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µ(A,D) = sup{r(A, y) : y ∈ D};
QD(A) = {y ∈ D : r(A, y) = µ(A,D)}.

Note that µ(A,D) = µ(D,A), µ(A,A) = δ(A), while y ∈ QA(A) means that y is
a diametral point of A.
Recall that d(y,A) is called the distance from y to A, r(A, y) the radius of A from
y, r(A,D) the radius of A from D. FA is the farthest point mapping, i.e. the map
associating with y ∈ X the set of its farthest points in A.

In Section 2 we shall indicate the different generalizations of the notions of farthest
points and remotal sets. In Section 3 we make some remarks and we give several
examples. An overview of the literature on the subject will be presented in Section
4, while in Section 5 we discuss some other possible extensions.
Finally, to enlighten the recent directions of research in the area, an Appendix
(Section 6) will survey recent results concerning general problems on farthest points
and remotality.

2. Simultaneous remotality

If instead of a single point x we consider a pair of points, the previous definition
of farthest point can be extended in several ways. In particular, if A = {x1, x2}
and D is a bounded set, we can consider the following concepts of “simultaneous
remotality” for y0 ∈ D:

(c) min{∥y0 − x1∥, ∥y0 − x2∥} = sup
y∈D

min{∥y − x1∥, ∥y − x2∥};

(C) max{∥y0 − x1∥, ∥y0 − x2∥} = sup
y∈D

max{∥y − x1∥, ∥y − x2∥};

(Cp) ∥y0 − x1∥p + ∥y0 − x2∥p = sup
y∈D

{∥y − x1∥p + ∥y − x2∥p} (1 ≤ p < ∞);

note that (C) is nothing else than (C∞).

Of course, the above conditions can be extended, in an obvious way, to A =
{x1, ..., xn}, n ∈ N. Moreover, condition (c) can trivially be extended to any closed
set A, and the condition (C) to any closed and bounded set A. More precisely, we
can look for y0 ∈ D such that:

(c) d(y0, A) = sup{d(y,A) : y ∈ D};

(C) r(A, y0) = sup{r(A, y) : y ∈ D}.

Observe that conditions (c) and (C) can be formulated in the equivalent form:
(c’) inf

x∈A
∥y0 − x∥ = sup

y∈D
inf
x∈A

∥y − x∥;

(C’) sup
x∈A

∥y0 − x∥ = sup
y∈D

sup
x∈A

∥y − x∥ = µ(A,D).

Concerning condition (c): to avoid trivialities, we must of course assume that D
is not contained in A. The stronger condition A ∩D ̸= ∅ is introduced in [22] and
in [30], but probably such restriction is not really useful. Note also that the points
y0 ∈ D satisfying (C) form the set QD(A).

For a bounded closed set A we can also look for y0 ∈ D such that
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(C1) r(y0, A) + d(y0, A) = sup
y∈D

{r(y,A) + d(y,A)},

or equivalently
(C1) sup

x∈A
∥y0 − x∥ + inf

x∈A
∥y0 − x∥ = sup

y∈D

{
sup
x∈A

∥y − x∥ + inf
x∈A

∥y − x∥
}
.

If A = {x1, x2} the last condition has the form

∥y0 − x1∥+ ∥y0 − x2∥ = sup
y∈D

{
∥y − x1∥+ ∥y − x2∥

}
.

Note that this is just condition (Cp) for p = 1. In general we cannot obtain a
similar extension for (Cp) if 1 < p < ∞.

A point y0 ∈ D satisfying one of the above conditions is called a simultaneous
farthest point for A.

A set D for which simultaneous farthest points to A exist is called simultaneously
remotal (shortly (sr)) for A. A set D for which simultaneous farthest points exist
for any bounded set A, is called simultaneously remotal (shortly (sr)). If more-
over farthest points are always unique, we speak of unique simultaneous remotality
(shortly (usr)). Some authors speak, in this case, of simultaneous F-Chebyshev sets
(see [30]).

The meaning of the above conditions is the following. Concerning (c): find points
in D which are farthest from A. Concerning (C): find points in D from which it is
most difficult to cover A with a ball centered at one of them.

All the above conditions, apart from (C1) for infinite sets, have been considered
in the literature. Of course, when A is a singleton, they reduce to the notion of
farthest point.

