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regularity assumptions imposed on the right-hand sides, these operators can be
locally compact, admissible in the sense of the second coauthor and with a compact
attractor (shortly, CA-maps).

Thus, a natural question arises whether also here, in the presence of trivial con-
stant solutions, periodic solutions can be again considered in the same way, i.e. via
fixed points of multivalued CA-maps? In order to answer this question, we need
an adequate multivalued ejective fixed point theory. Let us note that until now,
as far as we know, the multivalued case was considered only in two papers [9, 10]
by Fenske and Peitgen. For some further papers in the single-valued case, see e.g.
[6, 7, 15, 18, 20, 21, 22, 26].

An important step for this aim is to develop a sufficiently general Lefschetz fixed
point theorem and the fixed point index (cf. [2, 4, 6, 7, 9, 10, 14, 15, 18, 23]).
For compact admissible maps on ANR-spaces, the fixed point index is well known
(cf. [2, 14]). In the present paper, we extend it to the case of compact absorbing
contraction maps (CAC-maps), at first. Then we formulate one of the most general
versions of the Lefschetz fixed point theorem, namely the one for CAC-mappings on
absolute neighbourhood multiretract spaces (ANMR-spaces). Finally, we employ it
for two main theorems about the existence of ejective, non-ejective, repulsive and
non-repulsive fixed points.

2. Some auxiliary definitions

In the entire text, all topological spaces are metric and all single-valued mappings
are continuous. Let X be a metric space and let x be a point of X. By U(x) we
shall denote the family of all open neighbourhoods of x in X.

Let Top2 be the category of pairs of topological spaces and continuous mappings
of such pairs. By a pair (X,A) in Top2, we understand a space X and its subset
A; a pair (X, ∅) will be denoted for short by X. By a map f : (X,A)→ (Y,B), we
shall understand a continuous map from X to Y such that f(A) ⊂ B.

We shall use the following notations: if f : (X,A) → (Y,B) is a map of pairs,
then by fX : X → Y and fA : A → B, we shall understand the respective induced
mappings. Let us also denote by VectG the category of graded vector spaces over
the field of rational numbers Q and linear maps of degree zero between such spaces.
By H : Top2 → VectG, we shall denote the Čech homology functor with compact
carriers and coefficients in Q.

Thus, for any pair (X,A), we have H(X,A) = {Hq(X,A)}q≥0, a graded vector
space in VectG and, for any map f : (X,A)→ (Y,B), we have the induced linear map
f∗ = {f∗q} : H(X,A)→ H(Y,B), where f∗q : Hq(X,A)→ Hq(Y,B) is a linear map
from the q-dimensional homologyHq(X,A) of the pair (X,A) into the q-dimensional
homology Hq(Y,B) of the pair (Y,B).

For the properties of H, we recommend [14].
A non-empty space X is called acyclic provided:

(i) Hq(X) = 0, for every q ≥ 1, and
(ii) H0(X) = Q.

Definition 2.1. A map p : Γ → X is called a Vietoris map if the following condi-
tions are safisfied:
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(i) p is onto and closed,
(ii) for every x ∈ X, the set p−1(x) is compact and acyclic.

Theorem 2.2 ((Vietoris) see e.g. [14]). If p : Γ → X is a Vietoris map, then the

induced linear map p∗ : H(Γ)
∼→ H(X) is an isomorphism, i.e., for every q ≥ 0 the

linear map p∗q : Hq(Γ)
∼→ Hq(X) is a linear isomorphism.

For further properties of Vietoris mappings, see e.g. [14].
The following notions will play a crucial role. At first, by φ : X ⊸ Y , we shall

denote a multivalued map, i.e., a map which assigns to every point x ∈ X a compact
nonempty set φ(x) ⊂ Y .

A multivalued map φ : X ⊸ Y is called admissible (see [2, 14]) provided there
exists a diagram

X
p← Γ

q→ Y

in which p is a Vietoris map, such that φ(x) = q(p−1(x)). The pair (p, q) is called
a selected pair of φ (write (p, q) ⊂ φ). In what follows, we shall use the following
notation:

Γ
p⇒ X

for Vietoris mappings.
Note that the superposition ψ ◦ φ : X ⊸ Z of two admissible maps φ : X ⊸ Y

and ψ : Y ⊸ Z is again an admissible map.
For a map φ : X ⊸ X, we shall consider the set Fix(φ) of fixed points φ, i.e.,

Fix(φ) := {x ∈ X | x ∈ φ(x)}.

More information about admissible mappings will be presented in the next sec-
tion.

