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2. Preliminaries

Throughout this paper we suppose that (X, ∥ · ∥) is a real Banach space. For any
r > 0, Br denotes the closed ball in X centered in 0X and with radius r.

We denote by B(X) the collection of all nonempty bounded subsets of X, and
by W(X) the subset of B(X) consisting of all weakly compact subsets of X. The
notion of the measure of weak noncompactness was introduced by de Blasi [5] and
it is the map ω : B(X) → [0,∞[ defined for every M ∈ B(X) by

ω(M) := inf{r > 0 : there exists W ∈ W(X) with M ⊆ W +Br}.

Now, we are going to recall some basic properties of ω(·) needed later. Let M1,M2

be two elements of B(X). The following properties hold (for instance see [1, 5]):

(1) If M1 ⊆ M2, then ω(M1) ≤ ω(M2),

(2) ω(M1) = 0 if and only if, M1
w ∈ W(X) (M1

w
means the weak closure of

M1),

(3) ω(M1
w
) = ω(M1),

(4) ω(M1 ∪M2) = max{ω(M1), ω(M2)},
(5) ω(λM1) = |λ|ω(M1) for all λ ∈ R,
(6) ω(conv(M1)) = ω(M1),
(7) ω(M1 +M2) ≤ ω(M1) + ω(M2).

A mapping T : C ⊆ X → X is said to be ω-condensing if T is continuous and
ω(T (A)) < ω(A) for every bounded set A ⊆ C with ω(A) > 0. Since ω(A) = 0 for
every A ∈ B(X) if X is a reflexive space, this concept has a real sense provided that
X is a nonreflexive space.

Let X be Banach space and T : D(T ) ⊆ X → X a mapping. We will use the
following condition for this mapping T :

(A1) If (xn) is a sequence in D(T ) which is weakly convergent in X, then (Txn)
has a strongly convergent subsequence in X.

Condition (A1) was already considered, among others, in the papers [7, 13, 14].
Recall that this condition does not imply the compactness of T even if T is a linear
mapping. Nevertheless, condition (A1) reduces to compactness in the reflexive case.

Moreover, such condition holds also true for the class of weakly compact operators
acting on Banach spaces with the Dunford-Pettis property. (A Banach space X
has the Dunford-Pettis property if every weakly compact operator defined on X
takes weakly compact sets into norm compact sets.) Finally, notice that operators
satisfying (A1) are not necessarily weakly continuous.

We recall also some geometric properties of normed spaces that will appear at
some points of the remainder of this paper.

A normed space (X, ∥.∥) is said to satisfy the Opial condition if for any sequence
(xn) in X which converges weakly to x0 ∈ X it happens that for all y ∈ X, y ̸= x0,

lim inf
n→∞

∥xn − x0∥ < lim inf
n→∞

∥xn − y∥ .
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It can be readily established, on the extraction of appropriate subsequences, that
the lower limit can be replaced with upper limit in the above definition. For example
the classical ℓp spaces satisfy the Opial condition whenever 1 ≤ p < ∞.

A geometric property which plays an important role in metric fixed point theory
is the so called normal structure, which was introduced in 1948 by Brodskii and
Milman. Recall that a Banach space (X, ∥ · ∥) is said to have normal structure if for
each bounded, convex, subset C of X with diam(C) > 0 there exists a nondiametral
point p ∈ C, that is a point p ∈ C such that

sup{∥p− x∥ : x ∈ C} < diam (C).

It is well known that every uniformly convex Banach space, as well as every reflexive
Banach space satisfying the Opial condition, enjoys normal structure.

3. Generalized nonexpansive mappings

Let C be a nonempty closed convex subset of (X, ∥ · ∥).

In 2010 Garćıa Falset, Llorens Fuster and Suzuki introduced a class of generalized
nonexpansive mappings in [9]. For λ ∈ (0, 1) a mapping T : C → X is said to satisfy
condition (Cλ) on C if for any x, y ∈ C such that λ∥x−Tx∥ ≤ ∥x−y∥ it holds that
∥Tx− Ty∥ ≤ ∥x− y∥.

