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This notion was introduced by Francesco S. De Blasi and Myjak [8], and studied
among others by Reich and Zaslavski ([22] and [23, Section 3.11]; also, see [21]).

Proposition 1.1. Let (X, d) be a complete metric space, C be a nonempty closed
subset of X and T : C → X be a continuous mapping. For n ∈ N, let An be defined
by (1.1). The following statements are equivalent:

(i) (An) satisfies the assumptions of Cantor’s intersection theorem;
(ii) the fixed point problem for T is well posed;
(iii) infx∈C d(x, Tx) = 0 and for any sequences (xn) and (yn) of elements of C,

d(xn, Txn) → 0 and d(yn, T yn) → 0 imply that d(xn, yn) → 0.

Note that in [15] T was assumed to be a selfmap of X, but this condition is not
necessary in Proposition 1.1.

However, in many cases the assumption that diamAn → 0 turns out to be too re-
strictive. In particular, it need not hold if T is a nonexpansive mapping. (Consider,
e.g., the identity mapping.) Fortunately, there are several possibilities of replacing
the assumption on diameters of An by other, often geometric type conditions, so
that the intersection of An be nonempty. Much information on this topic can be
found, e.g., in the paper of Castillo and Papini [6]. Here we recall an old result of

S̆mulian [24], one of basic theorems in Banach space theory (see, e.g., [11, pp. 4–5]).

Theorem 1.2 (S̆mulian). A Banach space X is reflexive if and only if any decreas-
ing sequence of nonempty closed bounded and convex subsets of X has a nonempty
intersection.

Unfortunately, for a nonexpansive mapping T , sets An defined by (1.1) need not

be convex, so S̆mulian’s theorem is useless here. Our purpose is to give a partial
extension of S̆mulian’s theorem by weakening the convexity assumption. Let us
observe that if A is a closed subset of a normed linear space, then A is convex if
and only if A+A ⊆ 2A, where

A+A := {x+ y : x, y ∈ A} and λA := {λx : x ∈ A} for λ ∈ R.

So the convexity assumption in S̆mulian’s theorem can be written in the following
form:

An +An ⊆ 2An for any n ∈ N.
We relax this condition in the following way:

(1.2) for any n ∈ N, there is k ∈ N such that Ak +Ak ⊆ 2An.

Our main result says that if X is a superreflexive Banach space, then every de-
creasing sequence (An) of closed subsets of X satisfying (1.2) and such that there
exists a bounded sequence (an) with an ∈ An, has a nonempty intersection. (For
the definition of a superreflexive space, see, e.g., [1, p. 412].) Actually, our result is
inspired by Goebel’s [10] elementary proof of the fixed point theorem by Browder
[3], Göhde [13] and Kirk [18], and particularly, by its slightly modified version given
in [14, pp. 51–53] for Hilbert spaces.

We also show that in every infinite dimensional Banach space there exists a
sequence (An) satisfying the assumptions of our theorem such that each An is
noncompact, infn∈N diamAn > 0 and none of An contains a nontrivial segment.
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Consequently, neither the compactness argument nor Cantor’s theorem can be used
to (An) to deduce the nonemptiness of the intersection, and also S̆mulian’s theorem
is not applicable here.

In Section 3 we show that if sets An are defined by (1.1), where C is a nonempty
convex subset of a normed linear space X, then (An) has property (1.2) if and only
if T is almost affine in the sense that for any ε > 0 there exists δ > 0 such that

(1.3)

∣∣∣∣∣∣∣∣T (
x+ y

2

)
− Tx+ Ty

2

∣∣∣∣∣∣∣∣ < ε for any x, y ∈ Fδ(T ),

where Fδ(T ) := {x ∈ C : ∥ x− Tx ∥ ≤ δ}, i.e., Fδ(T ) is the set of all δ-fixed points
of T . Hence we obtain a fixed point theorem for almost affine mappings which
generalizes the Browder–Göhde–Kirk theorem since it can be shown that every
nonexpansive mapping T : C → X, where C is a nonempty bounded and convex
subset of a uniformly convex Banach space X, is almost affine. Also, any mapping
T : C → X of type (γ) in the sense of Bruck [4] (see also [11, p. 111]) is almost affine
for an arbitrary Banach space X. Let us also note that by our Proposition 3.3, a
mapping T is almost affine if and only if T is of ‘convex type’ in the sense of Khamsi
[16, 17] who, however, considered only nonexpansive mappings of convex type.