Recall that the space X is an absolute neighbourhood retract (X ∈ ANR), pro-
vided there exists an open set U in a normed space E and two maps:

r : U → X and s : X → U

such that r ◦ s = idX .
We shall also use the notion of a multiretraction.

Definition 2.3 ([23, 3, 4]). A map r : Y → X is said to be a multiretraction if
there exists an admissible map φ : X ⊸ Y such that r ◦ φ = idX .

Definition 2.4 ([23]). A space X is called an absolute neighbourhood multiretract
(X ∈ ANMR) if there exists an open set U of a normed space E and a multiretrac-
tion r : U → X.

Evidently, we have:

ANR ⊂ ANMR,

i.e. that the class of ANMR-spaces is obviously larger than the one of ANR-spaces
(see [23, 3, 4]).

For some nontrivial examples and more details concerning AMR-spaces, we rec-
ommend [23].
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3. Compact absorbing contraction mappings

Let φ : X ⊸ Y be an admissible mapping and (p, q) ⊂ φ be a selected pair of φ.
Using the Vietoris Theorem 2.2, we are able to define the induced by (p, q) linear

map by putting:

q∗ ◦ p−1
∗ : H∗(X)→ H∗(Y ).

We let: φ∗ = {q∗ ◦ p−1
∗ | (p, q) ⊂ φ}.

Now, let us consider two admissible mappings φ,ψ : X ⊸ Y . We shall say that
φ is homotopic to ψ (written: φ ∼ ψ), provided there exists an admissible mapping
χ : X × [0, 1]→ Y such that χ(x, 0) = φ(x) and χ(x, 1) = ψ(x), for every x ∈ X.

We have the following proposition (for its proof, see [14]):

Proposition 3.1. If φ ∼ ψ, then φ∗ ∩ ψ∗ ̸= ∅.

Let (p1, q1) ⊂ φ and (p2, q2) ⊂ ψ. We shall say that the above selected pairs are
homotopic (written (p1, q1) ∼ (p2, q2)), provided there exists the following commu-
tative diagram:

X

i0
��

Γ1
p1ks q1 //

f

��

Y

X × [0, 1] Γ
pks

q
??��������

X

i1

OO

Γ2
p2ks

g

OO q2

GG����������������

where i0(x) = (x, 0), i1(x) = (x, 1), Γ is a given space and f, g are also given.
Evidently, we have:

Proposition 3.2. If (p1, q1) ∼ (p2, q2), then q1∗ ◦ p−1
1∗ = q2∗ ◦ p−1

2∗ .

We say that an admissible map φ : X ⊸ X is a Lefschetz map provided, for every
selected pair (p, q) ⊂ φ, the generalized Lefschetz number Λ(p, q) = Λ(q∗ ◦ p−1

∗ ) is
well defined (for details, see [14]).

For a Lefschetz map φ : X ⊸ X, we define the Lefschetz set Λ(φ) of φ by putting:

(3.1) Λ(φ) = {Λ(p, q) | (p, q) ⊂ φ}.

We have (see [14]):

(1) If φ ∼ ψ, then Λ(φ) ∩ Λ(ψ) ̸= ∅.
(2) If (p1, q1) ∼ (p2, q2), then Λ((p1, q1)) = Λ((p2, q2)).

Definition 3.3 ([2, 11, 14]). An admissible map φ : X ⊸ X is called a compact
absorbing contraction (φ ∈ CAC(X)) if there exists an open set U ⊂ X such that:

(i) φ(U) ⊂ U ,

(ii) the closure φ(U) of φ(U) is contained in a compact subset of U ,
(iii) for every x ∈ X, there exists a natural number nx such that

φnx(x) ⊂ U.
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We say that φ : X ⊸ X is a locally compact map provided, for every x ∈ X, there
exists V ∈ U(x) such that φ|V : V ⊸ X is a compact map, i.e. φ|V (V ) is compact.

We let:

K(X) = {φ : X ⊸ X | φ is admissible and compact}.
EC(X) = {φ : X ⊸ X | φ is admissible locally compact and there exists a natural

number n such that the n-th iteration φn : X ⊸ X of φ is a compact map}.
ASC(X) = {φ : X ⊸ X | φ is admissible locally compact, the orbit O(x) =∪∞
n=1 φ

n(x) is, for every x ∈ X, relatively compact and the core C(φ) =
∩∞

n=1 φ
n(x)

is nonempty and relatively compact}.
CA(X) = {φ : X ⊸ X | φ is admissible locally compact and has a compact

attractor, i.e., then exists a compact set A ⊂ X such that, for every open setW ⊂ X
containing A and for every point x ∈ X, there is nx such that φnx(x) ⊂W}.

