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for the precise definition) then it was shown in [7, 8], that there is a dense Gδ-
subset X1 of X and a single-valued continuous mapping f : X1 → Y which is a
selection of F on X1. A particularly important case of when F embraces Y1 is when
Y1 = Y . The usefulness of selections in such a setting was demonstrated in [7,8] with
the applications of the above result to geometry of Banach spaces, approximation
theory, variational principles in optimization and others.

An alternative approach for obtaining such densely defined selections using topo-
logical games was considered in [24] and a further study was done in [12,23], where
the case when the mappings are lower quasicontinuous was investigated.

In two subsequent papers [13, 33] the authors showed that, in order to have se-
lections as above in the case when Y1 = Y , instead of supposing that the range
spaces Y is completely metrizable, it is enough to suppose that Y is fragmentable
by a special metric: a topological space Y is fragmentable (see [18]) if it admits a
metric d (not necessarily related to the original topology) such that for every ε > 0
and every nonempty set A ⊂ Y there is a nonempty relatively open subset V of
A such that d − diam(V ) < ε. Every metrizable space is fragmentable by its own
metric but there are important classes of non metrizable spaces which are frag-
mentable. The notion of fragmentability has turned to be very useful in the study
of various properties in functional analysis and topology like, single-valuedness of
set-valued mappings, existence of everywhere defined Borel selections, differentiabil-
ity of convex functions, validity of variational principles in optimization and others.
Characterization of the fragmentable spaces as well as their applications can be
found in [16, 18, 20–22, 36, 37]. See also Section 3 for more detailed discussion of
fragmentability.

Supposing Y to be fragmentable by a special metric, it was shown in [33] that
every lower demicontinuous densely defined mapping F : X ⇒ Y with closed graph
has a densely defined continuous selection. A similar result was proved for lower
quasicontinuous mappings in [13]. We show in this paper that the latter results
remain valid in the more general case of a subset Y1 of Y which is fragmentable by
a special metric and the mapping F embraces Y1.

The rest of the paper is organized as follows. In the next section we give some
preliminaries related to set-valued mappings. In Section 3 we present and prove
our main results about the existence of densely defined continuous selections of
set-valued mappings. One particular case of our main result reads as follows (see
Theorem 3.3): Let F : X ⇒ Y be a lower demicontinuous closed graph mapping
with a dense domain acting between a Baire spaceX and a regular space Y . Suppose
that Y contains a subset Y1, which is embraced by F and which is fragmented
by a complete metric whose topology contains the original topology of Y1. Then
there exists a dense Gδ-subset X1 of X and a single-valued continuous mapping
f : X1 → Y such that f is a selection of F on X1. In the final Section 4 we
give several applications, concerning the so-called minimal (or quasicontinuous)
mappings as well as applications to variational principles in optimization.

2. Some preliminaries

In the sequel all topological spaces will be assumed to be at least Hausdorff. Let
F : X ⇒ Y be a set-valued mapping between the topological spaces X and Y . The
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set

Dom (F ) := {x ∈ X : F (x) ̸= ∅}
is used to designate the domain of the mapping F and the set

Gr(F ) := {(x, y) ∈ X × Y : y ∈ F (x)}

will denote its graph. The inverse mapping of F , which acts from Y into X, will
be denoted by F−1, and is defined as F−1(y) := {x ∈ X : y ∈ F (x)}, y ∈ Y . For
a set A ⊂ X, F (A) means the image of A under F , that is F (A) := ∪{F (x) : x ∈
A}. Given B ⊂ Y the two possible pre-images of B under F are designated by
F#(B) := {x ∈ X : F (x) ⊂ B} and F−1(B) := {x ∈ X : F (x) ∩B ̸= ∅}.

Recall that F is called upper (resp. lower) semicontinuous at x0 ∈ X if for every
open set V ⊂ Y with F (x0) ⊂ V (resp. F (x0) ∩ V ̸= ∅) the set F#(V ) (resp.
F−1(V )) contains an open neighborhood of x0. F is said to be upper (resp. lower)
semicontinuous in X if it is so at any point of X.

We shall denote by IntA the interior and by A the closure of a set A in the cor-
responding topological space. A weakening of the lower semicontinuity that will be
useful for us (having in mind that some of the mappings F may have empty images)
is the following one, which was considered in [7, 8]: F is called lower demicontinu-

ous in X if for every open set V of Y the set IntF−1(V ) is dense in F−1(V ). This
notion is dual (with respect to the inverse mapping) to the notion of demiopenness:
a mapping F : X ⇒ Y is called demiopen ( [17]) if for every open set U ⊂ X the

set IntF (U) is dense in F (U). It can be proved (see, e.g., Proposition 4.2 from [8])
that F is demiopen if and only if F−1 is lower demicontinuous.

