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results are new even in the particular cases where the nonlinearity is single-valued
or it has real values.

This paper is divided in five sections. Section 2 contains preliminaries on set-
valued mappings. In section 3, we obtain existence and multiplicity results in the
case where F satisfies an upper semi-continuity condition and has convex, compact
values. In section 4, the convexity assumption on the values of F is removed and the
upper semi-continuity condition is replaced by a lower semi-continuity condition. In
the last section, we present multiplicity results for the following system of first order
differential inclusions with initial condition:

x′(t) ∈ F (t, x(t)) a.e. t ∈ [0, 1],

x(0) = x0.

2. Preliminaries

In what follows, we will use the following notations: I = [0, 1], L1(I,Rn) is
the space of integrable functions; C(I,Rn) is the space of continuous functions
endowed with the usual norm ∥·∥0; W 1,1(I,Rn) is the Sobolev space {x ∈ C(I,Rn) :

x is absolutely continuous and x′ ∈ L1(I,Rn)}. We denote W 1,1
P (I,Rn) = {x ∈

W 1,1(I,Rn) : x(0) = x(1)}. Let L : W 1,1(I,Rn) → L1(I,Rn) be defined by

(2.1) L(x) = x′.

It is well known that the continuous linear operator L+id : W 1,1
P (I,Rn) → L1(I,Rn)

is invertible.
For sake of completeness, we recall some definitions. Let X and Y be topological

spaces, and Z a measurable space. We say that a set-valued mapping F : X → Y is
compact if F (X) = ∪x∈XF (x) is relatively compact, and F is upper semi-continuous
(u.s.c.) (resp. lower semi-continuous (l.s.c.)) if {x ∈ X : F (x) ∩ B ̸= ∅} is closed
(resp. open) for every closed (resp. open) set B ⊂ Y . We say that a set-valued
mapping F : Z → Y is measurable if {z ∈ Z : F (z) ∩ B ̸= ∅} is measurable for
each closed set B ⊂ Y . The reader is referred to [7, 11, 17, 18] for more details on
set-valued mappings.

Here are some conditions which permit to obtain more precision on the location
of the solutions of (1.1).

Lemma 2.1. Let F : I × Rn → Rn be a set-valued mapping. Assume there exist
v ∈ W 1,1(I,Rn) and ρ ∈ W 1,1(I, [0,∞)) such that ∥v(0)− v(1)∥ ≤ ρ(0)− ρ(1) and

(2.2) F (t, x) ⊂ {y ∈ Rn : ⟨x− v(t), y − v′(t)⟩ < ∥x− v(t)∥ρ′(t)}
a.e. t ∈ I and for all x ∈ Rn such that ∥x− v(t)∥ > ρ(t).

Then any solution x ∈ W 1,1(I,Rn) of (1.1) satisfies ∥x(t) − v(t)∥ ≤ ρ(t) for all
t ∈ I.

Proof. Let assume that x is a solution of (1.1) such that

J = {t ∈ I : ∥x(t)− v(t)∥ > ρ(t)} ̸= ∅.
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Let t1 be the largest t ∈ J such that

∥x(t1)− v(t1)∥ − ρ(t1) = sup
t∈J

∥x(t)− v(t)∥ − ρ(t).

Since x satisfies the periodic boundary condition,

∥x(0)− v(0)∥− ρ(0) ≤ ∥x(1)− v(1)∥+ ∥v(1)− v(0)∥ − ρ(0) ≤ ∥x(1)− v(1)∥ − ρ(1).

So, t1 > 0. Let t0 < t1 be such that [t0, t1] ⊂ J . Then

0 ≤ ∥x(t1)− v(t1)∥ − ρ(t1)− ∥x(t0)− v(t0)∥ − ρ(t0)

=

∫ t1

t0

d

dt

(
∥x(t)− v(t)∥ − ρ(t)

)
dt

=

∫ t1

t0

⟨x(t)− v(t), x′(t)− v′(t)⟩
∥x(t)− v(t)∥

− ρ′(t) dt

< 0.

Contradiction. □

3. Upper semi-continuity condition

3.1. Existence result. In this section, we consider the case where the mapping F
is upper semi-continuous with respect to the second variable.

Definition 3.1. A set-valued mapping F : I × Rn → Rn with nonempty closed,
convex values is said to be Carathéodory if the following conditions hold:

(i) t 7→ F (t, x) is measurable for every x ∈ Rn;
(ii) x 7→ F (t, x) is upper semi-continuous for a.e. t ∈ I;
(iii) for every r > 0, there exists hr ∈ L1(I,R) such that for almost every t ∈ I

and every x ∈ Rn satisfying ∥x∥ ≤ r, one has ∥y∥ ≤ hr(t) for all y ∈ F (t, x).

Remark 3.2. A single-valued mapping f : I × Rn → Rn is Carathéodory if and
only if F = {f} is Carathéodory in the sense of Definition 3.1.

Definition 3.3. A set-valued mapping F : I × Rn → Rn is integrably bounded if
there exists h ∈ L1(I,R) such that for almost every t ∈ I and every x ∈ Rn, one
has ∥y∥ ≤ h(t) for all y ∈ F (t, x).

For a set-valued mapping F : I × Rn → Rn, we define F : C(I,Rn) → L1(I,Rn)
by

F(x) = {y ∈ L1(I,Rn) : y(t) ∈ F (t, x(t)) a.e. t ∈ I}.
Arguing as in the proof of Proposition 4.1 in [13], we obtain the following result.

Proposition 3.4. Let F : I × Rn → Rn be an integrably bounded, Carathéodory
set-valued mapping with nonempty, closed, convex values. If L1(I,Rn) is endowed
with the weak topology, then the associated operator F : C(I,Rn) → L1(I,Rn) is
u.s.c. and has nonempty, compact, convex values.