Given in X the sets D,A (not necessarily bounded), the quantity

e(D,A) = sup
{
d(y,A) : y ∈ D

}
= inf

{
ε > 0 : A ⊂ D + εBX

}
is called the excess or deviation of D from A. Recall also that

h(A,D) = max{e(A,D), e(D,A)}

defines the Hausdorff distance between A and D.
The quantity e(D,A), together with the question concerning existence of elements

in D for which the sup is attained, had already been considered in 1963 by V.M.
Tihomirov: see [46, Section 6.4] for a discussion on this, mainly for A a subspace.

If D is compact, the existence results are rather obvious. The problem becomes
interesting only in the case of infinite-dimensional spaces. But in general in such
framework it is difficult to obtain nice results (see for example Theorem A+ in the
Appendix).

It is known (and easy to see) that, also if X is infinite dimensional, the set BX is
remotal and, if X is strictly convex, uniquely remotal for all points different from
θ. In general BX is not simultaneously remotal (see Examples 3.4 and 3.5 in the
next section).

We do not even know the answer to the following natural question.

Problem. Give an example of a not compact, simultaneous remotal set (if it exists).
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Note that in general, the existence of a simultaneous farthest point y0 ∈ D for A
does not imply that supx∈A∥y0 − x∥, or infx∈A∥y0 − x∥ is attained.

The closed bounded sets A and D are called distant sets if:

(rp) There exist a0 ∈ A and y0 ∈ D such that ∥a0 − y0∥ ≥ ∥a− y∥ for all a ∈ A
and y ∈ D, i.e. ∥ao − yo∥ = µ(A,D).

In this case we say that (a0, y0) forms a remotal pair. Note that the concept of
remotal pair is different from the following concept of mutually farthest points.
The points a0 ∈ A and y0 ∈ D are called mutually farthest points for A and D if y0
is a farthest point to a0 from D and a0 is a farthest point to y0 from A. Obviously
if (a0, y0) forms a remotal pair for A and D, then a0 and y0 are mutually farthest
points for A and D; but the converse is not necessarily true: see the next example.
So the term of mutually farthest points for A and D, sometimes used to denote a
remotal pair, is misleading.

Example 2.1. Consider, in the Euclidean plane, the (closed, convex, bounded)
sets: A = {(x, 0) : −1 ≤ x ≤ 2} and D = {(x, 1) : 0 ≤ x ≤ 2}.
Let a0 = (2, 0), y0 = (0, 1). Then ∥a0−y∥ ≤ ∥a0−y0∥ for every y ∈ D and ∥a−y0∥ ≤
∥a0 − y0∥ for every a ∈ A. Moreover ∥a0 − y0∥ =

√
5 < ∥(-1, 0) − (2, 1)∥ =

√
10.

Thus a0 and y0 are mutually farthest points for A and D in the sense of the above
definition, but only

(
(-1, 0), (2, 1)

)
is a remotal pair for A and D.

Condition (rp) implies the existence of simultaneous farthest points, according
to (C), from D to A, and vice versa. For an example of two remotal sets which do
not satisfy (rp), in a Hilbert space, see [10].

Not so many and not so deep results have been given concerning this notion (see
for example [14]); but it has been discussed in many papers dealing with generic
results (see at the end of Section 4). For A = D, a remotal pair reduces to a
diametral pair for the set: for results concerning this notion see the Appendix.

3. Some remarks and examples

It is well known that convexity of sets plays a key role in optimization (for exam-
ple, in best approximation problems). We cannot say the same concerning remotal
sets; but it plays some role also in this context. For example, if we consider closed
convex sets A and D, then, denoting by ∂(A), resp. ∂(D), their boundary, we have:

sup
y∈D

d(y,A) = sup
y∈∂D

d(y, ∂A).

This fact (not valid in general when the assumption of convexity is dropped) was
proved first in [25], then again in [48].