At last our intersection theorem let us obtain a common fixed point theorem for
a family of nonexpansive mappings (not necessarily commuting), which generalizes
a corresponding result for a single mapping (see, e.g., [11, Proposition 10.2] or [1,
Lemma 3.16]).

We close the paper with posing some questions. It seems that the following prob-
lem is particularly interesting: Let X be a Banach space in which every decreasing
sequence (An) of nonempty closed and bounded subsets of X with property (1.2)
has a nonempty intersection. Is X superreflexive?

2. Intersection theorem for superreflexive Banach spaces

We start with our main result of this section which was ‘hidden’ in Goebel’s
proof of the Browder–Göhde–Kirk theorem (see both proofs given in [10] and [14,
pp. 51–53]). For r > 0, we denote by Br(0) the closed ball centered at 0 with radius
r.

Theorem 2.1. Let X be a superreflexive Banach space and (An) be a decreasing
sequence of closed subsets of X such that for any n ∈ N, there is k ∈ N such that

Ak +Ak ⊆ 2An.

Then the intersection
∩

n∈NAn is nonempty closed and convex if and only if there
exists a bounded sequence (an) such that an ∈ An for each n ∈ N.

Proof. Part ‘only if’ is obvious.
(⇐): By the Enflo–James theorem (see, e.g., [1, p. 412]), there exists an equivalent

uniformly convex norm ∥ · ∥ on X. Clearly, sets An are closed and (an) is still
bounded with respect to the new norm. For n ∈ N, set

(2.1) αn := d(0, An) = inf{∥ x ∥: x ∈ An}.
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Since 0 ≤ αn ≤ ∥ an ∥, (αn) is bounded. Since (An) is decreasing, (αn) is increasing.
Thus αn ↗ α for some α ≥ 0. If α = 0 then αn = 0 for each n ∈ N, so 0 ∈

∩
n∈NAn

since each An is closed. So we assume further that α > 0.
By (1.2), there is a sequence (kn) of positive integers (not necessarily increasing)

such that Akn +Akn ⊆ 2An for each n ∈ N. Set

p1 := k1 and pn+1 := max{pn + 1, kn+1} for n ∈ N.

Then (Apn) is a subsequence of (An) and

Apn +Apn ⊆ Akn +Akn ⊆ 2An

since pn ≥ kn and (An) is decreasing. For n ∈ N, set

Bn := Apn ∩Bα+1/n(0).

Since αpn ≤ α < α + 1/n, we get that infx∈Apn
∥ x ∥ < α + 1/n, so there exists

xn ∈ Apn such that ∥ xn ∥ < α+ 1/n, which means that xn ∈ Bn. Thus each Bn is
nonempty. Moreover, sets Bn are closed and the sequence (Bn) is decreasing. We
show that diamBn → 0. Let x, y ∈ Bn. Then ∥ x ∥ ≤ α+1/n and ∥ y ∥ ≤ α+1/n.
Since x, y ∈ Apn , (x + y)/2 ∈ An, so ∥ (x + y)/2 ∥ ≥ αn. Let η denote the inverse
function to the modulus of convexity of (X, ∥ · ∥). Then the above inequalities
imply that (see, e.g., [25, Problem 10.1(a)])

∥ x− y ∥ ≤
(
α+

1

n

)
η

(
α+ 1/n− αn

α+ 1/n

)
.

Hence we infer that

diamBn ≤
(
α+

1

n

)
η

(
α+ 1/n− αn

α+ 1/n

)
,

so limn→∞ diamBn = 0 since limt→0+ η(t) = 0. By Cantor’s intersection theorem,∩
n∈NBn ̸= ∅. Since ∩

n∈N
Bn ⊆

∩
n∈N

Apn =
∩
n∈N

An,

we get that
∩

n∈NAn ̸= ∅. Finally, if x, y ∈
∩

n∈NAn then for any n ∈ N, x, y ∈ Apn ,
so (x+y)/2 ∈ An by property of (Apn). This proves the convexity of