To a set-valued mapping F : I×Rn → Rn, we associate the set-valued operator

(3.1) F : C(I,Rn) → C(I,Rn) defined by F = i ◦ (L+ id)−1 ◦ F,
where L is defined in (2.1) and i : W 1,1(I,Rn) → C(I,Rn) is the continuous em-
bedding. Using Proposition 3.4, it is easy to prove the following result.
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Proposition 3.5. Let F : I×Rn → Rn be an integrably bounded, Carathéodory set-
valued mapping with nonempty, closed, convex values. Then the associated operator
F : C(I,Rn) → C(I,Rn) is u.s.c., compact and has nonempty, compact, convex
values.

We consider the problem

(3.2)
x′(t) + x(t) ∈ F (t, x(t)) a.e. t ∈ [0, 1],

x(0) = x(1).

It is well known that if F is Carathéodory and integrably bounded then (3.2) has a
solution. We present the proof for sake of completeness.

Proposition 3.6. Let F : I × Rn → Rn be an integrably bounded, Carathéodory
set-valued mapping with nonempty, closed, convex values. Then (3.2) has a solution
x ∈ W 1,1(I,Rn). Moreover, there exists a bounded open set Ω ⊂ C(I,Rn) such that
the topological degree deg(id−F ,Ω) = 1.

Proof. A fixed point of F is a solution of (3.2). Let H : [0, 1]×C(I,Rn) → C(I,Rn)
be defined by H(λ, x) = λF(x). Proposition 3.5 insures that H is an u.s.c., compact
set-valued mapping with nonempty, compact, convex values. Hence, there exists a
bounded open set Ω ⊂ C(I,Rn) such that H

(
[0, 1]×C(I,Rn)

)
⊂ Ω. The topological

degree theory implies that

1 = deg(id,Ω) = deg(id−H(0, ·),Ω) = deg(id−H(1, ·),Ω) = deg(id−F ,Ω).

Thus, (3.2) has a solution. □
Here is the notion of solution-tube of (1.1). It generalizes the notion of upper

and lower solutions in the case where F has real values. It will play a crucial role
in what follows.

Definition 3.7. Let (v, ρ) ∈ W 1,1(I,Rn)×W 1,1(I, [0,∞)). We say that (v, ρ) is a
solution-tube of (1.1) if the following conditions hold:

(i) for a.e. t ∈ I and for any x ∈ Rn such that ∥x − v(t)∥ = ρ(t), there exists
y ∈ F (t, x) such that

⟨x− v(t), y − v′(t)⟩ ≤ ρ(t)ρ′(t);

(ii) v′(t) ∈ F (t, v(t)) for a.e. on {t ∈ I : ρ(t) = 0};
(iii) ∥v(0)− v(1)∥ ≤ ρ(0)− ρ(1).

We denote

T (v, ρ) = {x ∈ C(I,Rn) : ∥x(t)− v(t)∥ ≤ ρ(t) for all t ∈ I}.
Notice that when the problem has only one equation (i.e. n = 1), then for α ≤ β

respectively lower and upper solutions of (1.1), one has (β+α
2 , β−α

2 ) is a solution-
tube of (1.1). The reader is referred to [1] for the definition of upper and lower
solutions.

Remark 3.8. In the case where the nonlinearity is single-valued, we consider the
following system of first order differential equations:

(3.3)
x′(t) = f(t, x(t)) a.e. t ∈ [0, 1],

x(0) = x(1).



MULTIPLICITY RESULTS FOR SYSTEMS OF 1st ORDER DIFFERENTIAL INCLUSIONS 1029

We say that (v, ρ) ∈ W 1,1(I,Rn)×W 1,1(I, [0,∞)) is a solution-tube of (3.3) if it is
a solution-tube of (1.1) with F = {f}.

The existence of a solution-tube insures the existence of a solution to (1.1).

Theorem 3.9. Let F : I × Rn → Rn be a Carathéodory set-valued mapping
with nonempty, closed, convex values. Assume there exists (v, ρ) ∈ W 1,1(I,Rn) ×
W 1,1(I, [0,∞)) a solution-tube of (1.1). Then, problem (1.1) has a solution x ∈
W 1,1(I,Rn) such that ∥x(t)− v(t)∥ ≤ ρ(t) for every t ∈ I.

Proof. We denote the projection of x on the closed ball centered in v(t) of radius
ρ(t) by

(3.4) x̄(t,v,ρ) =

{
x if ∥x− v(t)∥ ≤ ρ(t),

v(t) + ρ(t)
∥x−v(t)∥

(
x− v(t)

)
if ∥x− v(t)∥ > ρ(t).

Let us define G(v,ρ) : I × Rn → Rn and F(v,ρ) : I × Rn → Rn respectively by

G(v,ρ)(t, x) =


{z ∈ Rn : ⟨x− v(t), z − v′(t)⟩

≤ ρ′(t)∥x− v(t)∥} if ∥x− v(t)∥ > ρ(t) > 0,

v′(t) if ρ(t) = 0,

Rn otherwise.

(3.5)

and

F(v,ρ)(t, x) = x̄(t,v,ρ) + F
(
t, x̄(t,v,ρ)

)
∩G(v,ρ)(t, x).(3.6)

It follows from the definition of solution-tube that F(v,ρ) has nonempty values. It
is easy to verify that F(v,ρ) is Carathéodory and has convex, compact values. Also,

the fact that
∥∥x̄(t,v,ρ)∥∥ ≤ ∥v∥0 + ∥ρ∥0 and the condition (iii) of Definition 3.1 imply

that F(v,ρ) is integrably bounded. It follows from Proposition 3.6 that the problem

x′(t) + x(t) ∈ F(v,ρ)(t, x(t)) a.e. t ∈ [0, 1],

x(0) = x(1);

has a solution x̂ ∈ W 1,1(I,Rn). Observe that for almost every t ∈ I and every
x ∈ Rn such that ∥x − v(t)∥ > ρ(t), one has for every u ∈ F(v,ρ)(t, x), there exists
z ∈ G(v,ρ)(t, x) such that u = x̄(t,v,ρ) + z, and hence,