In the particular case λ = 1
2 we recover the class of type (C) mappings defined

by Suzuki in 2008 ([19]). Mappings satisfying condition (C) satisfy condition (L) in
turn, but this is not true in general for mappings satisfying condition (Cλ) ([12]).

Definition 3.1. Kaewkao, Sokhuma [11]
A bounded sequence (xn) in X is said to be an asymptotic center sequence for

the mapping T if for every x ∈ C

lim sup
n→∞

∥xn − Tx∥ ≤ lim sup
n→∞

∥xn − x∥.

According with [8], if, in particular, xn ≡ x0 ∈ X, we say that x0 is a center for
the mapping T in C.

Definition 3.2. We say that the mapping T : C → X is a (DL)-type mapping
(or that T satisfies condition (DL)) provided that there exists a bounded sequence
(xn) in C such that it is an asymptotic center sequence for T in C.

Let us point out that a continuous mapping T which admits an asymptotic center
sequence in X was called a (D)-type mapping by A. Kaewkao and K. Sokhuma
in [11, Definition 3.1]. However, it is easy to check that the class of (DL)-type
mappings neither is contained nor contains the class of (D)-type mappings.

The class of (DL)-type mappings contains the so called (L)-type mappings. If C
is also a bounded set, the class of the (L)-type self-mappings of C in turn contains
the class of the nonexpansive (i.e. 1-Lipschitzian) mappings T : C → C.

Recall that an almost fixed point sequence for T : C → X (a.f.p.s. from now on)
is a sequence (xn) on C such that

lim
n→∞

∥xn − Txn∥ = 0.
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Definition 3.3. Llorens-Fuster, Moreno-Gálvez [12]
We say that the mapping T : C → C is an (L)-type mapping (or that T satisfies

condition (L)) on C provided that
(a) If D ⊂ C is nonempty, closed, convex and T invariant, then there exists an

a.f.p.s. (xn) for T in D.
(b) For every a.f.p.s. (xn) for T in C, and for each x ∈ C,

lim sup
n→∞

∥xn − Tx∥ ≤ lim sup
n→∞

∥xn − x∥.

Of course, if T satisfies condition (L) on C then it satisfies condition (DL) on C.
As we will see below, the converse is untrue.

The above assumption (a) was called Condition (A) by Dhompongsa and Nanan
in [6]. In other words, the mapping T : C → C is an (L)-type mapping whenever it
satisfies condition (A) on C and any a.f.p.s. on C is an asymptotic center sequence
for T . From now on, if not specified, a mapping is said to satisfy condition (L),
whenever it satisfies this condition on its domain. Assumption (a) of this definition
(i.e. Condition (A)) is automatically satisfied by several classes of nonlinear map-
pings. For instance, it is a well-known property of nonexpansive mappings. Indeed,
if C is also a bounded set and T : C → C is a nonexpansive mapping with respect
to some equivalent renorming of X, then T satisfies (a). Asymptotically regular
mappings automatically satisfy (a) too. The existence of a.f.p.s. for nonexpan-
sive mappings is discussed, for example, in the papers by S. Reich [17] and by E.
Matoušková and S. Reich [15].

Example 3.4. Let T : [0, 1] → [0, 1] given by T (x) =
√
x. For every x ∈ [0, 1] one

has

1−
√
x =

1− x

1 +
√
x
≤ 1− x.

Therefore, |1 − T (x)| ≤ |1 − x|. Thus, the sequence (xn) defined as xn ≡ 1 is an
asymptotic center sequence for T on [0, 1], and T is a (non Lipschitzian) (DL)-type
mapping. On the other hand, in [12, Example 3.11.] it is shown that T fails to
satisfy the condition (L) on [0, 1].

Since every nonexpansive mappings is an (L) type mapping, and hence a (DL)-
type mapping, provided that there exists well known fixed-point free nonexpansive
mappings, condition (DL) does not guarantee fixed points. In other words, to
get a fixed point theorem for (DL)-type mappings some additional requirement is
necessary.

Although (L)-type mapping need not be continuous, regarding fixed point prop-
erties, the main features of the (L)-type mappings are the following.

Theorem 3.5 ([12, Theorem 4.2.]). Let C be a nonempty compact convex subset
of a Banach space X and T : C → C be a mapping satisfying condition (L). Then,
T has a fixed point.