∩
n∈NAn since

the intersection of An is closed. □

The referee observed that the assumption of Theorem 2.1 – ‘there exists a bounded
sequence (an) such that an ∈ An for any n ∈ N’ – is equivalent to the boundedness
of sequence (αn) defined by (2.1). Here we can also add yet another equivalent
condition: ‘there exists r > 0 such that each set

(2.2) Bn := An ∩Br(0)

is nonempty’. Clearly, sets Bn are closed and bounded, (Bn) has property (1.2)
(with An replaced by Bn) by convexity of Br(0), and

∩
n∈NBn ⊆

∩
n∈NAn. This

shows that Theorem 2.1 could easily be derived from the following particular version
of it:
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Proposition 2.2. Let X be a superreflexive Banach space and (An) be a decreasing
sequence of nonempty closed and bounded subsets of X. If for any n ∈ N, there is
k ∈ N such that Ak +Ak ⊆ 2An, then the intersection

∩
n∈NAn is nonempty closed

and convex.

Theorem 2.1 and Proposition 2.2 are in some sense equivalent (as explained

above), but Proposition 2.2 is better comparable with S̆mulian’s theorem than The-
orem 2.1.

On the other hand, as also observed by the referee, in reflexive spaces, any de-
creasing sequence (An) of nonempty closed and convex subsets of X such that there
exists a bounded sequence (an) with an ∈ An for each n ∈ N, has a nonempty

intersection. This follows from S̆mulian’s theorem applied to sequence (Bn) defined
by (2.2). Actually, we observe that also the convexity assumption can be relaxed
here as done in the following theorem, which in turn is in some sense equivalent to
S̆mulian’s theorem.

Proposition 2.3. Let X be a normed linear space. The following statements are
equivalent:

(i) X is a reflexive Banach space;
(ii) any decreasing sequence (An) of closed subsets of X such that for any n ∈ N,

there is k ∈ N with convAk ⊆ An and there exists a bounded sequence (an)
with an ∈ An for each n ∈ N, has a nonempty intersection.

Proof. (ii)⇒(i) follows from Theorem 1.2.
(i)⇒(ii): Let sets Bn be defined by (2.2). Clearly, each Bn is nonempty closed

and bounded, and (Bn) is decreasing. Fix n ∈ N. By hypothesis, there is k ∈ N
such that convAk ⊆ An. Then

convBk ⊆ convBr(0) ∩ convAk = Br(0) ∩ convAk ⊆ Br(0) ∩An = Bn.

As in the proof of Theorem 2.1, we may infer that there exists a subsequence (Bkn)
of (Bn) such that convBkn ⊆ Bn. Set Cn := convBkn . Clearly, Cn ⊆ Bn ⊆ An,
so

∩
n∈NCn ⊆

∩
n∈NAn. Since, by Theorem 1.2,

∩
n∈NCn is nonempty, so is the

intersection
∩

n∈NAn. □
Now we hope it is convenient for the reader to compare Proposition 2.3 ((i)⇒(ii))

with Theorem 2.1.
Also, the referee observed that in Theorem 2.1 condition (1.2) cannot be omitted.

We can develop this remark as follows: in every infinite dimensional Banach space
there exists a decreasing sequence of nonempty closed and bounded sets having the
empty intersection. This is an immediate consequence of the following result of
Chelidze [7].

Proposition 2.4 (Chelidze). A Banach space X is finite dimensional if and only
if every decreasing sequence of nonempty closed and bounded subsets of X has a
nonempty intersection.

Now we construct a sequence (An) of subsets of the closed unit ball in l2 satisfying
the assumptions of Theorem 2.1 such that each An is noncompact and diamAn =√
2. Thus Cantor’s theorem as well as the compactness argument cannot be applied



1060 JACEK JACHYMSKI

to (An) to deduce the nonemptiness of the intersection. Moreover, none of An

contains a nontrivial segment, so there does not exist a subsequence (Akn) such
that convAkn ⊆ An. Consequently, also Proposition 2.3 is not applicable here.

Example 1. Set

C1 := {0, 1} and Cn+1 :=
1

2
(Cn + Cn) for n ∈ N,

so that Cn = {i/2n−1 : i = 0, 1, . . . , 2n−1}. Let B1 denote the closed unit ball in the
Hilbert space l2. Define

A1 := B1 ∩
∏
n∈N

Cn.