(3.7)

⟨x− v(t), u− x− v′(t)⟩ = ⟨x− v(t), x̄(t,v,ρ) − x⟩+ ⟨x− v(t), z − v′(t)⟩
≤

(
ρ(t)− ∥x− v(t)∥

)
∥x− v(t)∥

+

{
ρ′(t)∥x− v(t)∥ if ρ(t) > 0,

0 if ρ(t) = 0,

< ρ′(t)∥x− v(t)∥,

since ρ′(t) = 0 almost everywhere on {t ∈ I : ρ(t) = 0}.
It follows from Lemma 2.1 that the solution x̂ verifies ∥x̂(t)− v(t)∥ ≤ ρ(t) for all

t ∈ I. Therefore,

x̂(t)(t,v,ρ) = x̂(t) and F(v,ρ)(t, x̂(t)) ⊂ x̂(t) + F (t, x̂(t)) a.e. t ∈ I.
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So, x̂ is a solution of (1.1). □

3.2. Multiplicity results. In order to establish our multiplicity results, we intro-
duce the notion of strict solution-tube of (1.1).

Definition 3.10. Let (v, ρ) ∈ W 1,1(I,Rn)×W 1,1(I, (0,∞)). We say that (v, ρ) is
a strict solution-tube of (1.1) if the following conditions hold:

(i) there exists a l.s.c. mapping ϵ : I → (0,∞) such that for a.e. t ∈ I and all
x ∈ Rn such that ρ(t) − ϵ(t) < ∥x − v(t)∥ ≤ ρ(t), there exists y ∈ F (t, x)
such that

⟨x− v(t), y − v′(t)⟩ ≤ ρ(t)ρ′(t);

(ii) ∥v(0)− v(1)∥ < ρ(0)− ρ(1).

Obviously, a strict solution-tube is a solution-tube of (1.1).

Remark 3.11. In the case where the nonlinearity is single-valued, we say that
(v, ρ) ∈ W 1,1(I,Rn)×W 1,1(I, (0,∞)) is a strict solution-tube of (3.3) if it is a strict
solution-tube of (1.1) with F = {f}.

Definition 3.12. Let (v1, ρ1) and (v2, ρ2) be two strict solution-tubes of (1.1).
They are said compatible if the l.s.c. functions ϵ1 and ϵ2 in Definition 3.10(i) can
be chosen such that for a.e. t ∈ I and all x ∈ Rn such that

ρi(t)− ϵi(t) < ∥x− vi(t)∥ < ρi(t) for i = 1, 2,

there exists y ∈ F (t, x) such that

⟨x− vi(t), y − v′i(t)⟩ ≤ ρi(t)ρ
′
i(t) for i = 1, 2.

Remark 3.13. Any two strict solution-tubes of (3.3) are compatible.

Here is our main theorem for Carathéodory set-valued mappings.

Theorem 3.14. Let F : I × Rn → Rn be a Carathéodory set-valued mapping with
nonempty, closed, convex values. Assume the following conditions hold:

(i) there exists (v0, ρ0) a solution-tube of (1.1);
(ii) there exist (v1, ρ1) and (v2, ρ2) two compatible strict solution-tubes of (1.1)

such that
(a) T (vi, ρi) ⊂ T (v0, ρ0) for i = 1, 2;
(b) T (v1, ρ1) ∩ T (v2, ρ2) = ∅.

Then problem (1.1) has at least three distinct solutions x0, x1, x2 ∈ W 1,1(I,Rn) such
that xj ∈ T (vj , ρj) and x0 /∈ T (vi, ρi) for i = 1, 2 and j = 0, 1, 2.

Proof. For i = 1, 2 define Ki : I × Rn → Rn by

Ki(t, x) =


{z ∈ Rn : ⟨x− vi(t), z − v′i(t)⟩

≤ ρi(t)ρ
′
i(t)} if ρi(t)− ϵi(t) < ∥x− vi(t)∥ < ρi(t),

Rn otherwise.

The set-valued mapping Ki is measurable in t, u.s.c. in x, and has nonempty closed,
convex values.
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For j = 0, 1, 2, Condition (ii)(a) implies that ρj(t) > 0 for all t ∈ I. Let x̄(t,vj ,ρj)
and G(vj ,ρj)(t, x) be defined in (3.4) and (3.5) respectively. We define Fj : I×Rn →
Rn by

F0(t, x) = x̄(t,v0,ρ0) + F
(
t, x̄(t,v0,ρ0)

)
∩G(v0,ρ0)(t, x) ∩K1(t, x) ∩K2(t, x),

F1(t, x) = x̄(t,v1,ρ1) + F
(
t, x̄(t,v1,ρ1)

)
∩G(v1,ρ1)(t, x) ∩K1(t, x) ∩K2(t, x̄(t,v1,ρ1)),

F2(t, x) = x̄(t,v2,ρ2) + F
(
t, x̄(t,v2,ρ2)

)
∩G(v2,ρ2)(t, x) ∩K1(t, x̄(t,v2,ρ2)) ∩K2(t, x).

In view of assumption (ii)(a), Fj is integrably bounded by the function h(t) =
r + hr(t) for r = ∥v0∥0 + ∥ρ0∥0 and hr the function given in Definition 3.1(iii).

Assumptions (i) and (ii) imply that for almost every t ∈ I,

∅ ̸= F
(
t, x̄(t,v0,ρ0)

)
∩G(v0,ρ0)(t, x) ⊂ K1(t, x) ∩K2(t, x) if ∥x− v0(t)∥ > ρ0(t),

∅ ̸= F
(
t, x̄(t,v0,ρ0)

)
∩K1(t, x) ∩K2(t, x) ⊂ G(v0,ρ0)(t, x) if ∥x− v0(t)∥ ≤ ρ0(t).