Theorem 3.6 ([12, Theorem 4.4.]). Let K be a nonempty weakly compact convex
subset of a Banach space X with normal structure. Let T : K → K be a mapping
satisfying condition (L). Then, T has a fixed point.
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Theorem 3.7 ([12, Theorem 4.6.]). Let X be a Banach space which satisfies the
Opial condition. Let C be a nonempty, closed, convex, bounded subset of X. Let
T : C → C be a mapping satisfying condition (L). Then, if (xn) is an a.f.p.s. for
T such that it converges weakly to z ∈ C, then z is a fixed point of T .

In the remaining of this section, we will show that, in some sense, the above
results also hold for (DL)-type mappings.

Theorem 3.8. Let C be a nonempty compact convex subset of a Banach space X
and T : C → C be a mapping satisfying condition (DL). Then, T has a fixed point.

Proof. From the definition of (DL)-type mappings, we know that there exists in
C an asymptotic center sequence for T , say (xn). Since K is a compact set, after
passing to a subsequence it necessary, we may assume that xn → x0. Again by
definition of (DL) mapping,

lim sup
n→∞

∥xn − T (x0)∥ ≤ lim sup
n→∞

∥xn − x0∥ = 0,

which implies that xn → T (x0). By uniqueness of limits, then x0 = T (x0). □
Theorem 3.9. Let X be a Banach space which satisfies the Opial condition. Let
T : C → C be a mapping satisfying condition (DL). If (xn) is an asymptotic center
sequence for T such that it converges weakly to z ∈ C, then z is a fixed point of T .

Proof. Since (xn) is an asymptotic center sequence for T ,

lim sup
n→∞

∥xn − T (z)∥ ≤ lim sup
n→∞

∥xn − z∥.

If T (z) ̸= z, from the Opial condition it follows that

lim sup
n→∞

∥xn − z∥ < lim sup
n→∞

∥xn − T (z)∥,

and this is a contradiction. Thus, T (z) = z. □
Theorem 3.10. Let K be a nonempty weakly compact convex subset of a Banach
space X with normal structure. Let T : K → K be a mapping which admits as-
ymptotic center sequences in each nonempty closed convex T invariant subset of K.
Then, T has a fixed point.

Proof. Since K is a weakly compact set there exists a nonempty, closed, convex, T
invariant subset C of K with no proper subsets enjoying these characteristics. Let
(xn) be an asymptotic center sequence for T in C. If xn → x0 ∈ C then x0 is a
fixed point of T . Indeed,

∥x0 − T (x0)∥ = lim sup
n→∞

∥xn − T (x0)∥ ≤ lim sup
n→∞

∥xn − x0∥ = 0

In other case, according to [3, Corollary 1] the real function g : C → [0,∞) defined
as

g(x) := lim sup
n→∞

∥x− xn∥

is not constant on conv{xn : n = 1, 2, ...}. Thus, g takes at least two different real
values. Let r be the average of these values. Consider the set

M := {x ∈ C : g(x) ≤ r}.
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It is straightforward to check that M is nonempty, closed and convex, with M ̸= C.
Moreover, for every x ∈ M , since (xn) is an asymptotic center sequence for T in

C, and M ⊂ C,

g(T (x)) = lim sup
n→∞

∥T (x)− xn∥ ≤ lim sup
n→∞

∥x− xn∥ = g(x) ≤ r.

Thus, M is a nonempty, closed, convex, T invariant subset of C with M ̸= C, which
is a contradiction with the minimality of C. □

Notice that if T : K → K is nonexpansive then it admits asymptotic center
sequences in each nonempty closed convex T -invariant subset C of K. Indeed,
for every x ∈ C, the sequence (Tn(x)) has the range contained in C and it is an
asymptotic center sequence for T in C.

In the following example we give a non Lipchitzian mapping falling into the scope
of the above theorem.