Since
sup
y∈D

inf
x∈A

∥y − x∥ ≤ inf
x∈A

sup
y∈D

∥y − x∥,

for a point y0 satisfying condition (c) we have d(y0, A) ≤ r(D,A).
When a minimax theorem applies, we have equality. This shows that condition

(c) seems to be tied to a simultaneous approximation problem. So we think that
condition (C), or condition (Cp) for A a finite sets, are more apt to deal with
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simultaneous remotality. This seems to appear also by comparing Proposition 3.6
below (dealing with (c)) with Example 3.8.
Note that e(D,A) ≤ r(D,A) and in general equality does not hold. For example, for
the sets A and D in Example 2.1 (given in the Euclidean plane) we have: e(D,A) =
supy∈D inf{∥x − y∥ : x ∈ A} = 1 <

√
2 = infx∈A sup{∥x − y∥ : y ∈ D} = r(D,A).

The same estimates hold if, instead of A, we consider the line M = {(x, 0) : x ∈ R}.
Unfortunately, some authors used such untrue equality. For example, in [17, Lemma
3.1] (but not only there), the following false “result” is indicated and used: if
M is a proximinal subspace of X, then for every bounded set S ⊂ X we have
e(S,M) = r(S,M).

For bounded sets A,A′ and D, we have the following inequalities:
µ(A,D) ≥ max{r(D,A), r(A,D)} ≥ h(A,D);

µ(A,D) ≤ δ(A) + e(D,A); µ(A,D) ≤ δ(D) + e(A,D), so

µ(A,D) ≤ min{δ(A), δ(D)}+ h(A,D);

|µ(D,A′)− µ(D,A)| ≤ h(A,A′).

It is clear that if y0 ∈ D satisfies (c) and (C), then it satisfies also (C1), but not
necessarily condition (Cp). In fact we have the following simple remark.

Remark 3.1. Let A = {a1, a2} be a two-point set. If a point y0 ∈ D satisfies
conditions (c) and (C), then it satisfies also condition (Cp) (1 ≤ p < ∞). The
same is not true in general if A contains more than 2 points. In fact, from our
assumptions it follows that: for every y ∈ D, infa∈A ∥y0−a∥ ≥ infa∈A ∥y−a∥ and
supa∈A ∥y0−a∥ ≥ supa∈A ∥y−a∥. Assume, for example, that ∥y0−a1∥ ≥ ∥y0−a2∥.
Then ∥y0 − a1∥ ≥ ∥y − a1∥ and ∥y0 − a1∥ ≥ ∥y − a2∥ for all y ∈ D. Moreover, for
every y ∈ D, either ∥y0 − a2∥ ≥ ∥y − a1∥ or ∥y0 − a2∥ ≥ ∥y − a2∥. So, in any case
we obtain:

∥y0 − a1∥p + ∥y0 − a2∥p ≥ ∥y − a1∥p + ∥y − a2∥p for all y ∈ D, 1 ≤ p < ∞.

Now, on the plane endowed with the supremum norm, denote by D the segment
joining (−1, 0) with (0, 1/2), and let A = {a1, a2, a3} = {(−2,−1), (1−ε,−1), (1−
2ε,−1)}. The point y0 = (0, 1/2) is the unique point in D satisfying conditions (c)
and (C). But, for example

∥y0 − a1∥2 + ∥y0 − a2∥2 + ∥y0 − a3∥2 < ∥y − a1∥2 + ∥y − a2∥2 + ∥y − a3∥2

for y = (−1, 0), when ε is small. This means that the point y0 does not satisfy
condition (C2).
Example 3.2. Let y0 be a farthest point to x ∈ X in D. Consider the segment
S = {x+t(x−y0) : 0 ≤ t ≤ 1}. Then it is simple to see that y0 is also a simultaneous
farthest point to S from D according to conditions (C) and (c). Moreover, if y0 is
the unique farthest point to x from D, then the set D is uniquely simultaneously
remotal for S (but not conversely).

We can ask whether some class of sets larger than the class of closed balls is
always remotal. The following example shows that if we think of closed, convex sets
of constant width (see for example [40]), the answer is no.
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Example 3.3. Let X = c0 be the space of real sequences converging to 0 endowed
with the supremum norm. Let A be the set containing all sequences from c0 whose
components belong to [0, 1]. The set A has constant width, but it is not remotal. For
example, if x = (1/2, 1/3, ...), we have sup{||x− a|| : a ∈ A} = 1 and ||x− a|| < 1
for every a ∈ A.