Also,

∅ ̸= F
(
t, x̄(t,v1,ρ1)

)
∩K1(t, x) ∩K2(t, x̄(t,v1,ρ1)) ⊂ G(v1,ρ1)(t, x)

if ∥x− v1(t)∥ ≤ ρ1(t),

∅ ̸= F
(
t, x̄(t,v1,ρ1)

)
∩G(v1,ρ1)(t, x) ⊂ K1(t, x) ∩K2(t, x̄(t,v1,ρ1))

if ∥x− v1(t)∥ > ρ1(t) and ∥x̄(t,v1,ρ1) − v2(t)∥ ̸∈
(
ρ2(t)− ϵ2(t), ρ2(t)

)
.

For almost every t ∈ I and for x ∈ Rn such that

∥x− v1(t)∥ > ρ1(t) and ∥x̄(t,v1,ρ1) − v2(t)∥ ∈
(
ρ2(t)− ϵ2(t), ρ2(t)

)
,

there exists a sequence {xn} such that

xn → x̄(t,v1,ρ1), and ∥xn − vk(t)∥ ∈
(
ρk(t)− ϵk(t), ρk(t)

)
for k = 1, 2.

Since (v1, ρ1) and (v2, ρ2) are compatible strict solution-tubes, there exists zn ∈
F (t, xn) such that

⟨xn − vk(t), zn − v′k(t)⟩ ≤ ρk(t)ρ
′
k(t) for k = 1, 2.

The sequence {zn} being bounded, it has a subsequence converging to some z ∈ Rn.
Since y 7→ F (t, y) is u.s.c., we deduce that

z ∈ F
(
t, x̄(t,v1,ρ1)

)
,

and

⟨x̄(t,v1,ρ1) − vk(t), z − v′k(t)⟩ ≤ ρk(t)ρ
′
k(t) for k = 1, 2.

In particular, by definition of x̄(t,v1,ρ1), one has

⟨x− v1(t), z − v′1(t)⟩ ≤ ∥x− v1(t)∥ρ′1(t).
So,

z ∈ F
(
t, x̄(t,v1,ρ1)

)
∩G(v1,ρ1)(t, x) ∩K2(t, x̄(t,v1,ρ1)) ⊂ K1(t, x).

We get similar relations by interchanging the role of 1 and 2. Therefore,

Fj(t, x) has nonempty values for a.e. t ∈ I, for all x ∈ Rn and for j = 0, 1, 2.

It is easy to verify that Fj is a Carathéodory set-valued mapping with closed, convex
values.
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Let Fj : C(I,Rn) → C(I,Rn) be the operator associated to Fj defined in (3.1).
It follows from Proposition 3.6 that there exists an open bounded set Ω ⊂ C(I,Rn)
such that

(3.8) deg(id−Fj ,Ω) = 1 for j = 0, 1, 2.

Thus, there exists xj ∈ W 1,1(I,Rn) a solution to

(3.9j)
x′(t) + x(t) ∈ Fj(t, x(t)) a.e. t ∈ I,

x(0) = x(1).

We define the open set

Uj = {x ∈ C(I,Rn) : ∥x(t)− vj(t)∥ < ρj(t) for all t ∈ I}.

Observe that Fj(t, x) ⊂ F(vj ,ρj)(t, x) the function defined in (3.6). So, by (3.7),

− x+ Fj(t, x) ⊂ {y ∈ Rn : ⟨x− vj(t), y − v′j(t)⟩ < ∥x− vj(t)∥ρ′j(t)}
a.e. t ∈ I and for all x ∈ Rn such that ∥x− vj(t)∥ > ρj(t).

Lemma 2.1 implies that all solutions of (3.9j) are in U j . So

(3.10) {x ∈ Ω : 0 ∈ x−Fj(x)} ⊂ U j for j = 0, 1, 2.

Observe that for every x ∈ U j ,

x(t) = x(t)(t,vj ,ρj) for all t ∈ I.

Hence, for j = 0, 1, 2,

(3.11) x(t) + F (t, x(t)) ⊃ Fj(t, x(t)) a.e. t ∈ I for all x ∈ U j .

Now, we show that

(3.12) Si = {x ∈ Ω : 0 ∈ x−Fi(x)} ⊂ Ui for i = 1, 2.

Without loss of generality, assume this is false for i = 1. Then, using (3.10), there
exists x ∈ S1 such that

B = {t ∈ I : ∥x(t)− v1(t)∥ = ρ1(t)} ̸= ∅.

Observe that 0 ̸∈ B. Indeed, the periodic boundary condition, and Definition 3.10
imply that

∥x(0)− v1(0)∥ ≤ ∥x(1)− v1(1)∥+ ∥v1(1)− v1(0)∥ < ρ1(0).

Let t1 = inf B > 0. Since ρ1(t1)− ϵ1(t1) < ∥x(t1)−ν1(t1)∥ = ρ1(t1), the lower semi-
continuity of ϵ1 and the continuity of x, v1 and ρ1 imply that there exists 0 ≤ t0 < t1
such that

ρ1(t)− ϵ1(t) < ∥x(t)− ν1(t)∥ < ρ1(t) for all t ∈ [t0, t1).

By definition of the mappings K1, F1 and x̄(t,v1,ρ1),

x′(t) + x(t) ∈ F1(t, x(t)) ⊂ x(t) +K1(t, x(t)) a.e. t ∈ [t0, t1).