Since
∏

n∈NCn is compact, hence closed, in the product topology, we may infer that
A1 is closed in the norm topology. For (xn) ∈ l2, define

F (x1, x2, . . .) := (0, x1, x2, . . .).

Clearly, F is an isometric isomorphism of l2 onto F (l2), so the set F (A1) is closed
and F (B1) ⊆ B1. Moreover, F (A1) ⊆ A1 since (Cn) is increasing and 0 ∈ C1.
Hence, if we set

An+1 := F (An) for n ∈ N,
then (An) is a decreasing sequence of closed subsets of B1. By induction we show
that

(2.3)
1

2
(An+1 +An+1) ⊆ An,

so (An) has property (1.2). Observe that if x = (xn) ∈ A2 and y = (yn) ∈ A2, then
(x1 + y1)/2 = 0 ∈ C1 whereas for n ≥ 2, xn, yn ∈ Cn−1, so

xn + yn
2

∈ 1

2
(Cn−1 + Cn−1) = Cn

by definition of Cn. Thus (x+ y)/2 ∈
∏

n∈NCn, and (x+ y)/2 ∈ B1 because of the
convexity of B1. This yields (2.3) for n = 1. Now assume that (2.3) holds for some
n ∈ N. Then, since F is linear, we get

1

2
(An+2+An+2) =

1

2
(F (An+1)+F (An+1)) = F

(
1

2
(An+1 +An+1)

)
⊆ F (An) = An+1,

which completes the induction.
We show that diamAn =

√
2. If x, y ∈ An, where x = (xk) and y = (yk), then

xk, yk ≥ 0, so (xk − yk)
2 ≤ x2k + y2k, which gives ∥ x − y ∥ ≤

√
2 since x, y ∈ B1.

Thus diamAn ≤
√
2. On the other hand, observe that {en, en+1, . . .} ⊆ An, where

en := (δkn)k∈N, so

diamAn ≥ ∥ en − en+1 ∥ =
√
2.

Finally, we show that none of An contains nontrivial segments. Let x, y ∈ An,
x ̸= y, and suppose, on the contrary, xy ⊆ An. Let k be such that xk ̸= yk. Then
k ≥ n by definition of An. Since λx + (1 − λ)y ∈ An for λ ∈ [0, 1], we get that
λxk + (1− λ)yk ∈ Ck−n+1 for all such λ, which yields a contradiction since Ck−n+1

is finite.
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Actually, we may adapt the above example to any infinite dimensional Banach
space instead of l2, which is done in the following

Proposition 2.5. Let X be an infinite dimensional Banach space. Then there
exists a decreasing sequence (An) of nonempty closed subsets of the closed unit ball
in X having property (1.2) such that each An is noncompact and does not contain
any nontrivial segment, and diamAn ≥ 1.

Proof. By Banach’s theorem (see, e.g., [19, Theorem 1.a.5]), X contains a basic
sequence (en), i.e., (en) is a Schauder basis of Y , the closed linear span of {en : n ∈
N}. We may assume that (en) is normalized, i.e., ∥ en ∥ = 1 for each n ∈ N. Let
(e∗n) be the sequence of biorthogonal functionals (cf. [19, p. 7]) associated to the
basis (en), i.e., e

∗
n ∈ Y ∗ and e∗nem = δnm. Let e∗0 ∈ Y ∗ be the zero functional on Y ,

and let sets Cn be defined as in Example 1. Now we reformulate the definition of
An from that example as follows: for n ∈ N,

An := B1 ∩
n−1∩
k=0

Ker e∗k ∩
∞∩
k=n

(e∗k)
−1(Ck−n+1),

i.e., x =
∑∞

k=1 xkek ∈ An if and only if ∥ x ∥ ≤ 1, xk = 0 for k = 1, . . . , n − 1 (if
n ≥ 2), and xk ∈ Ck−n+1 for k ≥ n. (This easily implies that

∩
n∈NAn = {0}.)