The following hierarchy holds ([2, 14]):

(3.2) K(X) ⊂ EC(X) ⊂ ASC(X) ⊂ CA(X) ⊂ CAC(X).

Moreover, each of the above inclusions is proper.
Let φ ∈ CAC(X) and let U be chosen according to Definition 3.3. Then

(3.3) φU : U ⊸ U , defined by the formula φU (x) = φ(x), for every x ∈ U , is a
compact admissible map.

Recall that if ψ : Y ⊸ Y is a compact admissible map and Y ∈ ANMR, then ψ
is a Lefschetz map and Λ(ψ) ̸= {0} implies that ψ has a fixed point (see [23, 4]).

We prove the following theorem.

Theorem 3.4. Let φ ∈ CAC(X), where X ∈ ANMR. Assume further that U is
chosen according to Definition 3.3 and φU : U ⊸ U be a map defined in (3.3). Then
φ is a Lefschetz map and

Λ(φ) ⊂ Λ(φU ).

Proof. Let (p, q) be a selected pair of φ, i.e., we have a diagram:

X
p⇐= Γ

q−→ Y

such that φ(x) = q(p−1(x)), for every x ∈ X.
Consider still the following diagram:

U
p1⇐= p−1(U)

q1−→ U

in which p1 and q1 are respective contractions of p and q.
We have also the following diagram:

(X,U)
p⇐= (Γ, p−1(U))

q−→ (X,U)

in which p(y) = p(y) and q(y) = q(y), for every y ∈ Γ.
Now, we shall use the following formula proved in [14]. If two Lefschetz numbers

from the following three numbers Λ(p, q), Λ(p, q) and Λ(p1, q1) are well defined, then
the third one is well defined too, and we have:

Λ(p, q) = Λ(p, q) + Λ(p1, q1).

Since an open subset of an ANMR-space is an ANMR-space, too, we infer from
above that Λ(p1, q1) is well defined.
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Now, since we consider the homology with compact carriers from (2), it follows
that Λ(p, q) = 0. Consequently, we get that Λ(p, q) is well defined, and

Λ(p, q) = Λ(p1, q1).

The proof is completed. □
Corollary 3.5. If φ ∈ CAC(X) and X ∈ ANMR, then φ is a Lefschetz map and
Λ(φ) ̸= {0} implies that φ has a fixed point.

4. The fixed point index

Firstly, let us assume that φ : X ⊸ X is a compact admissible map, where
X ∈ ANR.

Let (p, q) ⊂ φ and V ⊂ X be an open set such that {x ∈ V | x ∈ φ(x)} is
compact. Then the fixed point index ind((p, q), V ) of the pair (p, q) with respect to
V is well defined (see [14] and also [9, 10]). Note that ind((p, q), V ) is an integer.

We define the fixed point index of φ as the following set:

(4.1) Ind(φ, V ) = {ind((p, q), V ) | (p, q) ⊂ φ}.
Below, we shall list the important properties of the fixed index which we shall need
in the next section.

(a) (Existence). If ind((p, q), V ) ̸= 0 (Ind((φ, V ) ̸= {0}), then
Fix(p, q) ∩ V ̸= ∅.

(b) (Excision). If Fix(φ) ∩W ⊂ V ⊂W is compact, then

ind((p, q), V ) = ind((p, q),W ) (Ind(φ, V ) = Ind(φ,W )).

(c) (Additivity). If V1, V2 are open subsets of X such that V1 ∩ V2 = ∅ and
Fix(φ) ∩ V1, Fix(φ) ∩ V2 are compact sets, then

ind((p, q), V1 ∪ V2) = ind((p, q), V1) + ind((p, q), V2).

(d) (Homotopy). If (p1, q1) ∼ (p2, q2) (φ ∼ ψ), then
ind((p1, q1), V ) = ind((p2, q2), V ) (Ind(φ, V ) ∩ Ind(ψ, V ) ̸= ∅),

where (p1, q1) ⊂ φ and (p2, q2) ⊂ ψ.
(e) (Normalization). If V = X, then

ind((p, q), V ) = Λ((p, q)) and Λ(φ) = Ind(φ, V ).

Now, we shall consider the noncompact case. Assume that φ : X ⊸ X is an
admissible compact absorbing contraction and X ∈ ANR. Assume, furthermore,
that V is an open set such that {x ∈ V | x ∈ φ(x)} is compact. According
to Definition 3.3, we select an open set U satisfying all its assumptions (i)-(iii).
Evidently, Fix(φ) ⊂ U . Moreover, we have that φU : U ⊸ U is a compact admissible
map, where φU (x) = φ(x), for every x ∈ U . Let (p, q) ⊂ φ. Then (pU , qU ) ⊂ φU ,
where pU : p−1(U) ⇒ U and qU : p−1(U) → U are defined as follows: pU (y) = p(y)
and qU (y) = q(y), for every y ∈ p−1(U).