Thus,

⟨x(t)− v1(t), x
′(t)− v′1(t)⟩ ≤ ρ1(t)ρ

′
1(t) a.e. t ∈ [t0, t1).
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Consequently,

0 < ρ21(t0)− ∥x(t0)− v1(t0)∥2

=

∫ t1

t0

d

dt

(
∥x(t)− v1(t)∥2 − ρ21(t)

)
dt

= 2

∫ t1

t0

⟨x(t)− v1(t), x
′(t)− v′1(t)⟩ − ρ1(t)ρ

′
1(t) dt

≤ 0;

which is a contradiction.
For i = 1, 2, by (ii)(a), for every x ∈ U i,

x(t) = x(t)(t,vi,ρi) = x(t)(t,v0,ρ0) for all t ∈ I,

and

Rn = G(vi,ρi)(t, x(t)) = G(v0,ρ0)(t, x(t)) for all t ∈ I.

So,

(3.13) F0(x) = Fi(x) for all x ∈ U i.

The topological degree theory, combined with (3.8), (3.12), and (3.13) imply that

deg
(
id−F0,Ω\

(
U1 ∪ U2

))
= deg

(
id−F0,Ω

)
−

(
deg

(
id−F0, U1

)
+ deg

(
id−F0, U2

))
= deg

(
id−F0,Ω

)
−

(
deg

(
id−F1, U1

)
+ deg

(
id−F2, U2

))
= deg

(
id−F0,Ω

)
−

(
deg

(
id−F1,Ω

)
+ deg

(
id−F2,Ω

))
= 1− (1 + 1).

So, for j = 0, 1, 2, problem (3.9j) has a solution xj ∈ T (vj , ρj). Moreover, x0 ̸∈
T (v1, ρ1)∪T (v2, ρ2). Assumption (ii)(b) implies that x1 and x2 are distinct. Finally,
using (3.11), we conclude that x0, x1 and x2 are three distinct solutions of (1.1). □

In the particular case where the nonlinearity is single-valued, we consider the
system of first order differential equations (3.3) and we obtain the following corollary.

Corollary 3.15. Let f : I × Rn → Rn be a Carathéodory single-valued function.
Assume the following assumptions are satisfied:

(i) there exists (v0, ρ0) a solution-tube of (3.3);
(ii) there exist (v1, ρ1) and (v2, ρ2) two strict solution-tubes of (3.3) such that

(a) T (vi, ρi) ⊂ T (v0, ρ0) for i = 1, 2;
(b) T (v1, ρ1) ∩ T (v2, ρ2) = ∅.

Then problem (3.3) has at least three distinct solutions x0, x1, x2 ∈ W 1,1(I,Rn) such
that xj ∈ T (vj , ρj) and x0 /∈ T (vi, ρi) for i = 1, 2 and j = 0, 1, 2.

We obtain the following corollary for real valued nonlinearity.
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Corollary 3.16. For i = 1, 2, let αi, βi ∈ W 1,1(I,R), and let F : I × R → R be
a Carathéodory set-valued mapping with nonempty, closed, convex values. Assume
the following conditions hold:

(i) α1(t) < β1(t) ≤ β2(t) and α1(t) ≤ α2(t) < β2(t) for all t ∈ I;
(ii) there exists t ∈ I such that β1(t) < α2(t);
(iii) αi(0) < αi(1) and βi(0) > βi(1) for i = 1, 2;
(iv) for i = 1, 2, there exists a l.s.c. mapping ϵi : I → (0,∞) such that,

- F (t, x) ∩ [α′
i(t),∞) ̸= ∅ for a.e. t ∈ I and all x ∈ R such that αi(t) ≤

x < αi(t) + ϵi(t);
- F (t, x) ∩ (−∞, β′

i(t)] ̸= ∅ for a.e. t ∈ I and all x ∈ R such that
βi(t) ≥ x > βi(t)− ϵi(t);

(v) - there exits y ∈ F (t, x) such that y ≥ max{α′
1(t), α

′
2(t)} for a.e. t ∈ I

and all x ∈
(
α1(t), α1(t) + ϵ1(t)

)
∩
(
α2(t), α2(t) + ϵ2(t)

)
;

- there exits y ∈ F (t, x) such that y ≤ min{β′
1(t), β

′
2(t)} for a.e. t ∈ I

and all x ∈
(
β1(t)− ϵ1(t), β1(t)

)
∩
(
β2(t)− ϵ2(t), β2(t)

)
;

- for i, j ∈ {1, 2} with i ̸= j, there exits y ∈ F (t, x) such that α′
j(t) ≤ y ≤

β′
i(t) for a.e. t ∈ I and all x ∈

(
βi(t)−ϵi(t), βi(t)

)
∩
(
αj(t), αj(t)+ϵj(t)

)
.

Then problem (1.1) has at least three distinct solutions x0, x1, x2 ∈ W 1,1(I,R) such
that xj ∈ T (vj , ρj) and x0 /∈ T (vi, ρi) for i = 1, 2 and j = 0, 1, 2.

Proof. Let

v0 =
α1 + β2

2
and ρ0 =

β2 − α1

2
,

and for i = 1, 2,

vi =
αi + βi

2
and ρi =

βi − αi

2
,

Assumptions (i), (iii) and (iv) imply that (v0, ρ0) is a solution-tube of (1.1) and
(vi, ρi) are strict solution-tubes of (1.1) for i = 1, 2. It follows from (v) that (v1, ρ1)
and (v2, ρ2) are compatible strict solution-tubes. Theorem 3.14 gives the conclusion.

□
Remark 3.17. In the particular case where F is single-valued, condition (v) of the
previous corollary can be omitted. Indeed, it follows directly from (iv).

Assuming the existence of more strict solution-tubes leads to the existence of
more solutions of (1.1). The proof is left to the reader.