We know that BX is always remotal. Next examples 3.4 and 3.5, respectively,
will show, that in general it is not simultaneously remotal, neither in the sense of
condition (C) nor in the sense of (c).
Example 3.4. a) Let X = ℓ2 be the usual Hilbert space of real sequences. Let
e1, e2, . . . denote the natural basis of ℓ2, i.e. en = (0, . . . , 0, 1, 0, . . .).

Set A = { n
n+1 en : n ∈ N}. It is simple to see that r(A,−en) ≥ 1 + n

n+1 , n ∈ N,
and r(A, x) < 2 for x ∈ BX . Thus µ(BX , A) = 2. This means that BX is not
simultaneously remotal for A in the sense of condition (C).

The situation is similar if, instead of A, we consider its closed convex hull. Also,
we can substitute the space ℓ2 with c0: see next example.

b) Consider now the space c0. Let D = {x = (x1, . . . , xn, . . .) : |xn| ≤ n/(n +
1), ∀n ∈ N}.

The origin θ has no farthest point in D, so the set D is not remotal for BX ,
and it is not simultaneously remotal for BX in the sense of (C). In fact, we have
µ(BX , D) = 2, but there is no point y ∈ D such that r(BX , y) = 2.

Also, BX is not simultaneously remotal for D in the sense of condition (C). In
fact, sup{r(D,x) : x ∈ BX} = 2 since r(D, en) = 1+ n

n+1 for n ∈ N; but r(D,x) < 2
for every x ∈ BX .
In particular, the sets D and BX are not distant.

If we consider the same sets in ℓ∞ (instead of in c0), then state of affairs is
different. In that case the points x0 = (−1,−1, . . .) ∈ BX and y0 = (1/2, 2/3, . . .) ∈
D form a remotal pair.

Example 3.5. Let X = ℓ2 and A =
∪

n∈N [ −1
n+1 ,

1
n+1 ] en, where en denote the n-th

element of the natural basis.
Since θ ∈ A, we have d(x,A) ≤ 1 for x ∈ BX . Moreover, if x = −en and a ∈ A,

then ||x− a|| ≥ 1− 1
n+1 . Thus sup{d(x,A) : x ∈ BX} = 1.

Observe that d(x,A) < 1 for every x ∈ BX . Indeed, if x = θ this is trivial.
Otherwise, let j ∈ N be such that the j-th component xj of x is different from 0. If
xj > 0, take a = ej min{xj , 1

n+1}, if xj < 0, take a = ej max{xj , −1
n+1}. Obviously

a ∈ A and ||x − a|| < ||x|| ≤ 1. Thus d(x,A) < 1 for every x ∈ BX . This means
that BX is not simultaneously remotal for A in the sense of condition (c).

Proposition 3.6. Consider condition (C). Let A = {a1, ..., an} be a finite set and
D a (closed, bounded) set. If D is remotal for all ai

′s, then it is simultaneously
remotal for A. The converse is not true.

Proof. Let ri = sup{∥ai − y∥ : y ∈ D} for i = 1, ..., n and r = max{r1, ..., rn}. Let
r = rj , where 1 ≤ j ≤ n. Since D is remotal for aj there is yj ∈ D such that
∥yj − aj∥ = rj . Obviously sup{∥yj − a∥ : a ∈ A} ≥ ri = sup{∥ai − y∥ : y ∈ D} for
i = 1, ..., n. This shows that yj satisfies (C), so D is simultaneously remotal for A.
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Concerning the converse, let X = c0 and A = {θ, e1}. Then, the set D defined in
Example 3.4 b) is simultaneously remotal for A in the sense of condition (C) (take
y0 = −e1/2 ∈ D), but it is not remotal for θ. □

Corollary 3.7. A closed, bounded subset of D is remotal if and only if, for every
finite set in X, it is simultaneously remotal according to condition (C).

Proof. The “if” part is trivial. The “only if” part follows from previous proposition.
□

Note that previous result cannot be extended to infinite A (see Example 3.4).

Next example shows that in Proposition 3.6 (and in Corollary 3.7) we cannot
substitute (C) with (c). More precisely, we first show a set remotal for the elements
of a finite set A but not simultaneously remotal for A in the sense of (c). Then we
indicate a set which is simultaneously remotal for a finite set in the sense of (c), but
not remotal for all its elements.

Example 3.8. a) We indicate the construction of a two-point set A and of a closed,
bounded set D which is remotal for the elements of A, but it is not simultaneously
remotal for A in the sense of (c).