Since (Cn) is increasing, we may infer that (An) is decreasing. The continuity of e∗k
implies that each An is closed in the norm topology. It is easily seen that

{0} ∪ {en, en+1, . . .} ⊆ An,

so diamAn ≥ 1 and An is noncompact. (Indeed, (en+k−1)k∈N is a sequence of
elements of An, which does not contain a convergent subsequence.) A similar ar-
gument as in Example 1 shows that none of An contains a nontrivial segment.
Finally, if x, y ∈ An+1, x =

∑∞
k=1 xkek and y =

∑∞
k=1 ykek, then (xk + yk)/2 = 0

for k = 1, . . . , n, and xk, yk ∈ Ck−n for k ≥ n+ 1, so for all such k,

xk + yk
2

∈ 1

2
(Ck−n + Ck−n) = Ck−n+1.

This yields (x + y)/2 ∈ An, so we get that (1/2)(An+1 + An+1) ⊆ An. Thus (An)
has property (1.2), so Theorem 2.1 is applicable to (An) if X is superreflexive. □

3. Applications to metric fixed point theory

We start with the following result which is a simple consequence of S̆mulian’s
theorem.

Proposition 3.1. Let X be a reflexive Banach space and C be a nonempty closed
bounded and convex subset of X. Let a mapping T : C → X be continuous and
affine. Then T has a fixed point if and only if infx∈C ∥ x− Tx ∥ = 0.

Proof. Part ‘only if’ is obvious. So let infx∈C ∥ x−Tx ∥ = 0. Then sets An defined
by (1.1) are nonempty, closed since T is continuous, convex since T is affine, and
bounded since An ⊆ C. By Theorem 1.2,

∩
n∈NAn ̸= ∅, so T has a fixed point. □
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Our first purpose is to obtain a generalization of Proposition 3.1 by weakening
the assumption that T be affine: it suffices to assume that T is almost affine, i.e., it
satisfies condition (1.3). Obviously, every affine mapping is almost affine and every
mapping T such that infx∈C ∥ x − Tx ∥ > 0 is trivially almost affine. Also, it is
clear that the class of almost affine mappings is stable under equivalent renormings.
Below we give a characterization of such mappings. We need the following folklore
result (cf. [15, Lemma 1]).

Lemma 3.2. Let X be a nonempty set, and φ, ψ be nonnegative real functions on
X ×X. The following statements are equivalent:

(i) for any sequences (xn) and (yn) of elements of X,

φ(xn, yn) → 0 implies that ψ(xn, yn) → 0;

(ii) for any ε > 0, there is δ > 0 such that for any x, y ∈ X,

φ(x, y) ≤ δ implies that ψ(x, y) ≤ ε.

Proposition 3.3. Let C be a nonempty convex subset of a normed linear space
X and T : C → X be a mapping. Let sets An be defined by (1.1). The following
statements are equivalent:

(i) T is almost affine;
(ii) for any sequences (xn) and (yn) of elements of C,

if ∥ xn−Txn ∥ → 0 and ∥ yn−Tyn ∥ → 0, then

∣∣∣∣∣∣∣∣T (
xn + yn

2

)
− Txn + Tyn

2

∣∣∣∣∣∣∣∣ → 0;

(iii) for any sequences (xn) and (yn) of elements of C,

if ∥ xn−Txn ∥ → 0 and ∥ yn−Tyn ∥ → 0, then

∣∣∣∣∣∣∣∣T (
xn + yn

2

)
− xn + yn

2

∣∣∣∣∣∣∣∣ → 0;

(iv) for any ε > 0, there is δ > 0 such that if x, y ∈ Fδ(T ), then (x + y)/2 ∈
Fε(T );

(v) the sequence (An) has property (1.2).

Proof. The equivalence of (i) and (ii) follows from Lemma 3.2 with
(3.1)
φ(x, y) := max{∥ x− Tx ∥, ∥ y− Ty ∥}, ψ(x, y) :=∥ T ((x+ y)/2)− (Tx+ Ty)/2 ∥

for x, y ∈ C.
To prove (ii)⇔(iii) it suffices to show that if ∥ xn − Txn ∥ → 0 and ∥ yn − Tyn ∥

→ 0, then∣∣∣∣∣∣∣∣T (
xn + yn

2

)
− Txn + Tyn

2

∣∣∣∣∣∣∣∣ → 0 ⇔
∣∣∣∣∣∣∣∣T (

xn + yn
2

)
− xn + yn

2

∣∣∣∣∣∣∣∣ → 0.