For our further considerations we need also a notion that relates a mapping
F : X ⇒ Y with a subset Y1 of Y . It is said that the mapping F embraces Y1 ( [7,8])
if for every open set W of Y which contains Y1 the set {(x, y) ∈ Gr(F ) : y ∈ W}
is dense in the graph Gr(F ) (with the product topology in X × Y ). The following
fact will be useful in the sequel.

Proposition 2.1. Let F : X ⇒ Y be a set-valued mapping and Y be regular. Then
F embraces Y1 ⊂ Y if and only if for every two open sets U of X and V of Y such
that (U × V ) ∩Gr(F ) ̸= ∅ the set F (U) ∩ V ∩ Y1 is nonempty.

Proof. Suppose that F embraces Y1 and U and V be as in the statement of the
proposition. Since Y is regular, there is a nonempty open set V ′ ⊂ Y such that
V ′ ⊂ V and (U × V ′) ∩ Gr(F ) ̸= ∅. Now, if we suppose that F (U) ∩ V ′ ∩ Y1 is

empty, this will mean that Y1 is contained in the open set Y \ (F (U)∩V ′) and thus,
according to the definition of embracement, there will be (x̄, ȳ) ∈ (U × V ′)∩Gr(F )

such that ȳ /∈ F (U) ∩ V ′. The latter is a contradiction which completes the proof.
Conversely, suppose the property of the proposition and let W be an open set of

Y which contains Y1. Let U ⊂ X and V ⊂ Y be open sets in X and Y , respectively,
such that (U × V ) ∩Gr(F ) ̸= ∅. Then, according to the supposed property, the set

F (U)∩V ∩Y1 is nonempty. Let y ∈ F (U)∩V ∩Y1. Since Y1 ⊂ W there will be some
nonempty open set V ′ of Y such that y ∈ V ′ ⊂ V ∩W . In addition, V ′ ∩F (U) ̸= ∅
and thus, there is some x̄ ∈ U and ȳ ∈ F (x̄) with ȳ ∈ V ′. This entails ȳ ∈ V ∩W
and therefore, the proof is completed. □
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The following easily proved facts can be found in [8]:

Proposition 2.2. Let F : X ⇒ Y be a set-valued mapping which embraces Y1 ⊂ Y
and Y be regular. Then F (X) ⊂ Y 1.

Proposition 2.3. Let F : X ⇒ Y be a set-valued mapping and Y1 ⊂ Y . Each of
the following implies that F embraces Y1:

(a) F (X) ⊂ Y1;
(b) Y1 is dense in Y and the mapping F is demiopen.

3. Main results

In this section we give our main results about existence of residually defined
selections. Let us remind that a set A of a topological space X is residual in X if its
complement in X is of the first Baire category in X. Typical examples of residual
sets are those that contain dense Gδ-subsets of Baire spaces X.

Before formulating our first result in this section, let us introduce another piece of
terminology: we say that a metric d in a given topological space Y is conditionally
complete if every d-Cauchy sequence is convergent in the original topology in Y .

Theorem 3.1. Let F : X ⇒ Y be a lower demicontinuous mapping between a
Baire space X and a regular topological space Y such that F has a closed graph and
a dense domain. Suppose that Y contains a nonempty subset Y1 which is embraced
by F and, in addition, Y1 considered with the inherited topology is fragmented by a
conditionally complete metric d, whose metric topology contains the initial topology
in Y1. Then, there exists a dense Gδ-subset X1 of X and a single-valued continuous
mapping f : X1 → Y1 such that f is a selection of F on X1, that is, f(x) ∈ F (x)
for every x ∈ X1. In particular, X1 ⊂ Dom(F ).

Proof. We will call a couple (U, V ) of nonempty open sets of X and Y , respectively,
admissible if {x ∈ U : F (x) ∩ V ̸= ∅} is dense in U . Observe that (X,Y ) is
admissible because Dom (F ) is dense in X. With this terminology in hand, let us
put γ0 := {(X,Y )} and let γ = (γn)n≥0 be a sequence of families of couples of open
sets of X and Y which is maximal with respect to the following properties: for every
n ≥ 0

(a) every (Un, Vn) ∈ γn is admissible;
(b) the family {Un : (Un, Vn) ∈ γn for some nonempty open Vn ⊂ Y } is disjoint;

(c) for every (Un, Vn) ∈ γn the set Bn := F (Un) ∩ Vn ∩ Y1 is nonempty and
d− diam(Bn) < 1/n;

(d) for every (Un+1, Vn+1) ∈ γn+1 there exists (unique, according to (b)) couple
(Un, Vn) ∈ γn such that Un+1 ⊂ Un and V n+1 ⊂ Vn.

Conditions (a)-(c) are satisfied for γ0 because of Proposition 2.1 and the fact that
Dom (F ) is dense in X.