Take an infinite dimensional space X; let D1 be a “small” set (say of diameter
< 0.1); let be a1 ∈ X a point which has no farthest point in D1 and a2 ∈ X such
that sup{∥a1− y∥ : y ∈ D1} = 1 > sup{∥a2− y∥ : y ∈ D1}. Moreover let y1, y2 ∈ X
be such that ∥a1 − y1∥ > 1, ∥a1 − y2∥ < 1, ∥a2 − y1∥ < 1, ∥a2 − y2∥ > 1. It is easy
to see that D = D1 ∪{y1, y2} is remotal for the elements of A = {a1, a2}. Moreover
supy∈D d(y,A) = 1, but 1 is not attained by any element of D.

b) Next example shows that, also concerning (c), a set can be simultaneously
remotal for a set A, but not remotal for some element of A.

Take X = ℓ∞. Let D{ n
n+1 en : n ∈ N}; A = {θ, y}, where y = (0, 1/2, 1/2, ....). θ

has no farthest point in D, while supy∈D d(y,A) = 1/2 is attained by e1/2.

Problem. Study previous facts for (Cp), or at least for (C1) (A being a finite set).

For A a set of n elements a1, ..., an, we could consider in Rn a norm |||.|||, and
look for simultaneously farthest points according to such norm: maximize f(y) =
||| (∥a1 − y∥, ..., ∥an − y∥) ||| for y ∈ D. Finding a solution amounts to looking for
farthest point in (Xn, |||.|||), for (a1, ..., an), from elements of the diagonal Dn =
(y, ..., y). Concerning this scheme, see [3, Section 4]; see also [33].
By considering a suitable norm on Rn, we could study, for finite sets, conditions
(Cp), 1 ≤ p ≤ ∞, as well as weighted conditions of that type.

Studying simultaneous remotality with condition (c) (or also (C1) for a finite set),
can be given the following interpretation in terms of location problems. There is a
dangerous area A (“obnoxious” facility); we want to “best” locate something, as a
new town, in D. The interesting applications are mainly in two-dimensional spaces;
see for example [41, Section 2] for a discussion on them.

A similar interpretation can be given, for A = {ai, ..., an} a finite set, concerning
condition (C1) (also a weighted procedure can be used). Or it can be asked to
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maximize, for y ∈ D, the following objective function, the wi’s being nonnegative
weights:

(1− λ) min
i∈{1,...,n}

wi∥y − ai∥+ λ

n∑
i=1

wi∥y − ai∥, 0 ≤ λ ≤ 1.

4. The literature on the subject

We list here related papers. Indeed, the existing papers (many of them recent)
are not always deep and there are few applications. But the subject indicates once
more the variety of situations existing in Banach spaces; also, the fact that a norm
is Hilbertian seems to be not so helpful in this context: while best approximation
fits well in Hilbert spaces, only finite dimensionality seems to imply good results
concerning remotality.

In [28], conditions (c), (C) and (C1) were defined, for two-point sets. Some
existence results, also concerning denseness of simultaneous farthest points, were
given. A simple result concerning (c) had also been given in [32]. Simple facts
concerning (c) have been indicated in [15].

We note in passing that most among the general results in [27] are trivial or not
new, as noticed in [33] where some of them are proved in a unified way: they regard
conditions of (Cp) type, for two points.

Some papers deal with the subject in particular spaces. In [2], the condition
(C1) (for finite sets) is considered. In [1], a generalization of condition (C1) (finite
sets) by using a “modulus function” is used. In [6], condition (C) (for finite sets)
is considered; some results there deal with denseness of simultaneous remotality
for sets. Also, [27] contains some (doubtful) results concerning (C) in L1[a, b] and
L∞[a, b] (two-point sets), and (C2) in Hilbert spaces (finite sets).
In [29] some estimates are given, for A consisting of two elements, concerning condi-
tion (Cp) in Lp, together with a remark concerning (C) for complex valued function
in C[a, b]. For the last kind of result see also [28, Theorem 3.7].
In [3] some results for Köthe spaces are given: the condition used, for n elements, is
a general one, that we have indicated near the end of previous section (see: suitable
norm on Rn).