This follows from the inequalities:∣∣∣∣∣∣∣∣T (
xn + yn

2

)
− xn + yn

2

∣∣∣∣∣∣∣∣ ≤ 1

2
(∥ xn − Txn ∥ + ∥ yn − Tyn ∥)

+

∣∣∣∣∣∣∣∣T (
xn + yn

2

)
− Txn + Tyn

2

∣∣∣∣∣∣∣∣ ;



A CANTOR TYPE INTERSECTION THEOREM 1063∣∣∣∣∣∣∣∣T (
xn + yn

2

)
− Txn + Tyn

2

∣∣∣∣∣∣∣∣ ≤ 1

2
(∥ xn − Txn ∥ + ∥ yn − Tyn ∥)

+

∣∣∣∣∣∣∣∣T (
xn + yn

2

)
− xn + yn

2

∣∣∣∣∣∣∣∣ .
The equivalence of (iii) and (iv) follows from Lemma 3.2 with φ defined by (3.1)

and

ψ(x, y) := ∥ (x+ y)/2− T ((x+ y)/2) ∥ for x, y ∈ C.

(iv)⇒(v): Fix n ∈ N. By (iv), for ε := αn, there is δ > 0 such that

1

2
(Fδ(T ) + Fδ(T )) ⊆ Fε(T ) = An.

Since limm→∞ αm = 0, there is k ∈ N such that αk < δ. Clearly, Ak = Fαk
(T ) ⊆

Fδ(T ), so
1

2
(Ak +Ak) ⊆

1

2
(Fδ(T ) + Fδ(T )) ⊆ An.

(v)⇒(iv): Fix ε > 0. Since limm→∞ αm = 0, there is n ∈ N such that αn < ε.
By (v), there is k ∈ N such that Ak +Ak ⊆ 2An. Set δ := αk. Then

1

2
(Fδ(T ) + Fδ(T )) =

1

2
(Ak +Ak) ⊆ An ⊆ Fε(T ),

so (iv) holds. □

Thus, by Proposition 3.3, continuous almost affine mappings are exactly these
continuous mappings for which a sequence (An) defined by (1.1) satisfies the as-
sumptions of our intersection theorem.

Corollary 3.4. Let C be a nonempty closed convex subset of a Banach space X
and T : C → X be a continuous mapping. If the fixed point problem for T is well
posed, then T is almost affine. In particular, this is the case if T (C) ⊆ C and T is
strictly contractive.

Proof. If ∥ xn−Txn ∥ → 0 and ∥ yn−Tyn ∥ → 0, then xn → x∗ and yn → x∗, where
x∗ = Tx∗, so by continuity of T , T ((xn+yn)/2) → Tx∗ and (Txn+Tyn)/2 → Tx∗.
Hence ∥ T ((xn + yn)/2)− (Txn + Tyn)/2 ∥ → 0, so by Proposition 3.3, T is almost
affine. □

Let us note that in view of the Reich–Zaslavski [22] result, Corollary 3.4 also
applies to mappings which are contractive in the sense of Rakotch [20]. Other
classes of mappings for which the fixed point problem is well posed are described in
[15].

As a consequence of Proposition 3.3 and Theorem 2.1, we obtain the following
fixed point theorem for almost affine mappings. We emphasize that the whole proof
of it (including the proof of Theorem 2.1) is elementary; in particular, we do not
use a weak compactness argument.

Theorem 3.5. Let C be a nonempty closed and convex subset of a superreflexive
Banach space X. Let a mapping T : C → X be continuous and almost affine. The
following statements are equivalent:
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(i) there exists a bounded sequence (xn) of elements of C such that ∥ xn−Txn ∥
→ 0;

(ii) the set FixT is nonempty closed and convex.

