


1098 G. PIANIGIANI

Let (M,d∗) be a metric space. Open and closed balls with center a ∈ M and
radius r are denoted by BM (a, r) and BM [a, r] sometimes simply B(a, r) and B[a, r].
The closure, interior and diameter of a set X ⊂ M are denoted by X, intX and
diam X. We denote by K(M) the space of all nonempty compact subsets of M
equipped with the Hausdorff metric h

h(X,Y ) = max { sup x∈Xd
∗(x, Y ), sup y∈Y d

∗(y,X)} , X, Y ∈ K(M).

A set X ⊂ M which is the complement of a set of the Baire first category is
said to be residual. A property (P) which is enjoyed by a residual subset of M is
called a generic property and, in this case, we say that most elements of M have
the property (P). In what follows H is a real Hilbert space with inner product <>
and induced norm |.|

If A ⊂ H is nonempty and bounded we set

|A| = sup {|a| : a ∈ A}.
Let N be the set of natural numbers and N0 = N∪{0}. A map f : X → H, where

X ⊂ H is nonempty, is said to be nonexpansive if

|f(x)− f(y)| ≤ |x− y|
for every x, y ∈ X and is said to be contractive if there exists λ , 0 ≤ λ < 1 such
that

|f(x)− f(y)| ≤ λ|x− y|
for every x, y ∈ X, λ is called the Lipschitz constant of f. In analogous way a map
F : X → K(H), where X ⊂ H is nonempty, is said to be nonexpansive if

h(F (x), F (y)) ≤ |x− y|
for every x, y ∈ X and is said to be contractive with Lipschitz constant 0 ≤ λ < 1
if

h(F (x), F (y)) ≤ λ|x− y|
for every x, y ∈ X.

Throughout the paper D is a nonempty, bounded, closed and convex subset of
H with d = diam D > 0.

Let

N ′ = {f : D → D : f is nonexpansive}
C′ = {f : D → D : f is contractive}.

N ′ is equipped with the metric

|f − g| = sup x∈D|f(x)− g(x)|.
Under this metric N ′ is a complete metric space.

Let
N = {{f, g} : f, g ∈ N ′}

and
C = {{f, g} : f, g ∈ C′}.

We equip N with the Hausdorff metric h.
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Proposition 2.1. (N , h) is a complete metric space.

Proof. As N is closed in K(N ) and K(N ) is complete under the metric h, then
(N , h) is complete. □
Proposition 2.2. Let {f, g}, {f ′, g′} ∈ N . Then

(2.1) h({f, g}, {f ′, g′}) = min
(
max (|f − f ′|, |g − g′|); max (|f − g′|, |f ′ − g|)

)
.

Proof. Set

a = |f − f ′| , b = |f − g′| , c = |f ′ − g| , d = |g − g′|.
By the definition of Hausdorff distance we have

α = h({f, g}, {f ′, g′}) = ((a ∧ b) ∨ (c ∧ d)) ∨ ((a ∧ c) ∨ (b ∧ d))
where p ∨ q , p ∧ q mean the maximum and minimum of the real numbers p, q. By
the distributive property of ∧,∨ it follows that

(2.2) α = (a ∧ (b ∨ c)) ∨ (d ∧ (b ∨ c)) = ((b ∨ c) ∧ (a ∨ d))
Hence (2.1) is valid. This completes the proof. □
Remark 2.3. As a consequence of Proposition 2.2 either α = a ∨ d or α = b ∨ c ≤
a ∨ d. In both cases

(2.3) h({f, g}, {f ′, g′}) ≤ max (|f − f ′|, |g − g′|)
This property will be useful in the sequel of the paper.

Proposition 2.4. Let f, g : D → D be lipschitzian with Lipschitz constants λ , µ
respectively. Then the map F : D → K(D)

F (x) = {f(x), g(x)}
is lipschitzian with Lipschitz constant γ = max (λ, µ)

Proof. From the previous Remark

h({f(x), g(x)}, {f(y), g(y)}) ≤ max (|f(x)− f(y)|, |g(x)− g(y)|)
≤ max (λ|x− y|, µ|x− y|)
= γ|x− y|.

The proof is complete. □

Definition 2.5. A sequence {xf,gn }∞n=0 is called a sequence of successive approxi-
mations, for brevity a trajectory relative to {f, g} if

(2.4) xf,gn+1 =

{
f(xf,gn ) if |f(xf,gn )− xf,gn | < |g(xf,gn )− xf,gn |
g(xf,gn ) if |f(xf,gn )− xf,gn | > |g(xf,gn )− xf,gn |.