Let Hn := ∪{Un : (Un, Vn) ∈ γn for some open Vn ⊂ Y }, n ≥ 0. We claim
that each Hn is (open) and dense in X. Indeed, for n = 0 this is true, therefore,
let the claim be verified up to some k ≥ 0 and suppose that Hk+1 is not dense
in X. Thus, for some open and nonempty set U of X we will have U ∩ Hk+1 =
∅. On the other hand, there is (Uk, Vk) ∈ γk such that U ∩ Uk ̸= ∅. Without
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loss of generality we may think that U ⊂ Uk. Observe that the couple (U, Vk) is
admissible. In particular, F (U) ∩ Vk ̸= ∅ and hence, according to Proposition 2.1,

F (U) ∩ Vk ∩ Y1 ̸= ∅. Since d fragments Y1 we can find a nonempty open (in Y )

set Vk+1 ⊂ Vk such that the set B := F (U) ∩ Vk+1 ∩ Y1 is a nonempty set whose
d-diameter is less than 1/(k + 1). Because of regularity of Y we may think that, in
addition, V k+1 ⊂ Vk. Further, because evidently F (U)∩Vk+1 ̸= ∅, we use the lower
demicontinuity of F to find a nonempty open set Uk+1 of X such that Uk+1 ⊂ U
and the couple (Uk+1, Vk+1) is admissible. In particular, again by Proposition 2.1,

the set Bk+1 := F (Uk+1)∩Vk+1∩Y1 is nonempty and since obviously Bk+1 ⊂ B we
conclude that the d− diam(Bk+1) < 1/(k + 1).

Now let γ′ := (γ′n)n≥0 be a sequence of families of couples of open sets such that
γ′n = γn for every n ̸= k + 1 and γ′k+1 := γk+1 ∪ {(Uk+1, Vk+1)}. The sequence γ′

is obviously strictly larger than γ and still satisfies (a)-(d) which is a contradiction
with the maximality of γ. Therefore, each Hn, n ≥ 0, is dense in X.

Let X1 := ∩n≥0Hn. Since X is a Baire space the set X1 is a dense Gδ-subset of
X. Take and fix an arbitrary x ∈ X1. Because of the condition (b) and (d) there
is a unique sequence {(Un(x), Vn(x))}n such that x ∈ Un(x), (Un(x), Vn(x)) ∈ γn,
Un+1(x) ⊂ Un(x) and V n+1(x) ⊂ Vn(x) for every n ≥ 0. Let Bn be the sets
corresponding to (Un(x), Vn(x)) from (c) above and set

f(x) :=
∩
n≥0

Bn =
∩
n≥0

F (Un(x)) ∩ Vn(x) ∩ Y1, x ∈ X1.

Since for each n ≥ 1, d − diam(Bn) < 1/n, the intersection above is no more
than a singleton (belonging necessarily to Y1). We will show that it is always
nonempty. Indeed, because of (d) above we have ∩n≥0Bn = ∩n≥0(Bn ∩ Y1) and
d− diam(Bn+1 ∩ Y1) < 1/n, for every n ≥ 0. And since the sets Bn ∩ Y1 are closed
in the inherited topology in Y1 and the metric d is conditionally complete in Y1, it
can be seen that the intersection ∩n≥0(Bn ∩ Y1) is a singleton (in Y1). Therefore, f
is well-defined single-valued mapping from X1 into Y1.

We show further that f is a selection of F on X1. Suppose that for some x0 ∈ X1

we have f(x0) /∈ F (x0). Then (x0, f(x0)) /∈ Gr(F ). The graph of F is closed
and Y is regular, therefore, there are open sets U of X and V of Y such that
(x0, f(x0)) ∈ U × V but (U × V ) ∩ Gr(F ) = ∅. Since f(x0) ∈ V ∩ Y1 and the
metric topology on Y1 contains the initial topology in Y1 there is some k ≥ 1
such that Bk = F (Uk(x0)) ∩ Vk(x0) ∩ Y1 ⊂ V . On the other hand, the couple
(Uk(x0), Vk(x0)) is admissible and, consequently, there is some x̄ ∈ U ∩Uk(x0) such
that F (x̄)∩ Vk(x0) ̸= ∅. Fix some ȳ ∈ F (x̄)∩ Vk(x0). We will show that ȳ ∈ V and
this will be a contradiction with (U × V ) ∩Gr(F ) = ∅. Let W ⊂ Y be a nonempty

open set such that ȳ ∈ W ⊂ Vk(x0). By Proposition 2.1 the set F (Uk(x0))∩W ∩Y1
is nonempty. And since the latter set is included in F (Uk(x0))∩ Vk(x0)∩ Y1 which,
on its turn, is a subset of V , we obtain W ∩ V ̸= ∅. This shows that ȳ ∈ V .

It remains to show that the mapping f is continuous onX1. To this end fix x ∈ X1

and let V be an open set of Y which contains f(x). Again by the fact that the
topology determined by d on Y1 contains the inherited topology on Y1 there is some
k ≥ 1 such that Bk = F (Uk(x))∩Vk(x)∩Y1 ⊂ V . Let x′ ∈ Uk(x)∩X1. Then, because
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of the condition (b), we will have Un(x
′) = Un(x) and Vn(x

′) = Vn(x) for any n ≥ k.