Proof. Implication (ii)⇒(i) is obvious.
(i)⇒(ii): Let sets An be defined by (1.1), and (xn) be a sequence as in (i). Then

there is a subsequence (xkn) such that xkn ∈ An for n ∈ N, so if we set an := xkn ,
then (an) is bounded and an ∈ An. Clearly, by continuity of T , each An is closed.
Since T is almost affine, Proposition 3.3 yields that (An) has property (1.2). By
Theorem 2.1,

∩
n∈NAn (= FixT ) is nonempty closed and convex. □

Remark 1. A result related to Theorem 3.5 was obtained by Garcia-Falset et al. [9,
Proposition 3.2]: Here C is assumed to be a nonempty convex and weakly compact
subset of an arbitrary Banach space, and T is continuous and α-almost convex, i.e.,
for any x, y ∈ C and any λ ∈ [0, 1],

∥ λx+ (1− λ)y − T (λx+ (1− λ)y) ∥ ≤ α(max{∥ x− Tx ∥, ∥ y − Ty ∥}),

where a function α : R+ → R+ is continuous and strictly increasing, and α(0) = 0.
By Proposition 3.3, it is easily seen that every α-almost convex mapping is almost
affine, but the latter class of mappings seems to be wider than the former.

As a particular case of Theorem 3.5, we get the following result for nonexpansive
mappings (cf. [11, Proposition 10.2] or [1, Lemma 3.16]).

Corollary 3.6. Let C be a nonempty closed bounded and convex subset of a uni-
formly convex Banach space X. Let a mapping T : C → X be nonexpansive. Then
T has a fixed point if and only if infx∈C ∥ x− Tx ∥ = 0.

Proof. Clearly, X is superreflexive. By [11, Proposition 10.1], T satisfies condition
(iii) of Proposition 3.3, so T is almost affine and the result follows from Theorem 3.5.

□

Let us note that if T is a selfmap of C, then Corollary 3.6 can be proved more
easily by using asymptotic centers; see [12, Theorem 5.2, p. 24].

Now following Bruck [4] (see also [11, p. 111]) we denote by Γ the set of strictly
increasing, continuous and convex functions γ : R+ → R+ with γ(0) = 0. Further,
we extend Bruck’s definition of mappings of type (γ): Given c ∈ (0, 1), we say that
a mapping T : C → X is of type (γ, c) if γ ∈ Γ and for all x, y ∈ C,

(3.2) γ(∥ cTx+ (1− c)Ty − T (cx+ (1− c)y) ∥ ≤ ∥ x− y ∥ − ∥ Tx− Ty ∥ .

Then T is of type (γ) in the sense of Bruck [4] if T is of type (γ, c) for any c ∈ (0, 1).
It was shown in [4] that if C is a nonempty convex and weakly compact subset of a
Banach space and T : C → C is of type (γ), then T has a fixed point. We give the
following partial extension of this result.

Theorem 3.7. Let C be a nonempty closed bounded and convex subset of a super-
reflexive Banach space, and a mapping T : C → C be of type (γ, 1/2). Then T has
a fixed point.
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Proof. It was shown in [4] that if T is of type (γ), then for any ε > 0, there exists
δ > 0 such that if x, y ∈ Fδ(T ), then λx+ (1− λ)y ∈ Fε(T ) for any λ ∈ [0, 1]. The
same argument as in the proof of [4, Lemma 1.2] shows that if T is of type (γ, 1/2),
then T satisfies the above condition with λ = 1/2. Thus (iv) of Proposition 3.3
holds, so T is almost affine. Since by (3.2) (with c = 1/2) T is nonexpansive, [11,
Lemma 3.1] implies that (i) of Theorem 3.5 is satisfied, so T has a fixed point. □

We close this section with a common fixed point theorem for a family of nonex-
pansive mappings, which is a generalization of Corollary 3.6.

Theorem 3.8. Let C be a nonempty closed bounded and convex subset of a uni-
formly convex Banach space X. Let {Tλ : λ ∈ Λ} be a family of nonexpansive
mappings, Tλ : C → X for λ ∈ Λ. Then {Tλ : λ ∈ Λ} has a common fixed point if
and only if for any ε > 0, {Tλ : λ ∈ Λ} has a common ε-fixed point.

Proof. Implication (⇒) is obvious.
(⇐): Denote by η the inverse function to the modulus of convexity of X. It is

known (see, e.g., [25, pp. 476–477]) that if T : C → X is nonexpansive and ε ∈ (0, 1],
then for any x, y ∈ Fε(T ), (x+ y)/2 ∈ Fa(ε)(T ), where

a(ε) := max{2
√
ε, (diamC + ε)η(

√
ε)}.