When |f(xf,gn )− xf,gn | = |g(xf,gn )− xf,gn | then

xf,gn+1 = f(xf,gn ) or xf,gn+1 = g(xf,gn )

If this does not create confusion we simply write {xn}∞n=0 in place of {xf,gn }∞n=0.
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A point x ∈ D is said regular with respect to a, b ∈ D if

|x− a| ̸= |x− b|.
A trajectory {xn}∞n=0 is said regular with respect to {f, g} if for all n ∈ N0

|f(xn)− xn| ̸= |g(xn)− xn| .

Proposition 2.6. Let {f, g} ∈ C with f, g contractive with Lipschitz constant
0 ≤ λ < 1 and let {xn}∞n=0 be a trajectory relative to {f, g}. Then

(2.5) |xn+1 − xn| ≤ λ|xn − xn−1| n ∈ N

Proof. Indeed
xn = f(xn−1) or xn = g(xn−1).

Suppose xn = f(xn−1) ( if xn = g(xn−1) the argument is similar).
If xn+1 = f(xn) then

|xn+1 − xn| = |f(xn)− f(xn−1)| ≤ λ|xn − xn−1|.
If xn+1 = g(xn) then |g(xn)− xn| ≤ |f(xn)− xn| which implies

|xn+1 − xn| = |g(xn)− xn| ≤ |f(xn)− xn| = |f(xn)− f(xn−1| ≤ λ|xn − xn−1|.
In both cases (2.5) holds. This completes the proof. □
Proposition 2.7. Let {f, g} ∈ C and let ξ, η be the fixed points of f, g. Then every
trajectory {xn}∞n=0 relative to {f, g} with initial point u ∈ D converges to ξ or η.

The proof is an immediate consequence of Proposition 2.4 and Nadler’s fixed
point theorem [9].

Proposition 2.8. Let {f, g} ∈ C with f, g contractive with Lipschitz constant 0 ≤
λ < 1 and let ξ, η be the fixed points of f, g. Let {xn}∞n=0 be a trajectory relative to
{f, g} with initial point x0 ∈ D. If there exists n ∈ N0 and p ∈ N such that

(2.6) xn = xn+p

Then xn = ξ or xn = η.

Proof. Suppose that xn+1 = f(xn) ( if xn+1 = g(xn) the argument is similar). We
have

(2.7) |xn+1 − xn| = |f(xn)− xn| ≤ |g(xn)− xn|
then, as xn+p = xn,

|xn+1 − xn| = |f(xn)− xn| = |f(xn+p)− xn+p| ≤ |g(xn+p)− xn+p|
If xn+p = f(xn+p−1) then

|xn+1 − xn| = |f(xn+p)− f(xn+p−1| ≤ λ|xn+p − xn+p−1|.
If xn+p = g(xn+p−1) then

|xn+1 − xn| ≤ |g(xn+p)− g(xn+p−1| ≤ λ|xn+p − xn+p−1|
In both cases

|xn+1 − xn| ≤ λ|xn+p − xn+p−1|
Since, by (2.5) ,

|xn+p − xn+p−1| ≤ λp−1|xn+1 − xn|
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it follows

|xn+1 − xn| ≤ λp|xn+1 − xn|
Then xn+1 = xn which implies f(xn) = xn and so xn = ξ. □

Proposition 2.9. Let {f, g} ∈ C with f, g contractive with Lipschitz constant 0 ≤
λ < 1 and let ξ, η , ξ ̸= η be the fixed points of f, g. Let {xn}∞n=0 be a trajectory
relative to {f, g} with initial point x0 ∈ D. Then either

(i) all the xn are pairwise distinct
or

(ii) there exists m ∈ N0 such that xm is a fixed point and xi ̸= xj , i ̸= j , 0 ≤
i, j ≤ m .

Proof. Suppose that (i) is valid. Then for every n ∈ N0 xn is not a fixed point. In
fact if xn = ξ , say , then 0 = |f(ξ)− ξ| < |g(ξ)− ξ| otherwise f and g would have
equal fixed points, it follows that xn+1 = f(ξ) = ξ = xn a contradiction. Suppose
that (i) is not valid, then there exist i, j ∈ N0 , i < j such that xi = xj . Proposition
2.8 implies that xi is a fixed point, say ξ. Let m be the smallest index for which
xm = ξ then xi ̸= xj , i ̸= j , 0 ≤ i, j ≤ m otherwise, by Proposition 2.8 , xi = ξ
with i < m a contradiction . □

3. Auxiliary results

In this Section we prove some auxiliary results which are necessary for proving
the main theorem of the paper.