This entails that f(x′) = ∩n≥0F (Un(x′))∩Vn(x
′)∩Y1 ⊂ F (Uk(x))∩Vk(x)∩Y1 ⊂ V

and, therefore, f is continuous at x. This completes the proof of the theorem. □
Remark 3.2. A close look at the proof of the above theorem shows that the con-
structed selection f : X1 → Y1 is, in fact, continuous with respect to the topology
determined by the metric d on Y1. Observe also that our selection f takes its values
in the given set Y1 which sometimes is useful for the applications.

The following results are immediate corollaries from the previous theorem having
in mind Proposition 2.3. The first one is also a consequence of Corollary 1 from [33].

Theorem 3.3. Let F : X ⇒ Y be a lower demicontinuous mapping between a Baire
space X and a regular topological space Y such that F has a closed graph and a dense
domain. Suppose that Y is fragmented by a metric d which is conditionally complete
and the metric topology contains the initial topology in Y . Then, there exists a dense
Gδ-subset X1 of X and a single-valued continuous mapping f : X1 → Y such that
f is a selection of F on X1.

Theorem 3.4. Let F : X ⇒ Y be a demiopen lower demicontinuous mapping
between a Baire space X and a regular topological space Y such that F has a closed
graph and a dense domain. Suppose that Y contains a dense subset Y1 such that the
inherited topology on Y1 is fragmented by a metric d which is conditionally complete
and whose metric topology contains the initial topology of Y1. Then, there is a dense
Gδ-subset X1 of X and a single-valued continuous mapping f : X1 → Y1 such that
f is a selection of F on X1.

Theorem 3.1 generalizes Theorem 4.7 from [8], where, under the same assump-
tions, the case when the subset Y1 is completely metrizable was considered. Formally
Theorem 3.4 also generalizes a result from [8], namely Theorem 4.9, in which, again
under the same assumptions as in Theorem 3.4, the space Y1 was considered to be
completely metrizable. In fact, these two results are equivalent. Indeed, using the
techniques developed by Ribarska [36] for characterization of the fragmentability, it
can be proved (and this will be done elsewhere) that if a regular topological space
Z is fragmented by a conditionally complete metric whose topology is stronger than
the initial topology of Z, then Z is fragmentable by a complete metric whose topol-
ogy again is stronger than the initial one. Hence, Theorem 3.4 can be also derived
from Theorem 4.9 in [8], having in mind Proposition 2.3 and the following theorem.

Theorem 3.5. Let Y be a regular topological space which is fragmented by a com-
plete metric d, whose metric topology contains the initial topology in Y . Then
Y contains a dense subspace Y1 whose inherited (from Y ) topology is completely
metrizable.

Proof. We will only sketch the proof. First, let us mention that if Y is fragmented
by a complete metric, whose topology is stronger than the initial topology in Y ,
then one can prove, exactly as in the well-known Baire theorem for complete metric
spaces, that the space Y with its original topology is a Baire one. Granted this, let
β0 := {Y } and β = (βn)n≥0 be a sequence of families of open sets in Y which is
maximal with respect to the following three properties: for every n ≥ 0
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(1) βn is disjoint;
(2) d− diam(Vn) < 1/n for every Vn ∈ βn;
(3) for every Vn+1 ∈ βn+1 there is unique Vn ∈ βn such that V n+1 ⊂ Vn.

Put On := ∪{Un : Un ∈ βn}, n ≥ 0. One easily checks that each On is open
and dense in Y and therefore, the set Y1 := ∩n≥0On is a dense Gδ-subset of Y .
It is routine matter now to check that on Y1 the inherited topology by Y and the
metric topology of d coincide. Now Y1 is completely metrizable as a Gδ-subset of a
complete metric space. □

The class of spaces Y fragmented by a complete metric whose topology contains
the initial topology of Y is rather large. Apart from the obvious fact that every
completely metrizable space has this kind of fragmentability, there are other non
metrizable spaces which possess such a property. For instance, every scattered topo-
logical space, that is a topological space in which every nonempty subset A has
an isolated point in inherited topology of A, is fragmented by a complete metric
whose topology is finer than the initial one (this is the trivial metric on Y ). Every
fragmentable compact space is fragmentable by a stronger complete metric [36].
Other interesting non trivial classes of such spaces are certain subsets of Banach
spaces: for example, all weak compact spaces in a Banach space are fragmentable
by the norm and all weak star compact subsets of the dual of an Asplund space are
fragmentable by the dual norm.