Example 3.11. In the standard Hilbert space ℓ2 consider the set

K = {x = (xn) ∈ ℓ2 : ∥x∥2 ≤ 1, xn ≥ 0 n = 1, 2, . . .},

where ∥x∥2 stands for the ordinary Euclidean norm of the vector x ∈ ℓ2.
Consider the mapping T : K → K defined by

T (x) =
√

1− ∥x∥2 e1,

where e1 = (1, 0, . . .). It is obvious that T is not Lipschitzian on K. On the other
hand, it is straightforward to check that for every positive integer k and every
x ∈ K,

T 2(x) = ∥x∥e1
T 3(x) = T (x)
...
T 2k(x) = ∥x∥e1
T 2k+1(x) = T (x).

If C is a nonempty closed convex T -invariant subset of K, and x ∈ C we will show
that the orbit (T k(x)) is an asymptotic center sequence for T in C. Indeed,

lim sup
n→∞

∥T k(x)− T (x)∥ = ∥∥x∥e1 − T (x)∥ =
∣∣∥x∥ −√

1− ∥x∥2
∣∣

=

√
1− 2

√
1− ∥x∥2 ∥x∥.

On the other hand

lim sup
n→∞

∥Tn(x)− x∥ = max{∥∥x∥e1 − x∥, ∥T (x)− x∥}

≥
√

∥T (x)∥2 + ∥x∥2 − 2⟨T (x), x⟩
=

√
1− 2

√
1− ∥x∥2 x1

≥
√

1− 2
√

1− ∥x∥2 ∥x∥.

Thus,

lim sup
n→∞

∥T k(x)− T (x)∥ ≤ lim sup
n→∞

∥Tn(x)− x∥.
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and T admits asymptotic center sequences in every nonempty closed convex T -
invariant subset C of K. Since it is well known that every Hilbert space enjoys
normal structure, the above theorem can be applied to derive that the mapping T
has a fixed point in K.

Let ϕ : [0,+∞) → [0,+∞) be a function such that

(1) ϕ(0) = 0
(2) ϕ(r) > 0 if r > 0,
(3) ϕ is continuous or increasing.

Recall that a mapping T : C → X is said to be ϕ-expansive if there exists a
function ϕ satisfying the above assumptions, such that for every x, y ∈ C,

∥T (x)− T (y)∥ ≥ ϕ(∥x− y∥).

Proposition 3.12. Let X be a Banach space and C a closed, bounded and convex
subset of X. Suppose that T : C → C satisfies condition (L) and that I − T is
ϕ-expansive. Then, any a.f.p.s. for T in C converges to the unique fixed point in
C.

Proof. Since T satisfies condition (L), we can consider an almost fixed point
sequence (xn) for T on C. Provided that I − T is ϕ-expansive, we have that

ϕ(∥xn − xm∥) ≤ ∥(I − T )xn − (I − T )xm∥ ≤ ∥xn − Txn∥+ ∥xm − Txm∥.

By taking limits first on m and then on n,

lim
n→∞

lim
m→∞

ϕ(∥xn − xm∥) ≤ lim
n→∞

∥xn − Txn∥+ lim
m→∞

∥xm − Txm∥ = 0.

We claim that limn→∞ limm→∞ ∥xn − xm∥ = 0. Otherwise take a subsequence of
(xn) such that

l := lim
n,m;n ̸=m

∥xn − xm∥

does exist.
Suppose that l ̸= 0. There exists k such that ∥xn−xm∥ ≥ l/2 if n,m > k;n ̸= m.

If ϕ is increasing, then ϕ(∥xn−xm∥) ≥ ϕ(l/2) if n,m > k;m ̸= n. If ϕ is continuous
choose δ > 0 such that ϕ(t) > ϕ(l)/2 if |t − l| < δ. There exists k such that
|l − ∥xn − xm∥| < δ if n,m > k;n ̸= m. In both cases, ϕ(∥xn − xm∥) ≥ ϕ(l)/2
whenever n > k, which implies

lim sup
n→∞

lim sup
m→∞

ϕ(∥xn − xm∥) ≥ min(ϕ(l/2), ϕ(l)/2) > 0.