Proposition 3.1. Let {f, g} ∈ C with f, g contractive with Lipschitz constant 0 ≤
λ < 1 and let ξ, η be the fixed points of f, g. Then for any ε > 0 there exist ϕ and ψ
contractive with Lipschitz constant λ such that {ϕ, ψ} ∈ BN ({f, g}, ε) and ϕ, ψ have
different fixed points.

Proof. Suppose that ξ = η, otherwise there is nothing to prove. Let ε > 0 and
u ∈ D , u ̸= ξ be fixed and let 0 < t < ε

d . Define

ϕ(x) = tu+ (1− t)f(x) , ψ(x) = g(x).

Clearly ϕ and ψ are contractive with Lipschitz constant λ and

|ϕ(x)− f(x)| = |tu+ (1− t)f(x)− f(x)| = t|f(x)− u| ≤ td < ε

then

h({ϕ, ψ}, {f, g}) = |ϕ− f | < ϵ.

Furthermore |ϕ(ξ) − ξ| = |tu + (1 − t)f(ξ) − ξ| = t|ξ − u| > 0. As ψ(ξ) = g(ξ) = ξ
this implies that ϕ and ψ have different fixed points. □

Theorem 3.2. Let {f, g} ∈ C f, g contractive with Lipschitz constant 0 ≤ λ < 1 and
suppose that f, g have fixed points ξ, η , ξ ̸= η. Let {xn} be a trajectory relative to
{f, g} with initial point x0 ∈ D. Then for any ϵ > 0 there exist δ > 0 and maps ϕ, ψ
contractive with Lipschitz constant (λ+ 1)/2, {ϕ, ψ } ∈ BN ({f, g}, δ) such that the
trajectory {yn} relative to {ϕ, ψ} with initial point y0 = x0 is regular and |{yn} −
{xn}| < ε.
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Proof. The sequence {xn} converges to ξ or η, to fix the ideas suppose that

(3.1) xn → ξ.

It follows

0 = |f(ξ)− ξ| < |g(ξ)− ξ|
otherwise f and g would have equal fixed points. By a continuity argument there
exists δ > 0 , δ < ε/8 such that
(3.2)
|z − ξ| < δ , |ϕ(z)− f(z)| < δ , |ψ(z)− g(z)| < δ ⇒ |ϕ(z)− z| < |ψ(z)− z|,
this implies that z is regular with respect to {ϕ(z), ψ(z)}.

By Proposition 2.9 either

(i) xi ̸= xj if i ̸= j , i, j ∈ N0

or
(ii) there exists m ∈ N0 such that xm = ξ and xi ̸= xj , i ̸= j , 0 ≤ i, j ≤ m .

Suppose (i) holds

Let m ∈ N0 be the smallest index for which xm ∈ B(ξ, δ). Clearly |xn − ξ| ≥ δ for
every n < m. Furthermore |xn − ξ| < δ for all n ≥ m in fact

|xn+1 − ξ| = |f(xn)− f(ξ)| ≤ λ|xn − ξ| < δ.

Note that, by (3.2), {xn} is regular with respect to {f(xn), g(xn)} for every n ≥ m.
As the points xi are pairwise distinct, there exists r ∈ R

0 < r < δ

such that

(3.3) |xm − ξ| < δ − r , |xi − xj | > 2r , |xi − ξ| ≥ δ , i ̸= j 0 ≤ i, j < m .

Set

(3.4) θ = 8−m(1− λ)r .

We now define yn, ϕ(yn), ψ(yn) with the following properties :

if xn+1 = f(xn) then yn+1 = ϕ(yn) and if xn+1 = g(xn) then yn+1 = ψ(yn).

yn is regular with respect to {ϕ(yn), ψ(yn)}.
yn is close to xn.

Claim 1. There exist points y0, y1, ..., ym and maps ϕ, ψ such that for 0 ≤ n < m
we have

(3.5) |yn+1 − xn+1| < 8nθ , |ϕ(yn)− f(yn)| < 8nθ , |ψ(yn)− g(yn)| < 8nθ

and yn is regular with respect to {ϕ(yn), ψ(yn)}.
Let y0 = x0 and suppose that x1 = f(x0) (if x1 = g(x0) the argument is similar).