In [34], uniqueness of simultaneous farthest points is studied and a character-
ization of strictly convex spaces, by using (C), is indicated. More precisely, the
characterization is obtained by the uniqueness of simultaneous farthest points with
respect to two arbitrary disjoint bounded closed balls. Since the last paper is not
easily avalaible and readable, we indicate here a simple connection between strict
convexity and remotality.

Proposition 4.1. A space X is strictly convex if and only if there is no point having
a nontrivial segment of remotal points in a (closed, bounded) set D.

Proof. If X is not strictly convex, then for D = BX the origin has a set of farthest
points containing a segment.
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Let X contain a point x for which a segment [a, b] ⊂ D (a ̸= b) consists of remotal
points for it; then ∥x− a∥ = ∥x− b∥ = ∥x− (a+ b)/2∥, and this implies that X is
not strictly convex. □

In [30] characterizations of condition (c) are given by using (extremal) elements
of BX∗ ; then these results are applied to the space C(Q), Q a compact set.

In [5], some results concerning (C) (A any bounded set) are indicated by using
extreme points of BX∗ and the “mirror reflection property” (see next section).

In [4], remotality and unique remotality according to (C) are studied, mainly
with respect to extreme points of D and comparing properties of D with properties
of its closed convex hull. But the results indicated there are doubtful, since they
are based on some wrong results of M. Sababheh and R. Khalil (see the discussion
in the Appendix).

Many papers (in the wake of [11]) deal with generic results, often regarding also
well-posedness for these problems: [38, 39] consider condition (C); papers [19, 20,
21, 22, 23, 35, 36, 37] consider remotal pairs.

5. Other possible generalizations and properties

First of all, we discuss a condition introduced recently, that we think will not
foster the research in the area.

In [5], the mirror reflection property, (mrp) for short, defined in [?], was used.
The property is the following.

(mrp) We say that X has (mrp) if for any closed and bounded set D ⊂ X, and
any x ∈ X \D, there exists a closed convex set E ⊂ D such that r(D,x) = r(E, x),
and moreover the “mirror reflection” function (see [?] for the definition) is convex.

As noticed in [?, Lemma 2.3.], every finite dimensional space has (mrp). But
indeed only these spaces have (mrp), as we are going to show: this fact had been
suspected also by a reviewer of the above paper (see Math. Rev. 2521206). In
fact, we are showing that already the first condition in defining (mrp) implies finite
dimensionality of the space; so this condition can play a weak role.

Proposition 5.1. X has the mirror reflection property if and only it is finite di-
mensional.

Proof. The “if” part being known, we are proving the “only if” part.
Assume that X is infinite dimensional. We can find on SX , the unit sphere of

X, an infinite set {x1, x2, ...} such that ∥xi−xj∥ > 1 for i ̸= j (see for example [12,
Chapter XIV]). Now let A = {n−1

n xn : n ∈ N}. This is a discrete (thus closed) and
bounded subset of X. Let x = θ: if we consider a convex subset D of A, this must
be a singleton; so we cannot have r(D, θ) = r(A, θ) = 1. □

We conclude this section by indicating some questions and problems.
- “Simultaneously remotal maps” can hardly be continuous or stable (onD and/or

on A). Probably a general study, at least for a finite set A, could be done.
Concerning (C), if we add a single point, probably we can only say that the

change can be similar to the distance of the new point from the existing set. A
better estimate can be obtained for (C1).
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And what happens if we pass from A to its closed convex hull? If we pass from
D to its closed convex hull, probably changes are very small.

- Can we indicate applications that justify considering (C1) for A infinite?

- Are the results in [6], some of the results in [27], [4] ... correct?

- Are there other connections between the notion of diametral point or pairs and
simultaneous remotality?

6. Appendix - general results on remotal sets

In this section we shall discuss some general facts concerning remotality; most of
these results are quite recent and general. Practically, they indicate that in infinite
dimensional spaces remotality has a rather bad behaviour.

A nice, simple result was indicated in [31, Th. 4.16]: the space X is a Hilbert
space, if and only if for every set D and every y ∈ D, the set {x ∈ X : y ∈ FD(x)}
is convex.

An example of a closed bounded, not remotal set in a Hilbert space, is given in
[?, Example 2.7].