However,

lim sup
n→∞

lim sup
m→∞

ϕ(∥xn − xm∥) ≤ lim
n→∞

∥xn − Txn∥+ lim
m→∞

∥xm − Txm∥ = 0,

and this is a contradiction which proves our claim. Consequently, (xn) is a Cauchy
sequence, that is, it converges to some x0 ∈ C. Then, taking into account that T
satisfies condition (L),

∥x0 − Tx0∥ = lim sup
n→∞

∥xn − Tx0∥ ≤ lim sup
n→∞

∥xn − x0∥ = ∥x0 − x0∥ = 0,

that is, x0 is a fixed point for T .
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To prove the unicity, suppose now that y0 is another fixed point for T on C
different from x0. In such case, given that I −T is a ϕ-expansive mapping, we have
that

ϕ(∥x0 − y0∥) ≤ ∥(I − T )x0 − (I − T )y0∥ ≤ ∥x0 − Tx0∥+ ∥y0 − Ty0∥ = 0.

Then, necessarily, ∥x0 − y0∥ = 0 and we reach a contradiction, which allows us to
state that x0 is the unique fixed point for T on C. □

Theorem 2 in [9] states that for a selfmapping with condition (Cλ) for some
λ ∈ (0, 1) on a bounded and convex subset C of a Banach space, the iterative
scheme given for some r ∈ [λ, 1) and some x1 ∈ C by

xn+1 = rTxn + (1− r)xn

for n ≥ 1 provides and a.f.p.s. for T in C. Consequently, we can affirm that:

Corollary 3.13. Let X be a Banach space and C a closed, bounded and convex
subset of X. Suppose that T : C → C satisfies condition (L) and (Cλ) for some
λ ∈ (0, 1) and that I−T is ϕ-expansive. Then, the sequence given for some r ∈ [λ, 1)
and some x1 ∈ C by

xn+1 = rTxn + (1− r)xn

for n ≥ 1 converges to the unique fixed point for T on C.

Corollary 3.14. Let X be a Banach space and C a closed, bounded and convex
subset of X. Suppose that T : C → C satisfies condition C and that I − T is
ϕ-expansive. Then, the sequence given for some r ∈ [12 , 1) and some x1 ∈ C by

xn+1 = rTxn + (1− r)xn

for n ≥ 1 converges to the unique fixed point for T on C.

4. A fixed point result of Krasnosel’skĭı type

We will also need the following result in order to prove the main theorem of this
paper.

Theorem 4.1 ([14, Theorem 2.1]). Let M be a nonempty closed convex subset
of a Banach space X. Assume that T : M → M is a continuous map satisfying
condition (A1). If T (M) is relatively weakly compact, then there exists x ∈ M such
that T (x) = x.

As an easy consequence of Theorem 4.1 the following result holds:

Theorem 4.2. Let M be a nonempty bounded closed and convex subset of a Banach
space X. Assume that T : M → M is an ω-condensing mapping satisfying condition
(A1). Then T has a fixed point.

Proof. Fix x0 ∈ M . Consider

K := {A ⊆ M : T (A) ⊆ A, x0 ∈ A,A closed and convex}.
It is straightforward to see that the set

K :=
∩
A∈K

A = conv(T (K) ∪ {x0})
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belongs to K.
Bearing in mind that the mapping T is ω-condensing, we obtain that K is a

weakly compact convex T -invariant subset of M . The result now follows from
Theorem 4.1. □

We can now state a generalization of Krasnosel’skĭı theorem as well as of [7,
Theorem 3.2].

Theorem 4.3. Let X be a Banach space. Let M be a nonempty closed convex and
bounded subset of X and let A,B : M → X be two continuous mappings. If A,B
satisfy the following conditions,

(i) A satisfies (A1) and it is ω-k-contraction for some k ∈ [0, 1[,
(ii) A(M) +B(M) ⊆ M ,
(iii) B satisfies that for any y ∈ A(M) the mapping By : M → M defined by

By(x) = y +B(x) enjoys condition (L),
(iv) I −B is ϕ-expansive,
(v) B is ω-s-contraction for some s ∈ [0, 1− k[.

Then, the equation x = A(x) +B(x) has a solution.

Proof. It is easily checked that x ∈ M is a solution for the equation x = B(x)+A(x)
if and only if x is a fixed point for the operator (I − B)−1 ◦ A, whenever it is well
defined. This happens since:

(1) (I −B) has an inverse over R(I −B) := (I −B)(M). This is a consequence
of the ϕ-expansiveness of (I −B).

