥∥∥γnyn + (1− βn − γn)ΠC(I − αnF )yn − (1− βn)yn
1− βn

∥∥∥
=

1− βn − γn
1− βn

∥ΠC(I − αnF )yn − yn∥

≤ ∥ΠC(I − αnF )yn −ΠCyn∥
≤ αn∥F (yn)∥ → 0 as n → ∞.

It follows that

lim
n→∞

∥xn − yn∥ = 0.

From Lemma 3.3, we know that G : C → C is nonexpansive. Thus, we have

∥yn −G(yn)∥ = ∥ΠC [ΠC(xn − µBxn)− λAΠC(xn − µBxn)]−G(yn)∥
= ∥G(xn)−G(yn)∥
≤ ∥xn − yn∥ → 0 as n → ∞.

Therefore, lim
n→∞

∥xn −G(xn)∥ = 0.

Set un = ΠC(I − αnF )yn for all n ≥ 0. We note that

(3.17)

∥un −G(un)∥ ≤ ∥un − xn∥+ ∥xn −G(xn)∥+ ∥G(xn)−G(un)∥
≤ 2∥un − xn∥+ ∥xn −G(xn)∥
= 2∥ΠC(I − αnF )yn −ΠCxn∥+ ∥xn −G(xn)∥
≤ 2(∥yn − xn∥+ αn∥F (yn)∥) + ∥xn −G(xn)∥ → 0

as n → ∞.

Next we show that

lim sup
n→∞

⟨F (x̃), j(x̃− un)⟩ ≤ 0,

where x̃ ∈ Ω is the unique solution of the VI (3.3).
Indeed, we first take a subsequence {unk

} of {un} such that

lim sup
n→∞

⟨F (x̃), j(x̃− un)⟩ = lim
k→∞

⟨F (x̃), j(x̃− unk
)⟩.

We may also assume that unk
⇀ z. Note that z ∈ Ω by virtue of Lemma 2.5 and

(3.17). It follows from the variational inequality (3.3) that

lim sup
n→∞

⟨F (x̃), j(x̃− un)⟩ = lim
k→∞

⟨F (x̃), j(x̃− unk
)⟩ = ⟨F (x̃), j(x̃− z)⟩ ≤ 0.
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Since un = ΠC(I − αnF )yn, according to Lemma 2.3, we have

(3.18) ⟨(I − αnF )yn −ΠC(I − αnF )yn, j(x̃− un)⟩ ≤ 0.

From (3.18), we have

∥un − x̃∥2 = ⟨ΠC(I − αnF )yn − x̃, j(un − x̃)⟩
= ⟨ΠC(I − αnF )yn − (I − αnF )yn, j(un − x̃)⟩
+ ⟨(I − αnF )yn − x̃, j(un − x̃)⟩

≤ ⟨(I − αnF )yn − x̃, j(un − x̃)⟩
= ⟨(I − αnF )yn − (I − αnF )x̃, j(un − x̃)⟩+ αn⟨F (x̃), j(x̃− un)⟩

≤
(
1− αn

(
1−

√
1− δ

ζ

))
∥yn − x̃∥∥un − x̃∥+ αn⟨F (x̃), j(x̃− un)⟩

≤ 1

2

(
1− αn

(
1−

√
1− δ

ζ

))2
∥yn − x̃∥2

+
1

2
∥un − x̃∥2 + αn⟨F (x̃), j(x̃− un)⟩.

It follows that

(3.19)
∥un − x̃∥2 ≤

(
1− αn

(
1−

√
1−δ
ζ

))
∥yn − x̃∥2 + 2αn⟨F (x̃), j(x̃− un)⟩

≤
(
1− αn

(
1−

√
1−δ
ζ

))
∥xn − x̃∥2 + 2αn⟨F (x̃), j(x̃− un)⟩.

Finally, we prove xn → x̃. As a matter of fact, from (3.2) and (3.19), we have

∥xn+1 − x̃∥2

≤ βn∥xn − x̃∥2 + γn∥yn − x̃∥2 + (1− βn − γn)∥un − x̃∥2

≤ βn∥xn − x̃∥2 + γn∥xn − x̃∥2

+ (1− βn − γn)
[(

1− αn

(
1−

√
1− δ

ζ

))
∥xn − x̃∥2 + 2αn⟨F (x̃), j(x̃− un)⟩

]

=
[
1− αn(1− βn − γn)

(
1−

√
1− δ

ζ

)]
∥xn − x̃∥2

(3.20)

+ αn(1− βn − γn)(1−

√
1− δ

ζ
)
{ 2(

1−
√

1−δ
ζ

)⟨F (x̃), j(x̃− un)⟩
}
.

Since
∞∑
n=0

αn = ∞, lim sup
n→∞

(βn + γn) < 1 and 1−
√

1−δ
ζ ∈ (0, 1), we get

∞∑
n=0

αn

(
1− βn − γn

)(
1−

√
1− δ

ζ

)
= ∞.
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Taking into account lim sup
n→∞

⟨F (x̃), j(x̃ − un)⟩ ≤ 0, we can apply Lemma 2.8 to the

relation (3.20) and conclude that xn → x̃. □

We use Γ to denote the solution set of the variational inequality (1.4). We can
derive easily the following corollaries.

Corollary 3.10. Let θt ∈ (0, 1), ∀t ∈ (0, 1) such that lim
t→0+

θt = 0. The net {xt}
generated by the implicit method

(3.21) xt = {tΠC(I−λA)ΠC(I−µA)+(1−t)ΠC(I−θtF )ΠC(I−λA)ΠC(I−µA)}xt,

for all t ∈ (0, 1), converges in norm, as t → 0+, to x̃ ∈ Γ which is the unique
solution of the following variational inequality:

x̃ ∈ Γ : ⟨F (x̃), j(x̃− z)⟩ ≤ 0, ∀z ∈ Γ .

Corollary 3.11. Let C be a nonempty closed convex subset of a uniformly con-
vex and 2-uniformly smooth Banach space X and let ΠC be a sunny nonexpansive
retraction from X onto C. Let the mapping A : C → X be α-inverse-strongly ac-
cretive. Let F : C → X be δ-strongly accretive and ζ-strictly pseudocontractive with
δ+ζ > 1. For given x0 ∈ C, let the sequence {xn} be generated iteratively by (3.16).
Suppose that the sequences {αn}, {βn} and {γn} satisfy the following conditions:

(i) lim
n→∞

αn = 0 and
∞∑
n=0

αn = ∞;

(ii) lim
n→∞

( γn+1

1− βn+1
− γn

1− βn

)
= 0;

(iii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

(βn + γn) < 1.

Then, the sequence {xn} converges strongly to x̃ ∈ Γ, which solves the following
variational inequality:

x̃ ∈ Γ : ⟨F (x̃), j(x̃− z)⟩ ≤ 0, ∀z ∈ Γ .

Conclusions.

In the present paper, we considered and studied a general system of nonlinear
variational inequalities (1.2) in the setting of Banach spaces. We proposed Mann
type implicit and explicit algorithms for solving the GSNVI (1.2). We studied the
strong convergence of the sequences generated by the proposed algorithms to a
solution of GSNVI (1.2). We extended strongly positive linear bounded operator
F in the implicit and explicit algorithms of [29] to nonlinear strongly accretive and
strictly pseudocontractive mapping F , and also the implicit and explicit algorithms
of [29] are extended to develop our implicit and explicit algorithms of Mann’s type.
Our proofs contain some new techniques which are very different from those in [29].
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