The following result was indicated in [?, Theorem A].
THEOREM A. Every infinite dimensional reflexive Banach space contains a

closed, bounded convex set not remotal.
Unfortunately, the proof was based on an incorrect argument (see [42, Introduc-

tion]). Note that the authors of [24], at the end of the Introduction, seem to say
that Theorem A if false. What is not true is the positive answer given there to (Q2)
below. In fact, later, Theorem A was proved in [42, Theorem 3], as a consequence
of a similar fact for X not Schur.
Finally, in [47, Remark 2.10], then in [24, Theorem 7], and again in [18, Theorem
2], the following result was proved; it had already been obtained, for spaces with a
monotone basis, in [8, Theorem 1].

THEOREM A+. Every infinite dimensional Banach space contains a closed,
bounded convex set not remotal.

Also the following fact is indicated in [24, Corollary 2]: let X be an infinite
dimensional space X; then X∗ contains a non remotal convex, w∗ compact set.

If the space is “good”, generic results can be given concerning existence of farthest
points: see the long list of papers at the end of Section 4. But there are also spaces
where there exist “antiremotal” sets: i.e., sets for which no point has farthest points
on it; concerning this, see [13, Example 5.3] or [7, Lemma 2 and Theorem 1].

Note that in [47], the following problem was investigated. Look for “diametral
pairs” of a (bounded, closed) set A: namely, look for pairs (a1, a2) in A such that
∥a1 − a2∥ = δ(A). The following facts were proved. Denote by BCC(X) the sets of
all bounded, closed, convex subsets of A; then (see [47, Section 2]):

- In any spaceX, there is a dense subset of BCC(X) whose elements lack diametral
pairs;

- In some, but not in all spaces X, there is a dense subset of BCC(X) whose
elements have diametral pairs.
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Given a closed bounded set A, denote by co(A) the convex hull of A; by co(A)
(resp. by cow(A)) its closed (resp.: w-closed) convex hull.

It is not difficult to see that the following facts are true:

(r) for every x ∈ X, r(A, x) = r(co(A), x) = r(cow(A), x)
(for the first almost trivial equality, see for example [?, Lemma 2.1]; concerning the
second one, see [?, Lemma 2.2]).

Consider the following questions, x being any element in X and A a bounded set:
(Q1) do exist farthest points for x in A if there exist in co(A)?
(Q2) do exist farthest points for x in A if there exist in co(A)?
(Q3) do exist farthest points for x in A if there exist in cow(A)?
It is simple to see that the answer to (Q1) is positive (see for example [?, Lemma

3.1]).

Some authors thought that also (Q2) always has a positive answer: see for ex-
ample [16, p.201], but also [?, Remark 3.2.(c’)]. The question whether it is always
true for w-closed, bounded sets was raised in [24, Remark 6] and in [?, p.62].
Indeed the answer to (Q2) is negative: an example in c0, where there is a point
which has a farthest point in co(A) but not in A, A bounded and closed, is given
in [?, p.124]. Another similar example, with a bounded w-closed set (still in c0),
was given in [18, Example 1]. The answer is true if A is weakly compact: see [?,
Corollary 9].

It was claimed in [?, Theorem 2.6] that the answer to (Q2) is true for any closed
bounded set A if X is reflexive: a counterexample was given in [24, Example 5].

For a positive answer to a question similar to (Q3) (weak∗ version) see [24, p.393].
Questions more general than (Q1) (concerning two sets and simultaneous re-

motality) were studied in [4, Section 3]. More precisely, the equalities µ(A,D) =
µ(A, co(D)) and µ(A,D) = µ(A, co(D)) (D closed and bounded) were proved there
(Lemmata 7 and 10). Also, it was proved (Lemmata 8 and 9) that D is (sr) (resp.
D is (usr) ) if (and only if) co(D) is (sr) (resp.: co(D) is (usr) ).

In [?, p.63], after proving that A (ur) is equivalent to co(A) (ur) (Proposition
3.3), it was natural to ask (at page 64) whether also the following equivalence is
true: A is (ur) ⇐⇒ co(A) is (ur). Same question for (sr) in [4].

Let X be reflexive. Then for A w-closed: A is (ur) ⇐⇒ cow(A) is (ur) [?,
Proposition 3.4]; for D w-closed, D is (ur) for A ⇐⇒ cow(D) is (ur) for A: see [4,
Theorem 14].
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