(2) The domain of (I −B)−1 contains the range of A.
Take y ∈ M . Defining T : M → M such that for any x ∈ M , Tx = Ay+Bx,
we have that T satisfies condition (L) by (iii), since Ay + Bx ∈ M . From
assumption (iv) it is easy to check that the mapping I−T is also ϕ-expansive.
From Proposition 3.12 it follows that T has a unique fixed point x ∈ M ,
that is, A(y) = (I −B)(x) and therefore R(A) ⊆ R(I −B) = D((I −B)−1).

Consequently the mapping (I − B)−1 ◦ A : M → M is well defined. Let us
prove now that this operator satisfies the assumptions of Theorem 4.2, that is, that
(I −B)−1 ◦A is w-condensing and that it satisfies (A1).

(I) (I −B)−1 ◦A is continuous.
First, let us see that (I − B)−1 : R(I − B) → M is a continuous mapping.
Indeed, consider a sequence (xn) in R(I −B) converging to some x0 ∈ R(I −
B). Let yn := (I−B)−1(xn) and y0 := (I−B)−1(x0). Hence (I−B)(yn) = xn
and (I −B)(y0) = x0. Since I −B is ϕ-expansive

ϕ(∥yn − y0∥) ≤ ∥(I −B)(yn)− (I −B)(y0)∥ = ∥xn − x0∥.

Consequently

(1) lim
n→∞

ϕ(∥yn − y0∥) = lim
n→∞

∥xn − x0∥ = 0.

If we assume that (∥yn − y0∥) is not a null sequence, then there exists
(∥yns − y0∥), subsequence of (∥yn − y0∥), such that ∥yns − y0∥ → r > 0, (this
is a consequence of the fact that M is a bounded subset). Now, if ϕ is a
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continuous function, we obtain that

lim
s→∞

ϕ(∥yns − y0∥) = ϕ(r) > 0.

Otherwise, ϕ will be nondecreasing and then

0 < ϕ
(r
2

)
≤ lim

s→∞
ϕ(∥yns − y0∥).

In both cases, from (1) we have that lims→∞ ϕ(∥yns − y0∥) = 0, which is a
contradiction and therefore ∥yn − y0∥ → 0, that is

∥(I −B)−1(xn)− (I −B)−1(x0)∥ → 0.

This means that (I − B)−1 is continuous as we claimed. Since A is also
continuous by hypothesis, (I −B)−1 ◦A is continuous.

(II) If K ⊆ M is a non relatively weakly compact set, then w((I−B)−1◦A(K)) <
w(K).
It is easy to check that (I −B)−1 ◦A = A+B ◦ (I −B)−1 ◦A. By using the
properties of ω(·),

ω((I −B)−1 ◦A(K)) = ω(A(K) +B(((I −B)−1 ◦A)(K)))
≤ ω(A(K)) + ω(B(I −B)−1 ◦A)(K))
≤ kω(K) + sω((I −B)−1 ◦A)(K)).

Therefore

ω((I −B)−1 ◦A(K)) ≤ k

1− s
ω(K).

which implies that (I −B)−1 ◦A is ω-condensing.
(III) (I −B)−1 ◦A satisfies condition (A1).

It is straightforward from the condition (A1) of A and the continuity of
(I −B)−1.

Consequently, (I−B)−1◦A satisfies the hypothesis of Theorem 4.2 as we claimed,
and hence such operator has a fixed point. □

Corollary 4.4. Let X be a Banach space. Let M be a nonempty closed convex and
bounded subset of X and let A,B : M → X be two continuous mappings. If A,B
satisfy the following conditions,

(i) A satisfies (A1) and it is ω-k-contraction for some k ∈ [0, 1[,
(ii) A(M) +B(M) ⊆ M ,
(iii) B is nonexpansive, and it is an ω-s-contraction for some s ∈ [0, 1− k[.
(iv) I −B is ϕ-expansive.

Then, the equation x = A(x) +B(x) has a solution.