More examples of such spaces were exhibited in [9]: recall that a set H of a topo-
logical space is called resolvable (see e.g. [28]) if every nonempty set A ⊂ Y contains
a relatively open subset B such that either B ⊂ H or B ∩H = ∅. Every open and
every closed set is resolvable. Finite intersection, finite unions and complements
of resolvable sets are resolvable as well. It was shown in [9] (see Propositions 3.7
and 3.8]) that if Hn, n ≥ 1, are resolvable subsets of a countably compact space
such that H := ∩nHn is nonempty and fragmentable, then H is fragmentable by
a stronger conditionally complete metric. In particular, all resolvable subsets of
fragmentable compacta, as well as all nonempty Gδ-subsets of fragmentable com-
pacta, are fragmentable by a conditionally complete metric whose metric topology
contains the initial one (and hence, according to the remark above, fragmentable
by a complete metric with stronger topology).

As it was pointed out in [8], Examples 4.10 and 4.11, all conditions supposed in
the above theorems are essential and without one of them one cannot expect the
existence of the obtained selections. A further study of sufficient conditions that
assure densely defined selections of set-valued mappings was done in [12,23] and also
in [13] where the case when the mapping F is with nonempty images was investigated
(i.e., when Dom (F ) = X). It turned out that in such a situation, in order to
obtain the same type of selections, one can drop the assumption of closedness of the
graph provided a suitable semi-continuity property is used. Namely, the mapping
F : X ⇒ Y is called lower quasicontinuous at x0 ∈ X if for every open set V of Y
such that F (x0)∩V ̸= ∅ there is an open set U such that x0 ∈ U and F (x)∩V ̸= ∅
for each x ∈ U . Equivalently: if for every open set U containing x0 and open
set V of Y with F (x0) ∩ V ̸= ∅ there is a nonempty open set U ′ ⊂ U such that
F (x) ∩ V ̸= ∅ for any x ∈ U ′. The mapping F is lower quasicontinuous in X if
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it is lower quasicontinuous at any point of X. The corresponding notion of upper
quasicontinuity of F is defined in an obvious way. If the mapping F is single-valued
these notions coincide with the notion of a quasicontinuous single-valued mapping
given by Kempisty [19] (the origins of the latter notion can be found in the works
of Volterra (see [1])).

The notion of lower quasicontinuity allows us to prove the following result about
existence of selections where the assumption of the closedness of the graph is re-
placed by closedness of the images.

Theorem 3.6. Let F : X ⇒ Y be a lower quasicontinuous mapping between a Baire
space X and a regular space Y such that F has nonempty closed images. Suppose
that Y contains a nonempty set Y1 which is embraced by F and such that Y1 is
fragmented by a conditionally complete metric d, whose metric topology contains
the initial one in Y1. Then there exists a dense Gδ-subset X1 of X and a single-
valued continuous mapping f : X1 → Y1 such that f is a selection of F on X1.

Proof. The proof is similar to that one of Theorem 3.1. Call a couple (U, V ) of
open sets of X and Y strongly admissible if F (x) ∩ V ̸= ∅ for every x ∈ U and
construct exactly as above a sequence of families γ = (γn)n≥0 which is maximal
with respect to the conditions (a)-(d) where in (a) admissibility of the couples is
replaced by the strong admissibility. Then the proof proceeds exactly as in the proof
of Theorem 3.1 (with the only change to use lower quasicontinuity instead of lower
demicontinuity when the set Uk+1 is chosen) in order to show that the obtained
mapping f : X1 → Y1 is well-defined and continuous.

It remains only to see that in this new situation the mapping f is a selection of
F as well. To see this, suppose that for some x0 ∈ X1 one has f(x0) /∈ F (x0).
Since F (x0) is closed in Y and Y is regular there is some open set V of Y such that
f(x0) ∈ V and V ∩ F (x0) = ∅. With the same notation as in the proof of Theorem

3.1, take k so large that F (Uk(x0)) ∩ Vk(x0) ∩ Y1 ⊂ V . Since (Uk(x0), Vk(x0)) is
strongly admissible there is some y0 ∈ F (x0) ∩ Vk(x0). We show that y0 ∈ V and
this will be a contradiction with V ∩ F (x0) = ∅. Let W be an open set of Y such

that y0 ∈ W ⊂ Vk(x0). Proposition 2.1 shows that the set F (Uk(x0)) ∩ W ∩ Y1
is nonempty and since the latter is contained evidently in V we conclude that
W ∩ V ̸= ∅. Consequently y0 ∈ V . □

The above theorem is a generalization of Theorem 3.3 from [23], where the subset
Y1 was supposed to be completely metrizable. The following two results are immedi-
ate consequences of the last theorem and Proposition 2.3. The first one was proved
by Giles and Moors in [13] and in particular, is improvement of a result of Giles
and Bartlett [12] in which, under the same assumptions, the set Y was supposed
completely metrizable..