We let:

(4.2) ind((p, q), V ) = ind((pU , qU ), V ∩ U)
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and

(4.3) Ind(φ, V ) = {ind((p, q), V ) | (p, q) ⊂ φ}.
By means of (c),we deduce that the definitions (4.2) and (4.3) do not depend on
the choice of U . Thus, all properties (a)–(e) are satisfied

For more details, we recommend [2, 9, 10, 11, 14].

Open Problem 4.1. Is it possible to define a fixed point index for CAC-mappings
on ANMR-retracts?

5. Ejective fixed points

In this section, we shall assume that all multivalued maps are compact absorbing
contractions (CAC-maps).

Definition 5.1 (cf. [6, 7, 9, 10, 12, 15]). Let φ : X ⊸ X be a given map and let
x0 ∈ Fix(φ).

(i) We say that x0 is ejective relative to V ∈ U(x0) if, for any x ∈ V \ {x0},
there exists an integer n ≥ 1 such that φn(x) ⊂ X \ V . If there exists
V ∈ U(x0) such that x0 is ejective relative to V , then x0 is called ejective.
The set of all ejective fixed points is denoted by Fixe(φ).

(ii) A fixed point x0 ∈ Fix(φ) is called repulsive relative to V ∈ U(x0) if, for any
W ∈ U(x0), there exists an integer n(W ) ≥ 1 such that φn(X \W ) ⊂ X \V ,
for all n ≥ n(W ). If there exists V ∈ U(x0) such that x0 is repulsive relative
to V , then x0 is called repulsive. The set of all repulsive fixed points is
denoted by Fixr(φ).

As an immediate consequence of the above definitions, we have:

Fixr(φ) ⊂ Fixe(φ).

The following example shows that the converse is not true even for single-valued
mappings.

Example 5.2. Let f : [0, 1]→ [0, 1] be defined by the formula f(x) = 2(−x2 + x).
Then x0 = 0 is ejective relative to V = [0, 1/4). However, 0 is not a repulsive point
because f(1) = 0.

Remark 5.3. Observe that every ejective fixed point is isolated in the set Fix(φ).
Therefore, if #Fixe(φ) <∞, then Fixe(φ) is open and compact in Fix(φ).

Let φ : X ⊸ X be a CAC-map and let U ⊂ X be chosen according to the
Definition 3.3. Then we have a compact admissible map φU : U → U defined by
φU (x) = φ(x), for every x ∈ U . Observe that, in view of Definition 3.3, we have:

Fix(φ) = Fix(φU ),(5.1)

Fixe(φ) = Fixe(φU ),(5.2)

Fixr(φ) = Fixr(φU ).(5.3)

Therefore, all results obtained in [9] and [10] can be reformulated for CAC-mappings.
Note that the class of compact attraction mappings considered in [9] and [10] is
involved in the class of CAC-mappings (see (3.2)). Consequently, from (5.1)–(5.3),
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we can deduce the same results for compact admissible mappings on ANR-s, for all
classes in (3.2).

For example, we can formulate the following two most important theorems.

Theorem 5.4. Let X ∈ ANR and φ : X ⊸ X be a CAC-map. Assume furthermore
that x0 is a repulsive fixed point of φ with respect to V ∈ U(x0). If there exists
W ∈ U(x0) such that:

(i) V ⊂ U ,
(ii) the inclusion map i : X \W → X induces the isomorphism

i∗ : H∗(X \W )
∼→ H∗(X),

then Ind(φ, V ) = {0}.

Corollary 5.5. If we assume additionally that Fixr(φ) is a finite set and that
Λ(φ) ̸= {0}, then there exists a non-repulsive fixed point of φ.

Concerning ejective fixed points, we will formulate the following theorem:

Theorem 5.6. Let X ∈ ANR and φ : X ⊸ X be a CAC-mapping. Assume that

(5.4) φ(X \ Fixe(φ)) ⊂ X \ Fixe(φ) and #Fixe(φ) <∞.

Denote by φ′ : (X \ Fixe(φ)) ⊸ (X \ Fixe(φ)) and φ : (X,X \ Fixe(φ)) ⊸ (X,X \
Fixe(φ)) the respective maps induced by φ. Then we have:

(i) φ is a Lefschetz map,
(ii) Λ(φ) = {0} and if Λ(φ) ̸= {0}, then φ′ has a non-ejective fixed point.