Proof. We only need to check that Condition (ii) of the above theorem holds. In-
deed, since B is nonexpansive, then By : M → M is also nonexpansive and therefore
it enjoys property (L). □

Next, we will give an example of two mappings satisfying assumption (i), (ii) and
(iii) of Theorem 4.3 and such that Condition (iii) of the above corollary fails.
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Example 4.5 ([12, Example 3.7]). The mapping B : [0, 23 ] → [0, 23 ] given by Bx =

x2 fails to be generalized nonexpansive, and hence, nonexpansive (see [12]).
If we take A : [0, 23 ] → [0, 23 ] as A(x) = 1

9 , then, Condition (ii) of Theorem 4.3

is clearly satisfied. On the other hand taking y ∈ A([0, 23 ]), that is y = 1
9 then

By : [0, 23 ] → [0, 23 ] is given by Byx = y + Bx = 1
9 + x2. Let us prove that By

satisfies condition (L) on [0, 23 ]. Since the mapping is continuous, then the mapping
By has a fixed point (and hence an a.f.p.s.) in every nonempty, closed, convex
and By-invariant subset D ⊆ [0, 23 ]. Let us point out that the only fixed point of

By on [0, 23 ] is x0 = 3−
√
5

6 . Hence, x0 ∈ D. If (xn) is an a.f.p.s. for By in D,
then (xn) must converge to x0. Therefore lim sup

n→∞
|xn − Byx| = |x0 − By(x)|, and

lim sup
n→∞

|xn − x| = |x0 − x|. Since, por x ∈ [0, 23 ],

|Byx− x0| = |19 + x2 − 3−
√
5

6 |
≤ |x− 3−

√
5

6 |,

then, By satisfies condition (L) on [0, 23 ].

Notice that even in the case that X is a reflexive space, the above Theorem
4.3 seems to be new because assumptions concerning operator B are weaker than
nonexpansiveness.

Finally, we give an example of application of Corollary 4.4.

Example 4.6. Consider the following equation

y′(t) = f(t, y(t))
y(0) = g(y)

}
where f : [0, T ]× R → R is a continuous and bounded function and g is a function
from C([0, T ]) to R defined as

g(u) =
n∑

i=1

αiu(ti)

with 0 < t1 < t2 < . . . < tn ≤ T and
∑n

i=1 |αi| < 1.
Let us define the operator

S : C([0, T ]) → C([0, T ])

u 7→ S(u)(t) = g(u) +
∫ t
0 f(s, u(s))ds.

If this operator has a fixed point, then it is a solution for the problem above.
Let us write the operator S as a sum of the operators S1 and S2 defined as

S1 : C([0, T ]) → C([0, T ])
u 7→ S1(u)(t) = g(u)

and
S2 : C([0, T ]) → C([0, T ])

u 7→ S2(u)(t) =
∫ t
0 f(s, u(s))ds.
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Let us prove that S1, S2 satisfy assumption (iv) of Theorem 4.3 for some ball.
Consider r > 0 and u, v ∈ Br(0). Then max{∥u∥∞, ∥v∥∞} ≤ r. Since f(·, ·) is a
bounded function there exists M > 0 such that

|S1(u)(t) + S2(v)(t)| ≤ |g(u)|+
∫ t
0 |f(s, v(s))|ds

≤ ∥u∥∞ ·
∑n

i=1 |αi|+MT
≤ r

(∑n
i=1 |αi|+ MT

r

)
Since limr→∞

MT
r = 0 and

∑n
i=1 |αi| < 1, it is clear that there exists r0 > 0 such

that if u, v ∈ Br0 then ∥S1(u) + S2(v)∥∞ ≤ r0.
It is a well known result that under these assumptions S2 is a compact opera-

tor, hence S2 satisfies condition (A1) and it maps bounded subsets into relatively
compact subsets.

On the other hand, since g is a linear function and
∑n

i=1 |αi| < 1, S1 is a con-
tractive weakly continuous mapping, thus by Lemma 3.1 in [7], we know that S1 is
ω-condensing. Moreover, since S1 is a contraction mapping, it is clear that assump-
tions (ii) and (iii) in Theorem 4.3 hold.

Consequently, the operator S = S1 + S2 is under the conditions of Theorem 4.3,
and hence, S has a fixed point, which is a solution for the problem above.
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[9] J. Garćıa-Falset, E. Llorens-Fuster, T. Suzuki, Some generalized nonexpansive mappings, J.
Math. Anal. Appl. 375 (2011) 185–195.
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