Theorem 3.7. Let F : X ⇒ Y be a lower quasicontinuous mapping between a Baire
space X and a regular space Y such that F has nonempty closed images. Suppose
that Y is fragmented by a conditionally complete metric d and the topology of d
contains the initial one in Y . Then there exists a dense Gδ-subset X1 of X and a
single-valued continuous mapping f : X1 → Y such that f is a selection of F on
X1.
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Theorem 3.8. Let F : X ⇒ Y be a demiopen lower quasicontinuous mapping
between a Baire space X and a regular space Y , such that F has nonempty closed
images. Suppose that Y contains a dense set Y1 such that Y1 is fragmented by a
conditionally complete metric d whose metric topology contains the initial topology
in Y1. Then there exists a dense Gδ-subset X1 of X and a single-valued continuous
mapping f : X1 → Y1 such that f is a selection of F on X1.

4. Some applications

In this section we will give some applications of our selection theorems. However,
before considering a concrete setting, let us see some of the consequences of the
theorems from the preceding for the class of minimal set-valued mappings.

A set-valued mapping F : X ⇒ Y is called usco if it is upper semicontinuous in
X and with nonempty compact images. An usco F : X ⇒ Y is minimal if it is
usco and its graph does not contain properly the graph of any other usco mapping
between X and Y . It can be seen, using Zorn’s lemma, that every usco mapping
F : X ⇒ Y contains a minimal usco one. Examples of minimal usco mappings
are some solution mappings (see further in this section), subdifferentials of convex
functions, or more generally, certain monotone operators between a Banach space
and its continuous dual. One of the important features of this class of mappings
is that often one can prove that such a mapping is single-valued on a residual part
of its domain. For example, if F us usco and the space Y is fragmentable by some
metric d, then the mapping F is single-valued and d-upper semicontinuous at the
points of a residual subset of X (see e.g. [36]).

Minimal usco mappings are characterized by the following property (see, e.g.
[3,4]): for every open sets U and V of X and Y respectively, such that F (U)∩V ̸= ∅,
there is some nonempty open U ′ ⊂ U such that F (U ′) ⊂ V . The latter property was
used (i.e. in [8,23] and elsewhere) as a definition of a minimal mapping F : X ⇒ Y
for a mapping F which is not necessarily usco. Observe that such a mapping is both
upper and lower quasicontinuous at any point x at which F (x) is nonempty. Thus, it
is a generalization of the notion of quasicontinuity of single-valued mappings and this
is why sometimes the minimal mappings are called also quasicontinuous mappings.
We will use the latter term in the sequel. Observe also that if F has a dense domain
Dom (F ) and is quasicontinuous in X, then it is also lower demicontinuous in X.
Therefore, the quasicontinuous mappings satisfy the two continuity-like properties
used in the above theorems. We will see that for such mappings the conclusions of
our selection theorems can be strengthened by proving that the selections, in fact,
coincide with the mapping itself at the points where the selections are defined.

Indeed, the following fact, which proof we give for completeness, is well-known
(see, e,g. [8, 23]).

Proposition 4.1. Let F : X ⇒ Y be a quasicontinuous mapping. Suppose that
there exists a dense set X1 of X and a single-valued mapping f : X1 → Y which
is a selection of F on X1. If f is continuous at some x0 ∈ X1, then F (x0) is a
singleton, necessarily equal to {f(x0)}. If, in addition, Y is regular, then F is also
upper semicontinuous at x0.
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Proof. Suppose first that there is some y0 ∈ F (x0) such that y0 ̸= f(x0). Take open
sets V1 and V2 with y0 ∈ V1, f(x0) ∈ V2 and V1 ∩ V2 = ∅. Because of the continuity
of f at x0 there is some open set U of x0 such that f(x) ∈ V2 for every x ∈ U ∩X1.
On the other hand, because of the quasicontinuity of F there is some nonempty
open U ′ ⊂ U such that F (U ′) ⊂ V1. Since X1 is dense in X the set U ′ ∩ X1 is
nonempty and this is a contradiction because it would yield f(x) ∈ V1 for every
x ∈ U ′ ∩X1. Therefore, F (x0) = {f(x0)}.

Let now Y be regular and take some open set V of Y such that F (x0) ⊂ V .
Let W be nonempty and open with F (x0) = {f(x0)} ⊂ W and W ⊂ V . There is
some open set U of x0 such that f(x) ∈ W for every x ∈ U ∩ X1. We claim that
F (x) ⊂ W for each x ∈ U which will prove the upper semicontinuity of F at x0.
Suppose the contrary, that for some x ∈ U there is y ∈ F (x) \ W . Take an open
set O containing y and disjoint from W . By the quasicontinuity of F there is some
nonempty open set U ′ ⊂ U such that F (U ′) ⊂ O. And this is again a contradiction
because U ′ ∩X1 ̸= ∅ and f maps the latter set into W . □

Having the latter property the following results are immediate consequences of
our Theorems 3.1 and 3.6.