Theorem 3.18. Let F : I × Rn → Rn be a Carathéodory set-valued mapping with
nonempty, closed, convex values and let m ≥ 2. Assume the following conditions
hold:

(i) there exists (v0, ρ0) a solution-tube of (1.1);
(ii) there exist (v1, ρ1), . . . , (vm, ρm) strict solution-tubes of (1.1) such that

(a) T (vi, ρi) ⊂ T (v0, ρ0) for i = 1, . . . ,m;
(b) T (vi, ρi) ∩ T (vj , ρj) = ∅ for all i, j ∈ {1, . . . ,m} such that i ̸= j;
(c) the l.s.c. functions ϵ1, . . . , ϵm in Definition 3.10(i) can be chosen such

that for a.e. t ∈ I and all x ∈ Rn such that card
(
I(t, x)

)
≥ 2, there

exists y ∈ F (t, x) such that

⟨x− vi(t), y − v′i(t)⟩ ≤ ρi(t)ρ
′
i(t) for all i ∈ I(t, x),
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where

I(t, x) =
{
i ∈ {1, . . . ,m} : ρi(t)− ϵi(t) < ∥x− vi(t)∥ < ρi(t)

}
.

Then problem (1.1) has at least m + 1 distinct solutions x0, . . . , xm ∈ W 1,1(I,Rn)
such that xj ∈ T (vj , ρj) and x0 /∈ T (vi, ρi) for i = 1, . . . ,m and j = 0, . . . ,m.

4. Lower semi-continuity condition

4.1. Existence result. In this section, we consider a mapping F lower semi-
continuous with respect to the second variable. In this case, F may have non-convex
values.

Definition 4.1. A set-valued mapping F : I × Rn → Rn with nonempty closed
values is lower semi-continuous type ((lsc)-type) if the following conditions hold:

(i) (t, x) 7→ F (t, x) is L ⊗ B-measurable (here I × Rn is endowed with the
σ-algebra generated by subsets C×D where C ⊂ I and D ⊂ Rn are respec-
tively Lebesgue and Borel measurable);

(ii) x 7→ F (t, x) is lower semi-continuous for a.e. t ∈ I;
(iii) for every r > 0, there exists hr ∈ L1(I,R) such that for almost every t ∈ I

and every x ∈ Rn satisfying ∥x∥ ≤ r, one has ∥y∥ ≤ hr(t) for all y ∈ F (t, x).

Let us recall that to a set-valued mapping F : I × Rn → Rn, we associated
F : C(I,Rn) → L1(I,Rn) defined by

F(x) = {y ∈ L1(I,Rn) : y(t) ∈ F (t, x(t)) a.e. t ∈ I}.
Arguing as in the proof of Proposition 4.3 in [13], we obtain the following result.

Proposition 4.2. Let F : I × Rn → Rn be an integrably bounded, (lsc)-type set-
valued mapping with nonempty, closed, values. If L1(I,Rn) is endowed with the
usual norm topology, then there exists a continuous single-valued selection

f : C(I,Rn) → L1(I,Rn) such that f(x) ∈ F(x) for all x ∈ C(I,Rn).

It follows from the previous proposition that to a (lsc)-type set-valued mapping
F : I × Rn → Rn, we can associate the single-valued operator

(4.1) f : C(I,Rn) → C(I,Rn) defined by f = i ◦ (L+ id)−1 ◦ f ,
where L is defined in (2.1) and i : W 1,1(I,Rn) → C(I,Rn) is the continuous em-
bedding. The associated operator f is continuous and compact.

It is also well known that if F is (lsc)-type and integrably bounded, then (3.2)
has a solution.

Proposition 4.3. Let F : I × Rn → Rn be an integrably bounded, (lsc)-type
set-valued mapping with nonempty, closed values. Then (3.2) has a solution x ∈
W 1,1(I,Rn). Moreover, there exists a bounded open set Ω ⊂ C(I,Rn) such that the
topological degree deg(id− f ,Ω) = 1.

Proof. A fixed point of f is a solution of (3.2). Let h : [0, 1]×C(I,Rn) → C(I,Rn)
be defined by h(λ, x) = λf (x). There exists a bounded open set Ω ⊂ C(I,Rn) such
that h

(
[0, 1]× C(I,Rn)

)
⊂ Ω. The topological degree theory implies that

1 = deg(id,Ω) = deg(id− h(0, ·),Ω) = deg(id− h(1, ·),Ω) = deg(id− f ,Ω).
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Thus, (3.2) has a solution. □

Also in this context, the existence of a solution-tube insures the existence of a
solution to (1.1).

Theorem 4.4. Let F : I × Rn → Rn be a (lsc)-type set-valued mapping with
nonempty, closed values. Assume there exists (v, ρ) ∈ W 1,1(I,Rn)×W 1,1(I, [0,∞))
a solution-tube of (1.1). Then, problem (1.1) has a solution x ∈ W 1,1(I,Rn) such
that ∥x(t)− v(t)∥ ≤ ρ(t) for every t ∈ I.

Proof. Let us define Gl
(v,ρ) : I × Rn → Rn and F l

(v,ρ) : I × Rn → Rn respectively by

Gl
(v,ρ)(t, x) =


{z ∈ Rn : ⟨x− v(t), z − v′(t)⟩

≤ ρ′(t)∥x− v(t)∥} if ∥x− v(t)∥ ≥ ρ(t) > 0,

v′(t) if ρ(t) = 0,

Rn otherwise,

(4.2)

and

F l
(v,ρ)(t, x) = x̄(t,v,ρ) + F

(
t, x̄(t,v,ρ)

)
∩Gl

(v,ρ)(t, x),(4.3)

where x̄(t,v,ρ) is defined in (3.4).

It follows from the definition of solution-tube that F l
(v,ρ) has nonempty values. It

is easy to verify that F l
(v,ρ) is an integrably bounded, (lsc)-type set-valued mapping

with compact values. Proposition 4.3 implies that the problem

x′(t) + x(t) ∈ F l
(v,ρ)(t, x(t)) a.e. t ∈ [0, 1],

x(0) = x(1);

has a solution x̂ ∈ W 1,1(I,Rn). Observe that for almost every t ∈ I and every
x ∈ Rn such that ∥x− v(t)∥ > ρ(t), one has

(4.4) −x+ F(v,ρ)(t, x) ⊂ {y ∈ Rn : ⟨x− v(t), y − v′(t)⟩ < ρ′(t)∥x− v(t)∥}.