Clearly

(3.6) |f(x0)− x0| ≤ |g(x0)− x0|
If the inequality is strict then we define

ϕ(y0) = f(y0) and ψ(y0) = g(y0)
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Clearly y0 is regular with respect to {ϕ(y0), ψ(y0)} and y1 = ϕ(y0). Furthermore

ϕ(y0)− f(y0) = 0 , ψ(y0)− g(y0) = 0 , |y1 − x1| = |ϕ(y0)− f(x0| = 0.

If (3.6) is an equality then we define

ϕ(y0) = (1− t)f(y0) + ty0 and ψ(y0) = g(y0)

where 0 < t < θ
d . It follows

|ϕ(y0)− y0| = (1− t)|f(y0)− y0| = (1− t)|g(y0)− y0| < |ψ(y0)− y0|.
Then y0 is regular with respect to {ϕ(y0), ψ(y0)} and y1 = ϕ(y0).
Furthermore

|ϕ(y0)− f(y0)| = t|f(y0)− y0| ≤ td < θ , |ψ(y0)− g(y0)| = 0

and

|y1 − x1| = |ϕ(y0)− f(x0)| < t|f(y0)− y0| ≤ td < θ.

Then (3.5) is satisfied for n = 0.
Let 0 < n < m and suppose that yn , ϕ(yn−1) , ψ(yn−1) have been defined and

satisfy (3.5). Let

(3.7) xn+1 = f(xn)

(if xn+1 = g(xn) the argument is similar). Clearly

(3.8) |f(xn)− xn| ≤ |g(xn)− xn|.
If

(a1) |f(yn)− yn| < |g(yn)− yn|
we define

ϕ(yn) = f(yn) and ψ(yn) = g(yn).

Clearly yn is regular with respect to {ϕ(yn), ψ(yn)} and yn+1 = ϕ(yn). Furthermore

|ϕ(yn)− f(yn)| = |f(yn)− f(yn)| = 0 , |ψ(yn)− g(yn)| = |g(yn)− g(yn)| = 0

and

|yn+1 − xn+1| =|ϕ(yn)− f(xn)| ≤ |ϕ(yn)− f(yn)|+ |f(yn)− f(xn)|
≤0 + λ|yn − xn| < λ8n−1θ < 8nθ(3.9)

Hence in this case (3.5) is satisfied.
If

(a2) |f(yn)− yn| = |g(yn)− yn|
we define

ϕ(yn) = (1− t)f(yn) + tyn and ψ(yn) = g(yn)

where 0 < t < θ
d . We have

|ϕ(yn)− yn| = (1− t)|f(yn)− yn| = (1− t)|g(yn)− yn| < |ψ(yn)− yn|.
Then yn is regular with respect to {ϕ(yn), ψ(yn)} and yn+1 = ϕ(yn). Furthermore

|ϕ(yn)− f(yn)| ≤ t|f(yn)− yn| ≤ td < θ
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and

|yn+1 − xn+1| = |ϕ(yn)− f(xn)| ≤ (1− t)|f(yn)− f(xn)|+ t|f(xn)− yn|
≤ (1− t)λ|yn − xn|+ t|f(xn)− yn|(3.10)

≤ (1− t)λ8n−1θ + td < 8n−1θ + θ < 8nθ.

Then also in this case (3.5) is satisfied.
It remains the case when

(a3) |f(yn)− yn| > |g(yn)− yn| .

Observe that

|f(yn)− yn| ≤ |f(yn)− f(xn)|+ |f(xn)− xn|+ |xn − yn|
≤ (λ+ 1)|xn − yn|+ |f(xn)− xn|(3.11)

and

|g(yn)− yn| ≥ |g(xn)− xn| − |g(yn)− g(xn)| − |xn − yn|
≥ |g(xn)− xn| − (λ+ 1)|xn − yn|.(3.12)

In view of (3.8), (3.11) and (3.12) it follows

|f(yn)− yn| − |g(yn)− yn| ≤ |f(xn)− xn| − |g(xn)− xn|+ 2(λ+ 1)|xn − yn|
< 2(λ+ 1)|xn − yn| < 4|xn − yn|(3.13)

and

|f(yn)− yn|
|g(yn)− yn|

≤ |f(xn)− xn|+ 2|yn − xn|
|g(xn)− xn| − 2|yn − xn|

≤ |f(xn)− xn|+ 2|yn − xn|
|f(xn)− xn| − 2|yn − xn|

≤ |f(xn)− xn| − 2|yn − xn|+ 4|yn − xn|
|f(xn)− xn| − 2|yn − xn|

≤ 1 +
4|xn − yn|

|f(xn)− xn| − 2|xn − yn|

≤ 1 +
4(1−λ)r

8

2r − 2(1−λ)r
8

<
3

2
.