Theorem 4.2. Let F : X ⇒ Y be a quasicontinuous mapping with closed graph
and dense domain acting between a Baire space X and a regular space Y . Let Y
contain a subset Y1 which is embraced by F and the space Y1 is fragmented by a
conditionally complete metric whose metric topology contains the initial topology of
Y1. Then there is a dense Gδ-subset X1 such that at the points of X1 the mapping F
is single-valued and upper semicontinuous. Moreover, F (x) ∈ Y1 for each x ∈ X1.

Theorem 4.3. Let F : X ⇒ Y be a quasicontinuous mapping with nonempty closed
images acting between a Baire space X and a regular space Y . Let Y contain a
subset Y1 which is embraced by F and the space Y1 is fragmented by a conditionally
complete metric and the metric topology of d contains the initial topology of Y1.
Then there is a dense Gδ-subset X1 of X such that at the points of X1 the mapping
F is single-valued and upper semicontinuous. Moreover, F (x) ∈ Y1 for each x ∈ X1.

The last result is a generalization of Theorem 3.4 from [23], where complete
metrizability of the space Y1 was supposed. From the obvious consequences of the
above two theorems that can be derived using Proposition 2.3 we will give only the
next one which will be used in the sequel.

Theorem 4.4. Let F : X ⇒ Y be a quasicontinuous mapping with closed graph
and dense domain acting between a Baire space X and a regular space Y . Suppose
that Y is fragmented by a conditionally complete metric and the metric topology in
Y contains the initial one. Then there is a dense Gδ-subset X1 of X such that at
the points of X1 the mapping F is single-valued and upper semicontinuous.

Remark 4.5. In fact, in the above theorem, we can assure a stronger property,
namely that the mapping F is upper semicontinuous at the points ofX1 with respect
to the metric d in Y . This is done as follows: in the construction of the selection
in Theorem 3.1, using the quasicontinuity of the mapping F , one can construct the
sets Un in such a way that F (Un) ⊂ Vn. It is easily seen that with this choice of
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the sets Un the mapping F will be d-upper semicontinuous (and single-valued) at
the points of the set X1.

Let us see now another application related to variational principles in optimiza-
tion. Let X be a completely regular topological space and let f : X → R ∪ {+∞}
be an extended real-valued function in X which is bounded from below, lower semi-
continuous and proper. The latter means that f is not identically equal to +∞.
Consider also the space C(X) of all real-valued continuous and bounded functions
in X which, equipped with the usual sup-norm ∥g∥∞ := supx∈X |g(x)|, g ∈ C(X),
is a Banach space. Since the given function f is not, a priori, supposed to have
a minimum in X, the question that is of interest in optimization and analysis is
whether there exists a function g ∈ C(X) such that f + g attains its infimum in
X. A better property would be if there exists a function g ∈ C(X), as small with
respect to the norm, as we want, with the same property. I.e., when there is a
small enough perturbation of the function f by a function from C(X) such that the
perturbed function attains its infimum in X.

The latter question has a positive answer if the set {g ∈ C(X) : f + g attains its
infimum in X} is dense in C(X), and the validity of such a property is an example
of the so-called variational principles in optimization. Sometimes the question is
strengthened so that the perturbation has a strong minimum. A function h : X →
R∪{+∞} has a strong minimum if it has a unique minimum and every minimizing
sequence for h converges to this unique minimum. Having strong minimum for h in
X is known in optimization as: the problem to minimize h in X is Tykhonov well-
posed. Another property of interest is when the set of good perturbations is not only
dense in the space C(X) but also contains a dense Gδ-subset of the space C(X).
Examples of such principles are, e.g., the Ekeland variational principle [11], the
smooth variational principles of Borwein and Preiss [2] and of Deville-Godefroy-
Zizler [10], Stegall variational principle [38], the continuous principle of Čoban-
Kenderov [5, 6] and others.

When the function f is continuous, conditions under which the set E(f) := {g ∈
C(X) : f + g attains its minimum in X} or the set S(f) := {g ∈ C(X) : f + g
attains its strong minimum in X} are residual in C(X) were investigated in [5,6,25].
We also used the selection theorems from [7, 8] to see how to ensure some of these
conditions. Recently, in the case when f is not necessarily continuous, we obtained
sufficient conditions for the residually of the sets E(f) and S(f) which were in terms
of topological games in [9,26] and by using fragmentability of the underlying space
in [27]. We will see how some of our theorems, obtained in this article, can be
used to derive the corresponding variational principles when the underlying space
is fragmentable.

For a given f as above set Mf (g) := {x ∈ X : x is a minimum of f + g on
X}, g ∈ C(X). Mf is a set-valued mapping between C(X) and X which puts into
correspondence to each g ∈ C(X) the set of minimizers (possibly empty) of the
perturbation f + g. It was shown in [9], Proposition 2.4, that the mapping Mf has
a closed graph and is quasicontinuous. Moreover, it was proved in [26] that Mf has
a dense domain. The latter is a consequence of the following useful lemma that was
obtained again in [26] and whose proof we sketch here for completeness:
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Lemma 4.6 ([26, Lemma 2.1]). Let f : X → R∪{+∞} be a lower semicontinuous
function which is proper and bounded from below. Let x0 ∈ X and ε > 0 be such
that f(x0) < infX f + ε. Then there is a continuous bounded function g : X → R+

such that ∥g∥∞ < ε and f + g attains its infimum at x0.