Clearly, limε→0+ a(ε) = 0. It is important in this proof that function a(·) does not
depend on T . For n ∈ N, set

An :=
∩
λ∈Λ

{
x ∈ C :∥ x− Tλx ∥ ≤ 1

n

}
.

By hypothesis, An ̸= ∅. Clearly, each An is closed and bounded, and (An) is
decreasing. We show that (An) satisfies (1.2). Fix n ∈ N. Since limm→∞ a(1/m) =
0, there is k ∈ N such that a(1/k) ≤ 1/n. Assume that x, y ∈ Ak, i.e., x, y ∈
F1/k(Tλ) for any λ ∈ Λ. Then

1

2
(x+ y) ∈ Fa(1/k)(Tλ) ⊆ F1/n(Tλ)

for any λ ∈ Λ, i.e., (x+ y)/2 ∈ An. By Theorem 2.1,
∩

n∈NAn ̸= ∅ which completes
the proof since

∩
n∈NAn =

∩
λ∈Λ FixTλ. □

Remark 2. The above proof shows that Theorem 3.8 can be generalized by con-
sidering any family {Tλ : λ ∈ Λ} of continuous mappings having the property
that for any sequences (xn) and (yn) of elements of C, supλ∈Λ ∥ xn − Tλxn ∥ →
0 and supλ∈Λ ∥ yn−Tλyn ∥ → 0 imply that supλ∈Λ ∥ (xn+yn)/2−Tλ((xn+yn)/2) ∥
→ 0. In particular, this is the case if all Tλ are nonexpansive or all Tλ are α-almost
convex with a function α which does not depend on λ. The latter case may be
compared with [9, Corollary 3.5] of Garcia-Falset et al. who considered a com-
muting family of α-almost convex mappings, but with functions α depending on a
parameter.
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4. Four problems

Our first question deals with superreflexivity.

Question 1. Let X be a normed linear space. Assume that every decreasing
sequence (An) of nonempty closed and bounded subsets of X with property (1.2)
has a nonempty intersection. Is X a superreflexive Banach space?

Clearly, by S̆mulian’s theorem, every normed linear space with the above property
is a reflexive Banach space.

Our second question concerns in fact relations between nonexpansive mappings
and almost affine mappings.

Question 2. Let C be a nonempty closed bounded and convex subset of a super-
reflexive Banach space (X, ∥ · ∥). Let a mapping T : C → X be continuous and
almost affine with infx∈C ∥ x− Tx ∥ = 0. Is it true that for any ε > 0, there exists
δ > 0 such that convFδ(T ) ⊆ Fε(T )?

If the answer is positive, then Theorem 3.5 can be proved with the help of
S̆mulian’s theorem. Indeed, if we consider sets An defined by (1.1), i.e., An =
Fαn(T ), then the above property of the family {Fε(T ) : ε > 0} easily implies that
there is a subsequence (Akn) such that for any n ∈ N, convAkn ⊆ An. By Proposi-
tion 2.3,

∩
n∈NAn ̸= ∅, and hence T has a fixed point. Thus, in such a case, there

would be no need to use Theorem 2.1 in a proof of Theorem 3.5.
Therefore we would prefer the negative answer to Question 2. In this case a

mapping T without the above property cannot be of type (γ) in view of [5, Theo-
rem 1.2]. (Let us note that every superreflexive Banach space is B-convex, so indeed
we may refer here to that result of Bruck.) Consequently, by [4, Lemma 1.1], such
a mapping T cannot be nonexpansive with respect to any uniformly convex norm
on X, which is equivalent to ∥ · ∥. Thus Corollary 3.6 could not be applied to such
a T , but Theorem 3.5 would be applicable here.

The third question was mentioned in Remark 1 in connection with the definition
of Garcia-Falset et al. [9].

Question 3. Does there exist an almost affine mapping, which is not α-almost
convex for any continuous and strictly increasing function α : R+ → R+ with α(0) =
0?

Finally, we pose a question concerning mappings of type (γ, c).

Question 4. Let c ∈ (0, 1). Does there exist a mapping of type (γ, c), which is not
of type (γ)?

A special case of this question with c = 1/2 is also interesting since Theorem 3.7
deals with such mappings.
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