Set

(3.14)
|f(yn)− yn|
|g(yn)− yn|

= 1 + α

and define

ϕ(yn) = (1− α)f(yn) + αyn and ψ(yn) = g(yn).

It follows

|ϕ(yn)− yn| = (1− α)|f(yn)− yn| <
1

1 + α
|f(yn)− yn|

= |g(yn)− yn| = |ψ(yn)− yn|
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then yn is regular with respect to {ϕ(yn), ψ(yn)} and yn+1 = ϕ(yn). From (3.14) we
obtain

(3.15) |ϕ(yn)− f(yn)| = α|f(yn)− yn| =
|f(yn)− yn| − |g(yn)− yn|

|g(yn)− yn|
|f(yn)− yn|.

Finally from the latter, (3.12) and (3.13) we obtain

|ϕ(yn)− f(yn)| < 6|xn − yn| < 6 8n−1θ < 8nθ

and

|yn+1 − xn+1| ≤ |ϕ(yn)− f(xn)| ≤ |ϕ(yn)− f(yn)|+ λ|yn − xn|
< (6 + λ)|yn − xn| < 8 8n−1θ = 8nθ

This proves Claim 1.
Observe that (3.5) implies

(3.16) |yn − xn| ≤ 8n−1θ < 8n−18−m(1− λ)r <
(1− λ)r

8
, 1 ≤ n ≤ m.

Set E = {y0, y1, .., ym−1} and note that

|yi − yj | > |xi − xj | − |yi − xi| − |yj − xj | > 2r − 2
(1− λ)r

8
> r

Claim 2. The maps ϕ, ψ : E → D are contractive with Lipschitz constant λ+1
2 .

We prove the claim for the map ϕ (for the map ψ the argument is similar). In view
of (3.5) it follows

|ϕ(yi)− ϕ(yj)| ≤ |ϕ(yi)− f(yi|+ |f(yi)− f(yj |+ |f(yj)− ϕ(yj |

≤ 8iθ + λ|yi − yj |+ 8jθ < 2
(1− λ)r

8
+ λ|yi − yj |

≤
(

(1− λ)r

4|yi − yj |
+ λ

)
|yi − yj |

≤
(
(1− λ)r

4r
+ λ

)
|yi − yj | ≤

λ+ 1

2
|yi − yj |.

Then Claim 2 is proved.
Set

H = D \
m−1∪
i=0

B(xi, 2r)

and define

(3.17) ϕ(y) = f(y) and ψ(y) = g(y) , y ∈ H.

Claim 3. The maps ϕ, ψ : H ∪ E → D are contractive with Lipschitz constant
λ+1
2 . Again, we prove the claim for the map ϕ (for the map ψ the argument is

similar).
If u, v ∈ H then

ϕ(u) = f(u) , ϕ(v) = f(v)

which implies

|ϕ(u)− ϕ(v)| ≤ λ|u− v|.
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If u, v ∈ E we have proved in Claim 1 that

|ϕ(u)− ϕ(v)| < λ+ 1

2
|u− v|

If u ∈ H and v ∈ E, say v = yi then

|ϕ(u)− ϕ(yi)| ≤ |f(u)− f(yi)|+ |f(yi)− ϕ(yi)| ≤ λ|u− yi|+
(1− λ)r

8

≤ |u− yi|
(
λ+

(1− λ)r

8|u− yi|

)
≤ |u− yi|

(
λ+

1− λ

8

)
≤ λ+ 1

2
|u− yi|.

This completes the proof of Claim 3.
By the Kirszbraun-Valentine theorem [17] the maps ϕ, ψ can be extended to all

of D with the same Lipschitz constant. That is there exist ϕ̂ : D → D , ψ̂ : D → D
such that

ϕ̂(y) = ϕ(y) , ψ̂(y) = ψ(y) if y ∈ H ∪ E.
and ϕ̂, ψ̂ contractive with Lipschitz constant λ+1

2 .