It follows from Lemma 2.1 that the solution x̂ verifies ∥x̂(t) − v(t)∥ ≤ ρ(t) for all
t ∈ I. Therefore, x̂ is a solution of (1.1). □

4.2. Multiplicity results. In the case where the set-valued mapping is lower semi-
continuous with respect to the second variable a stronger compatibility condition is
needed in order to establish multiplicity results.

Definition 4.5. Let (v1, ρ1) and (v2, ρ2) be two strict solution-tubes of (1.1). They
are strongly compatible if the l.s.c. functions ϵ1 and ϵ2 in Definition 3.10(i) can be
chosen such that for a.e. t ∈ I and all x ∈ Rn such that

ρi(t)− ϵi(t) < ∥x− vi(t)∥ ≤ ρi(t) for i = 1, 2,

there exists y ∈ F (t, x) such that

⟨x− vi(t), y − v′i(t)⟩ ≤ ρi(t)ρ
′
i(t) for i = 1, 2.

Remark 4.6. Obviously, strongly compatible strict solution-tubes are compatible.
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Here is our main theorem for (lsc)-type set-valued mappings. In this case, an
extra condition is needed.

Theorem 4.7. Let F : I × Rn → Rn be a (lsc)-type set-valued mapping with
nonempty, closed values. Assume the following conditions hold:

(i) there exists (v0, ρ0) a solution-tube of (1.1);
(ii) there exist (v1, ρ1) and (v2, ρ2) two strongly compatible strict solution-tubes

of (1.1) such that
(a) T (vi, ρi) ⊂ T (v0, ρ0) for i = 1, 2;
(b) T (v1, ρ1) ∩ T (v2, ρ2) = ∅.

(iii) for almost every t ∈ I and all x ∈ Rn such that ∥x − v0(t)∥ = ρ0(t) and
card

(
J(t, x)

)
≥ 2, where

J(t, x) = {j ∈ {0, 1, 2} : ∥x− vj(t)∥ = ρj(t)},

there exists y ∈ F (t, x) such that

⟨x− vj(t), y − v′j(t)⟩ ≤ ρj(t)ρ
′
j(t) for each j ∈ J(t, x).

Then problem (1.1) has at least three distinct solutions x0, x1, x2 ∈ W 1,1(I,Rn) such
that xj ∈ T (vj , ρj) and x0 /∈ T (vi, ρi) for i = 1, 2 and j = 0, 1, 2.

Proof. For i = 1, 2 let ϵli : I → (0,∞) be a l.s.c. single-valued mapping such that
ϵli(t) < ϵi(t) for every t ∈ I. We define K l

i : I × Rn → Rn by

K l
i(t, x) =


{z ∈ Rn : ⟨x− vi(t), z − v′i(t)⟩

≤ ρi(t)ρ
′
i(t)} if ρi(t)− ϵli(t) ≤ ∥x− vi(t)∥ ≤ ρi(t),

Rn otherwise.

The set-valued mapping K l
i is L ⊗ B-measurable in (t, x), l.s.c. in x, and has

nonempty closed values.
For j = 0, 1, 2, Condition (ii)(a) implies that ρj(t) > 0 for all t ∈ I. Let x̄(t,vj ,ρj)

and Gl
(vj ,ρj)

(t, x) be defined in (3.4) and (4.2) respectively. We define F l
j : I×Rn →

Rn by

F l
0(t, x) = x̄(t,v0,ρ0) + F

(
t, x̄(t,v0,ρ0)

)
∩Gl

(v0,ρ0)
(t, x) ∩K l

1(t, x) ∩K l
2(t, x),

F l
1(t, x) = x̄(t,v1,ρ1) + F

(
t, x̄(t,v1,ρ1)

)
∩Gl

(v1,ρ1)
(t, x) ∩K l

1(t, x) ∩K l
2(t, x̄(t,v1,ρ1)),

F l
2(t, x) = x̄(t,v2,ρ2) + F

(
t, x̄(t,v2,ρ2)

)
∩Gl

(v2,ρ2)
(t, x) ∩K l

1(t, x̄(t,v2,ρ2)) ∩K l
2(t, x).

Assumption (ii)(a) insures that F l
j is integrably bounded by the function h(t) =

r + hr(t) for r = ∥v0∥0 + ∥ρ0∥0 and hr the function given in Definition 4.1(iii).
For j = 0, 1, 2, assumptions (i), (ii) and (iii) imply that F l

j(t, x) has nonempty

values for almost every t ∈ I and for all x ∈ Rn. It is easy to verify that F l
j is a

(lsc)-type set-valued mapping with closed values.
Let fj : C(I,Rn) → C(I,Rn) be the operator associated to F l

j defined in (4.1).
Arguing as in the proof of Theorem 3.14 and using Proposition 4.3, we get the

conclusion. □

In the particular case where F has real values, we get the following corollary.
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Corollary 4.8. For i = 1, 2, let αi, βi ∈ W 1,1(I,R), and let F : I × R → R be a
(lsc)-type set-valued mapping with nonempty, closed values. Assume the following
conditions hold:

(i) α1(t) < β1(t) ≤ β2(t) and α1(t) ≤ α2(t) < β2(t) for all t ∈ I;
(ii) there exists t ∈ I such that β1(t) < α2(t);
(iii) αi(0) < αi(1) and βi(0) > βi(1) for i = 1, 2;
(iv) for i = 1, 2, there exists a l.s.c. mapping ϵi : I → (0,∞) such that,

- F (t, x) ∩ [α′
i(t),∞) ̸= ∅ for a.e. t ∈ I and all x ∈ R such that αi(t) ≤

x < αi(t) + ϵi(t);
- F (t, x) ∩ (−∞, β′

i(t)] ̸= ∅ for a.e. t ∈ I and all x ∈ R such that
βi(t) ≥ x > βi(t)− ϵi(t);