Denoting still by Fixet(φ) ⊂ Fixe(φ) the subset of trivial (obvious) ejective fixed
points of φ, we can immediately reformulate Theorem 5.6 in the following form
which is suitable for applications to functional differential equations.

Theorem 5.7. Let X ∈ ANR and φ : X ⊸ X be a CAC-mapping. Assume that

(5.5) φ(X \ Fixet(φ)) ⊂ X \ Fixet(φ) and #Fixet(φ) <∞.

Denote by φ̃ : (X \ Fixet(φ)) ⊸ (X \ Fixet(φ)) and φ̂ : (X,X \ Fixet(φ)) ⊸ (X,X \
Fixet(φ)) the respective maps induced by φ. Then we have:

(i) φ̂ is a Lefschetz map,
(ii) Λ(φ̂) = {0} and if Λ(φ) ̸= {0}, then φ̃ has either a nontrivial ejective fixed

point or a non-ejective fixed point.

Let us note that some further results concerning repulsive and ejective fixed points
for CA-mappings were presented in [9, 10].

As already pointed out, all the results in [9, 10], jointly with those for single-
valued maps in [6, 7, 15, 18, 20, 21, 22, 26], can be reformulated for CAC-mappings.
The proofs are quite analogous to those presented in the quoted papers.

Open Problem 5.8. Is it possible to prove some existence results about ejective or
repulsive fixed points for compact admissible mappings on ANMR-spaces?
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6. Concluding remarks

A possible candidate for the application of our results might be the following
functional inclusion:

(6.1) x′(t) ∈ Fk,l(x(t− 1)),

where Fk,l(x) ≡ Fk,l(x+ ω), ω > 0, and

Fk,l(x) :=


[
−k

2 ,
k
2

]
, for x ∈

{
0, ω2

}
,

k
2 + l sin

(
2π
ω x

)
, for x ∈

(
0, ω2

)
,

−k
2 + l sin

(
2π
ω x

)
, for x ∈

(
ω
2 , ω

)
.

Observe that, for k = 0, we have F0,l(x) := l sin
(
2π
ω x(t− 1)

)
, by which (6.1) reduces

to the delayed differential equation

(6.2) x′(t) = l sin
(2π
ω
x(t− 1)

)
,

studied in a more general form e.g. in [24, 28].
In [24] (see also the references therein), it was shown that, besides other things,

for suitable values of l > 0, (6.2) possesses hyperbolic nontrivial periodic solu-
tions oscillating around the unstable equilibria given by . . . ,−ω, 0, ω, . . ., and with
transversal heteroclinic connections between them.

For (6.1) with k > 0, the situation becomes more delicate. On one side, one can
readily check that again

Fk,l(x) > 0, for x ∈
(
0,
ω

2

)
, and Fk,l(x) < 0, for x ∈

(ω
2
, ω

)
.

Therefore, for the stationary solution x1(t) ≡ ω
2 , there is a negative feedback on the

circle S1 with a reaction lag, i.e.

x(t− 1) ∈
(
0,
ω

2

)
implies x′(t) > 0,

and

x(t− 1) ∈
(ω
2
, ω

)
implies x′(t) < 0,

while for x2(t) ≡ 0, the feedback is positive.
On the other hand, the associated Poincaré return operator φ is naturally mul-

tivalued.
Since |Fk,l(x)| ≤ l + k

2 holds, for all x ∈ R, k > 0, l > 0, the locally absolutely
continuous solutions x(·) of (6.2) are equi-continuous, because they have uniformly
bounded derivatives x′(·) such that |x′(·)| ≤ l + k

2 , for almost all t ∈ R. Therefore,
the bounded domain of the Poincaré return operator φ, associated with (6.2), can
be a compact subset X of the Banach space of continuous real functions, on the
initial interval [−1, 0], endowed with the sup-norm. If X is still a retract of this
Banach space, or of its convex subset, then the Poincaré return operator φ is defined
on a compact AR-space (cf. [2, 14]).

Following and matching the ideas in [1], [2, Chapter III.4] and [24, 28], one might
expect that the Poincaré return operator φ, associated with (6.2), can be an admis-
sible mapping which, in view of the above arguments, is compact. Moreover, since φ
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can be defined on a compact AR-space X, we have immediately that #Fixe(φ) <∞
(cf. [26]), and especially that Λ(φ) ̸= {0} (cf. [1, 2]).

Hence, in order to apply Theorem 5.7, we could only check in this way condition
(5.5), provided all the above arguments are satisfied. Of course, in the case of
Fixet(φ)) = Fixe(φ), Theorem 5.7 coincides with Theorem 5.6.
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