Claim 4. For any y ∈ D

(3.18) |ϕ̂(y)− f(y)| < ε , |ψ̂(y)− g(y)| < ε.

As above we prove the Claim for the map ϕ̂ being the other case similar. Indeed,
either y ∈ H or y ∈ B(xi, 2r) for some 0 ≤ i < m.

If y ∈ H then ϕ̂(y) = ϕ(y) = f(y) and (3.18) clearly holds.

If y ∈ B(xi, 2r) then, being ϕ̂ lipschitzian with Lipschitz constant1+λ
2 and ϕ̂(yi) =

ϕ(yi) it follows

|ϕ(y)− f(y)| ≤ |ϕ(y)− ϕ(yi)|+ |ϕ(yi)− f(yi)|+ |f(yi)− f(y)|

≤ 1 + λ

2
|y − yi|+ |ϕ(yi)− f(yi)|+ λ|y − yi| ≤ 8r < ε.

This proves Claim 4.
If yn ∈ BN (ξ, δ) then, by the definition of H and (3.3), it follows that ϕ̂(yn) =

ϕ(yn) = f(yn) and ψ̂(yn) = ψ(yn) = g(yn) which, in view of (3.2), implies that yn
is regular with respect to {ϕ̂(yn), ψ̂(yn)}.
Claim 5. For all n ≥ m

(3.19) |yn − ξ| < δ .

We have

|ym − ξ| ≤ |ym − xm|+ |xm − ξ| < |ym − xm|+ δ − r

<
(1− λ)r

8
+ δ − r < δ − r

2

then (3.19) holds for n = m. Suppose that (3.19) is valid for n = p > m and prove it
for n = p+ 1. As yn ∈ B(ξ, δ) ⊂ H, in view of (3.2) one has yn+1 = ϕ(yn) = f(yn).
It follows

|yn+1 − ξ| = |ϕ(yn)− ξ| ≤ |f(yn)− f(ξ)| ≤ λ|yn − ξ|.



GENERIC PROPERTIES 1107

Then (3.19) holds for n = p+ 1 and then for any n ≥ m.
This proves Claim 5.
From (3.19) it follows that, for any n > m , yn is regular with respect to

{ϕ̂(yn), ψ̂(yn)}. On the other hand yn is regular with respect to {ϕ̂(yn), ψ̂(yn)} for
0 ≤ n ≤ m, then

{yn} is regular with respect to {ϕ, ψ}.
Furthermore

|yn − xn| ≤ |yn − ξ|+ |xn − ξ| < δ + δ < ε for n > m.

and, by (3.5),

|yn − xn| <
(1− λ)r

8
< ε for n ≤ m

it follows that

|{yn} − {xn}| < ε.

This completes the proof of case (i).

Suppose (ii) holds
From Proposition 2.8 the trajectory {xn} is equal to {x0, x1, ..., xm−1, ξ, ξ, ......}
where xi ̸= xj if i ̸= j , 0 ≤ i, j < m. By following step by step the previous case
(i) we complete the proof of the theorem. □

4. Generic convergence of trajectory

In this section we establish the main result of the paper.

Theorem 4.1. Let {f, g} ∈ C f, g contractive with Lipschitz constant 0 ≤ λ < 1.
Suppose that f, g have fixed points ξ, η , ξ ̸= η and let {xn} be a regular trajectory
relative to {f, g} with initial point u ∈ D. Then for any ϵ > 0 there exists δ > 0
such that {ϕ, ψ} ∈ N , {ϕ, ψ} ∈ BN ({f, g}, δ) imply that the trajectory {yn} relative
to {ϕ, ψ} with initial point u, is regular and

|{xn} − {yn}| < ϵ .

Proof. The regular trajectory {xn} converges to ξ or η , to fix the ideas suppose
that xn → ξ.
Clearly

0 = |f(ξ)− ξ| < |g(ξ)− ξ|
otherwise f and g would have equal fixed points. By a continuity argument there
exists δ > 0 such that

(4.1) |z − ξ| < δ , {ϕ, ψ } ∈ BN ({f, g}, δ) imply |ϕ(z)− z| < |ψ(z)− z|.