Proof. Set δ := f(x0)− infX f (we may suppose that δ > 0) and consider the sets

Ln :=
{
x ∈ X : f(x) ≤ inf

X
f + δ − δ

2n

}
, n ≥ 1.

The sets Ln are nonempty and closed, increasing (by inclusion) with n and such
that x0 /∈ Ln for each n ≥ 1. For every n ≥ 1, let hn : X → [0, 1] be a continuous
function such that hn(x0) = 0 and hn|Ln ≡ 1 and consider the (well-defined and
continuous) function h(x) =

∑∞
n=1(1/2

n)hn(x), x ∈ X.
The function g := δh is continuous and bounded and ∥g∥∞ ≤ δ < ε. Therefore,

to complete the proof, we need to check that (f + g)(x) ≥ (f + g)(x0) for every
x ∈ X.

To verify the latter inequality for each fixed x ∈ X one considers two cases:
Case 1. f(x) ≥ infX f + δ = f(x0) (this is easy since g is positive and g(x0) = 0);

and
Case 2. f(x) < infX f + δ = f(x0).
The second case needs more careful attention–to verify the inequality in this

situation one uses the fact that in this case x ∈ ∪∞
n=1Ln and finds the smallest

integer k ≥ 1 for which x ∈ Lk. To finish, one has to take into account the
definition of g (and h), the fact that x ∈ Ln for each n ≥ k and that f(x) ≥
infX f + δ − (δ/2k−1). □

With the above properties ofMf in hand, we can apply Theorem 4.4 to obtain the
following result from [9], where it was proved via an approach involving topological
games.

Theorem 4.7 ([9, Corollary 3.7]). Let X be a completely regular topological space
which is fragmented by a conditionally complete metric d whose metric topology
contains the initial topology in Y . Then, for every lower semicontinuous function
f : X → R ∪ {+∞}, which is proper and bounded from below, the set S(f) = {g ∈
C(X) : f +g attains a strong minimum in X} contains a dense Gδ-subset of C(X).

Proof. According to Theorem 4.4 and the properties ofMf listed above the mapping
Mf is single-valued and upper semicontinuous at the points of a residual subset H
of C(X). On the other hand, it can be checked that the upper semicontinuity of
Mf at any g ∈ H entails that the minimum of f + g is strong. Indeed, let x0 ∈ X
be the unique minimum of f + g, g ∈ H, and (xk)k≥1 be a minimizing sequence for
f + g. We may think that εk := (f + g)(xk) − infX(f + g) is strictly positive for
every k ≥ 1. Take some open set V containing {x0} = Mf (g). By Lemma 4.6 for
every k ≥ 1 there is gk ∈ C(X) such that ∥gk∥∞ < εk and xk ∈ Mf (f + g + gk).
Since εk → 0 we obviously have g + gk → g and thus by the upper semicontinuity
of Mf at g it follows that xk ∈ V for large k. This completes the proof. □

Under the assumption that the metric d is complete the result above was derived
in [27, Theorem 2.3] as a consequence of a general variational principle proved in
the same paper.
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Séminaire d’Initation à l’Analyse, G. Choquet, G. Godefroy, M. Rogalski and J. Saint Ray-
mond (eds), 30ème Année, 1990/91, n0 17.

[25] P. S. Kenderov and J. P. Revalski, The Banach-Mazur game and generic existence of solutions
to optimization problems, Proc. Amer. Math. Soc. 118 (1993), 911–917.



1082 P. S. KENDEROV AND J. P. REVALSKI

[26] P. Kenderov and J.P. Revalski, Dense existence of solutions of perturbed optimization problems
and topological games, C. R. Acad. Bulgare Sci. 63 (2010), 937–942.

[27] P. S. Kenderov and J. P. Revalski, Variational principles in non metrizable spaces, TOP, 20
(2012), 467–474.

[28] K. Kuratowski, Topology, Vol. 1, Academic Press, New York, 1966.
[29] E. Michael, Continuous selections I, Ann. of Math. 63 (1956), 361–382.
[30] E. Michael, Continuous selections II, Ann. of Math. 64 (1956), 562–580.
[31] E. Michael, Continuous selections III, Ann. of Math. 65 (1957), 375–390.
[32] E. Mihaylova and S. Nedev, Selections and selectors, Topology Appl. 158 (2011),134-140.
[33] W. B. Moors and S. Somasundaram, Usco selections of densely defined set-valued mappings,

Bull. Austral. Math. Soc. 65 (2002), 307–313.
[34] St. Nedev and V. M. Valov, Normal selectors for the normal spaces, C. R. Acad. Bulgare Sci.

37 (1984), 843–846.
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