(v) - there exits y ∈ F (t, x) such that y ≥ max{α′
1(t), α

′
2(t)} for a.e. t ∈ I

and all x ∈
[
α1(t), α1(t) + ϵ1(t)

)
∩
[
α2(t), α2(t) + ϵ2(t)

)
;

- there exits y ∈ F (t, x) such that y ≤ min{β′
1(t), β

′
2(t)} for a.e. t ∈ I

and all x ∈
(
β1(t)− ϵ1(t), β1(t)

]
∩
(
β2(t)− ϵ2(t), β2(t)

]
;

- for i, j ∈ {1, 2} with i ̸= j, there exits y ∈ F (t, x) such that α′
j(t) ≤ y ≤

β′
i(t) for a.e. t ∈ I and all x ∈

(
βi(t)−ϵi(t), βi(t)

]
∩
[
αj(t), αj(t)+ϵj(t)

)
.

Then problem (1.1) has at least three distinct solutions x0, x1, x2 ∈ W 1,1(I,R) such
that xj ∈ T (vj , ρj) and x0 /∈ T (vi, ρi) for i = 1, 2 and j = 0, 1, 2.

Remark 4.9. It is left to the reader to state and prove a result analogous to
Theorem 3.18 for a (lsc)-type set-valued mapping.

5. Initial value problem

In this section, we present multiplicity results for the following system of differ-
ential inclusions with initial value condition:

(5.1)
x′(t) ∈ F (t, x(t)) a.e. t ∈ [0, 1],

x(0) = x0,

where x0 ∈ Rn is given. Again, our results will rely on the notions of solution-tube
and strict solution-tube of (5.1).

Definition 5.1. Let (v, ρ) ∈ W 1,1(I,Rn) × W 1,1(I, [0,∞)). We say that (v, ρ) is
a solution-tube of (5.1) if it satisfies (i) and (ii) of Definition 3.7 and the following
condition:

(iii)’ ∥x0 − v(0)∥ ≤ ρ(0).

Definition 5.2. Let (v, ρ) ∈ W 1,1(I,Rn) × W 1,1(I, (0,∞)). We say that (v, ρ) is
a strict solution-tube of (5.1) if it satisfies (i) of Definition 3.10 and the following
condition:

(ii)’ ∥x0 − v(0)∥ < ρ(0).

We obtain multiplicity results analogous to Theorems 3.14 and 4.7.

Theorem 5.3. Let F : I × Rn → Rn be a Carathéodory set-valued mapping with
nonempty, closed, convex values. Assume the following conditions hold:

(i) there exists (v0, ρ0) a solution-tube of (5.1);
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(ii) there exist (v1, ρ1) and (v2, ρ2) two compatible strict solution-tubes of (5.1)
such that
(a) T (vi, ρi) ⊂ T (v0, ρ0) for i = 1, 2;
(b) T (v1, ρ1) ∩ T (v2, ρ2) = ∅.

Then problem (5.1) has at least three distinct solutions x0, x1, x2 ∈ W 1,1(I,Rn) such
that xj ∈ T (vj , ρj) and x0 /∈ T (vi, ρi) for i = 1, 2 and j = 0, 1, 2.

Proof. Let W 1,1
0 (I,Rn) = {x ∈ W 1,1(I,Rn) : x(0) = x0}. It is well known that the

continuous affine operator L+id : W 1,1
0 (I,Rn) → L1(I,Rn) is invertible, where L is

defined in (2.1). The proof is analogous to the proof of Theorem 3.14 by replacing

W 1,1
P (I,Rn) by W 1,1

0 (I,Rn) and, instead of Lemma 2.1, by applying Lemma 5.6
stated at the end of this section. □
Theorem 5.4. Let F : I × Rn → Rn be a (lsc)-type set-valued mapping with
nonempty, closed values. Assume the following conditions hold:

(i) there exists (v0, ρ0) a solution-tube of (5.1);
(ii) there exist (v1, ρ1) and (v2, ρ2) two strongly compatible strict solution-tubes

of (5.1) such that
(a) T (vi, ρi) ⊂ T (v0, ρ0) for i = 1, 2;
(b) T (v1, ρ1) ∩ T (v2, ρ2) = ∅.

(iii) for almost every t ∈ I and all x ∈ Rn such that ∥x − v0(t)∥ = ρ0(t) and
card

(
J(t, x)

)
≥ 2, where

J(t, x) = {j ∈ {0, 1, 2} : ∥x− vj(t)∥ = ρj(t)},
there exists y ∈ F (t, x) such that

⟨x− vj(t), y − v′j(t)⟩ ≤ ρj(t)ρ
′
j(t) for each j ∈ J(t, x).

Then problem (5.1) has at least three distinct solutions x0, x1, x2 ∈ W 1,1(I,Rn) such
that xj ∈ T (vj , ρj) and x0 /∈ T (vi, ρi) for i = 1, 2 and j = 0, 1, 2.

Remark 5.5. Results analogous to Corollaries 3.16 and 4.8 and Theorem 3.18 can
be obtained for problem (5.1).

Lemma 5.6. Let F : I × Rn → Rn be a set-valued mapping and x0 ∈ Rn. Assume
there exist v ∈ W 1,1(I,Rn) and ρ ∈ W 1,1(I, [0,∞)) such that ∥x0 − v(0)∥ ≤ ρ(0)
and

(5.2) F (t, x) ⊂ {y ∈ Rn : ⟨x− v(t), y − v′(t)⟩ < ∥x− v(t)∥ρ′(t)}
a.e. t ∈ I and for all x ∈ Rn such that ∥x− v(t)∥ > ρ(t).

Then any solution x ∈ W 1,1(I,Rn) of (5.1) satisfies ∥x(t) − v(t)∥ ≤ ρ(t) for all
t ∈ I.
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