From the latter it follows that z is regular with respect to {ϕ(z), ψ(z)}.
By assumption the trajectory {xn} converges to ξ. From Proposition 2.9 there are
two possible cases, either

(i) xi ̸= xj i, j ∈ N0 i ̸= j
or

(ii) there exists m ∈ N such that xi ̸= xj i, j < m , i ̸= j and xm = ξ.
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Suppose (i) holds.
As xn → ξ there exists m ∈ N such that

(4.2) |xn − ξ| < δ/2 , n ≥ m

then |f(xn)− xn| < |g(xn)− xn| which implies xn+1 = f(xn).
Consider them points x0, x1, ..., xm−1. By assumption the trajectory {xn} is regular
then, by continuity argument, there exists σ , 0 < σ < δ such that, if

(4.3) {ϕ, ψ} ∈ BN

(
{f, g}, σ(1− λ)

2

)
then the first m terms of the trajectory {yn} relative to {ϕ, ψ} with initial point
y0 = x0 = u are regular and satisfy

(4.4) |yn − xn| < δ/2 , n = 0, 1, ..,m− 1.

We prove by induction that actually (4.4) is valid for every n ∈ N0. Clearly (4.4) is
true for n = m − 1. Suppose that is true for n = p ≥ m and prove that is true for
n = p+ 1. By the inductive assumption and (4.2) we have

|yp − ξ| ≤ |yp − xp|+ |xp − ξ| < δ/2 + δ/2 = δ

then by (4.1) |ϕ(yp)− yp| < |ψ(yp)− yp| which implies yp+1 = ϕ(yp). From (4.4) it
follows

|yp+1 − xp+1| = |ϕ(yp)− f(xp)| ≤ |ϕ(yp)− f(yp)|+ |f(yp)− f(xp)|

<
δ(1− λ)

2
+ λ|yp − xp| <

δ(1− λ)

2
+ λ

δ

2
=
δ

2
.

Hence (4.4) is valid for n = p+1 and then for any n ∈ N0. As δ < ε the proof of (i)
is complete.

Suppose (ii) holds.
As in the Theorem 3.2 the trajectory {xn} is equal to {x0, x1, ..., xm−1, ξ, ξ, ....}.

Again, by following step by step case (i) we complete the proof of the theorem. □
Theorem 4.2. For a typical {ϕ, ψ} ∈ N any trajectory {xn} relative to {ϕ, ψ}
with initial point u ∈ D converges to a point z ∈ fix(ϕ) ∪ fix(ψ).
Proof. Let C0 be the set of all maps {f, g} ∈ C such that f and g have distinct fixed
points and the trajectory {zn} relative to {f, g} with initial point u is regular. It is
easily seen that C0 is dense in N i.e.

(4.5) C0 = N .

In fact let {f0, g0} ∈ N and ε > 0 be given. By Proposition 3.1 there exists
{f1, g1} ∈ C such that f1 and g1 have distinct fixed points and h({f0, g0}, {f1, g1}) <
ε/2. Furthermore, by Theorem 3.2, there exists {f2, g2} ∈ C such that
h({f2, g2}, {f1, g1}) < ε/2 and the trajectory {yn} relative to {f2, g2} with initial
point u is regular. Clearly {f2, g2} ∈ C0 and h({f0, g0}, {f2, g2}) < ε. This proves
(4.5).
Let N ∗ ⊂ N be defined by

(4.6) N ∗ =
∞∩
i=0

∪
{f,g}∈C0

BN ({f, g}, δi)
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where δi corresponds to εi = 1/i according to Theorem (4.1). N ∗ is the countable
intersection of open and dense subset of the complete space N , then is a residual
set of N . We are going to prove that each element of N ∗ satisfies the statement of
the Theorem. To this end let {ϕ, ψ} ∈ N ∗ be arbitrary and let {yn} be a trajectory
relative to {ϕ, ψ} with initial point u ∈ D. By (4.6), for each i ∈ N, there exists
{fi, gi} ∈ C0 such that

(4.7) {ϕ, ψ} ∈ BN ({fi, gi}, δi).
Let {xin}∞n=0 be the regular trajectory relative to {fi, gi} with initial point u. From
Theorem 4.1 it follows that

|{yn}∞n=0 − {xin}∞n=0| < εi.

Claim. The trajectory {yn} is Cauchy.
Let ε > 0 be given and fix i such that εi < ε/3. As {fi, gi} ∈ C0 the trajectory
{xin}∞n=0 converges, then there exists k ∈ N such that

|xin − xim| < εi/3 n,m > k.

It follows

|yn − ym| ≤ |yn − xin|+ |xin − xim|+ |xim − ym| < 3εi < ε

and consequently

|yn − ym| < ε n,m > k

The claim is proved.
We now prove that {yn} converges to z ∈ fixϕ ∪ fixψ. By the previous claim

the Cauchy sequence {yn} converges to a z ∈ D. For each n, either yn+1 = ϕ(yn) or
yn+1 = ψ(yn). Let

A = {n ∈ N : yn+1 = ϕ(yn)} B = {n ∈ N : yn+1 = ψ(yn)}.
Clearly A ∪B = N and at least one of the sets A and B is infinite, suppose A. Let
{y

kn
} be a subsequence of {yn} whose elements are in A. Thus

(4.8) y
kn+1 = ϕ(y

kn
)

As {y
kn+1} and {y

kn
} are subsequences of the sequence {yn} which converges to z,

they also converge to z. From (4.8) it follows that z = ϕ(z) and then z ∈ fix ϕ.
Since {ϕ, ψ} is an arbitrary element of N ∗ the proof is complete. □
Example. Let D ⊂ B[0, 1] and let f, g : D → R2 be given by

f(x, y) = (−y, x) g(x, y) = (y,−x).
The maps f and g are non expansive, thus {f, g} ∈ N and each of them has a unique
fixed point (0, 0). Let zn(x, y) be any trajectory relative to {f, g} with initial point
(x0, y0) ̸= (0, 0). From the definition of trajectory

zn(x, y) =
√
x20 + y20

and then zn(x, y) does not converge to (0, 0). Actually zn(x, y) does not converge
at all because

zn+1(x, y)− zn(x, y) = 2
√
x20 + y20.
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By adapting an argument of [3] one obtains the following result.

Theorem 4.3. The set C is of the Baire first category in N .

Proof. Let

Cn = {{f, g} ∈ N : h({f(x), g(x)}, {f(y), g(y)}) ≤ λn|x− y|}

where λn = n
n+1 .

Clearly Cn is closed and

C =
∞∪
n=1

Cn

We claim the Cn has empty interior. Suppose, by contradiction, that int Cn ̸= ∅,
that is there exist {f, g} ∈ int Cn and ε > 0 such that BN ({f, g}, ε) ⊂ Cn. Let ξ, η
be the fixed points of f, g and set

δ =
ε(1− λn)

4

Define {
ϕ(x) = x if x ∈ B(ξ, δ) , ϕ(x) = f(x) if x ∈ D ∖B(ξ, ε)

ψ(x) = g(x)

It is easily seen that ϕ is nonexpansive in the set B(ξ, δ) ∪ (D∖B(ξ, ε)). In fact, if
x, y ∈ B(ξ, δ) then the Lipschitz constant of ϕ is equal to 1, while if x ∈ D∖B(ξ, ε)
the Lipschitz constant is equal to λn. If x ∈ B(ξ, δ) and y ∈ D ∖B(ξ, ε) then

|ϕ(x)− ϕ(y)| = |x− f(y)| ≤ |x− ξ|+ λn|y − ξ| ≤ (1 + λn|x− ξ|+ λn|x− y|.

Then
|ϕ(x)− ϕ(y)|

|x− y|
≤ (1 + λn)

|x− ξ|
|x− y|

+ λn.

As |x− ξ| < δ and |x− y| > ε/2− δ it follows

|ϕ(x)− ϕ(y)|
|x− y|

≤ 1

By Kirszbraun-Valentine theorem there exists ϕ̂ which extend ϕ to the whole D
with the same Lipschitz constant, equal to 1. Furthermore |ϕ̂(x) − f(x)| = 0 if

x ∈ D ∖ B(ξ, ε) while if x ∈ B(ξ, ε) then |ϕ̂(x) − f(x)| = |ϕ̂(x) − ϕ̂(ξ)| + |ϕ̂(ξ) −
f(x) ≤ |x − ξ| + λn|x − ξ| < 2ε/2 = ε By setting ψ̂(x) = g(x) it follows that

{ϕ̂, ψ̂} ∈ BN ({f, g}, ε) and {ϕ̂, ψ̂} /∈ Cn , a contradiction. Then C is a countable
union of nowhere dense subsets of N . This implies that C is of the Baire first
category. This completes the proof. □
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