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GENERIC PROPERTIES OF SUCCESSIVE APPROXIMATIONS
IN HILBERT SPACES

G. PTANIGIANI

ABSTRACT. We investigate the convergence of successive approximations for a
class of nonexpansive set-valued maps F' in Hilbert spaces. We prove that the
trajectories of most, in the sense of Baire category, such mappings converge to a
fixed point of F'.

1. INTRODUCTION

The generic behavior of sequences of successive approximations for nonexpansive
single valued maps has been studied by several authors. A comprehensive account
and bibliographic references can be found in Reich and Zaslavski [10]-[15] and the
references therein. Apparently similar problems have not been considered for non-
expansive set valued maps.

In the present paper we investigate the generic behavior of sequences of succes-
sive approximations for a class of set valued maps of the form {f, g} where f and
g are nonexpansive maps from D into itself and D is a nonempty, closed, convex
and bounded set in a Hilbert space H. If f and ¢ are contractive i.e. they have
Lipschitz constant strictly less than 1, then the trajectories relative to {f, g} con-
verge to a fixed point of {f, g}. A similar result is no longer true if { f, g} are merely
nonexpansive. However it will be proved that for most (in the sense of Baire cat-
egory) maps {f, g} the trajectories converge to a fixed point of {f,g}. It is worth
noting, Theorem 4.3 , that the set of contractive maps {f, g} is of the Baire first
category in the space of nonexpansive maps.

With appropriate technical modifications our approach can be used to study the
generic behavior of trajectories relative to maps of the form {fi, .., f,,} where each
fi is nonexpansive from D into itself. However it is not clear if it can be used to
study the general case of set valued maps from D to the compact subsets of D.

The paper is divided in 4 sections including the Introduction. Section 2 contains
terminology and preliminary properties. Section 3 contains some auxiliary density
result. Section 4 contains the main result, namely, that for most nonexpansive maps
{f, g} the trajectories relative to {f, g} are convergent.

2. NOTATION AND PRELIMINARIES

In this section we review some preliminary properties which will be useful in what
follows, some of them are known and are included for completeness.
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Key words and phrases. Generic properties, fixed points, nonexpansive set-valued maps, succes-
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Let (M,d*) be a metric space. Open and closed balls with center a € M and
radius r are denoted by By (a,r) and Byy|a, r] sometimes simply B(a,r) and Bla,r].
The closure, interior and diameter of a set X C M are denoted by X, intX and
diam X. We denote by K(M) the space of all nonempty compact subsets of M

equipped with the Hausdorff metric h
hX,Y) = max {supexd*(z,Y), supyeyd*(y, X)} , X, Y € K(M).

A set X C M which is the complement of a set of the Baire first category is
said to be residual. A property (P) which is enjoyed by a residual subset of M is
called a generic property and, in this case, we say that most elements of M have
the property (P). In what follows H is a real Hilbert space with inner product <>
and induced norm |.|

If A C H is nonempty and bounded we set

|A| = sup{la| : a € A}.

Let N be the set of natural numbers and Ng = NU{0}. A map f: X — H, where
X C H is nonempty, is said to be nonexpansive if

[f (@) = F(y)| < |z —yl
for every z,y € X and is said to be contractive if there exists A, 0 < A < 1 such
that

[f(z) = F(y)]l < Az —y|
for every x,y € X, A is called the Lipschitz constant of f. In analogous way a map
F: X — K(H), where X C H is nonempty, is said to be nonexpansive if

hF(z), F(y)) < |z -yl

for every x,y € X and is said to be contractive with Lipschitz constant 0 < A < 1
if
h(F(z), F(y)) < Az -y
for every x,y € X.
Throughout the paper D is a nonempty, bounded, closed and convex subset of

H with d = diam D > 0.
Let

N'={f:D — D : f is nonexpansive}
C'={f:D — D: f is contractive}.
N’ is equipped with the metric
|f — gl = supzeplf(z) — g(z)]-

Under this metric A/’ is a complete metric space.
Let

N={{f.g}:f.geN"}
and

C={{fg}: f.geC}.
We equip N with the Hausdorff metric h.
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Proposition 2.1. (N, h) is a complete metric space.

Proof. As N is closed in K(N) and K(N) is complete under the metric h, then
(N, h) is complete. O

Proposition 2.2. Let {f,g},{f',¢'} € N'. Then
2.1) r({f, 9} {f,¢'}) = min (max (|f — f'],g — ¢'|); max (|f = ¢'|,[f" —gl)) -
Proof. Set

a = ’f_f/’ , b= |f_g/‘ y €= ’f/_g| ) d:‘g_g/"
By the definition of Hausdorff distance we have

a=h{f.gb.Af 9} =((anb)Vv(end)Vv(larc)V (bAd)

where pV ¢, p A ¢ mean the maximum and minimum of the real numbers p, q. By
the distributive property of A,V it follows that

(2.2) a=(anBVe)VdADbVe)=((bVec)A(aVd))
Hence (2.1) is valid. This completes the proof. O

Remark 2.3. As a consequence of Proposition 2.2 either a =aVdora=bVe<
a V d. In both cases

(2.3) h({f. g}, {f".g'}) < max(|f — f'],|g = 4'l)
This property will be useful in the sequel of the paper.

Proposition 2.4. Let f,g: D — D be lipschitzian with Lipschitz constants \ , u
respectively. Then the map F : D — K(D)

F(z) = {f(z),9(z)}
is lipschitzian with Lipschitz constant v = max (A, p)

Proof. From the previous Remark

h({f(z),9(x)}.{f(v), 9()}) < max (|f(z) — f(y)],]9(x) — 9(y)])
< max (Alz — yl, plz —y|)
=7z —yl.
The proof is complete. O
Definition 2.5. A sequence {:zzfl’g o is called a sequence of successive approxi-

mations, for brevity a trajectory relative to {f, g} if

(04)  alo = JF@n?) i F@n) —an’] < lg(eh?) —an?
: n+1 g(xf{g) if |f(x£’g) o $£,9| > |g(x£’g) N $£,g|'

When |f(z9) — 9| = |g(2]9) — 29| then

wpfy = f(h?) or wny = g(h?)

»g 00

If this does not create confusion we simply write {z,}°%, in place of {z59}2° .
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A point x € D is said regular with respect to a,b € D if
v —al £ o ],
A trajectory {x,}5o is said regular with respect to {f, g} if for all n € Ny

Proposition 2.6. Let {f,g} € C with f,g contractive with Lipschitz constant
0 <A<1 andlet {z,};2, be a trajectory relative to {f,g}. Then

(2.5) |Tnt1 — n| < Azp — 2p—1] neN
Proof. Indeed
Tn = f(xnfl) or Tn = g($nfl)-

Suppose z,, = f(zp—1) (if z, = g(x,—1) the argument is similar).
If 41 = f(z,) then

[Tni1 = xn| = [f(@n) = f@n-1)| < Azn — 2n.
If 2,41 = g(zy) then |g(x,) — x| < |f(2n) — 5| which implies

|Tnt1 — 20| = |g(2n) — 20| < [f(2n) — 2al = |f(20) = f(@n-1| < Aon — T0-1].

In both cases (2.5) holds. This completes the proof. O

Proposition 2.7. Let {f, g} € C and let £, be the fized points of f,g. Then every
trajectory {xy }22, relative to {f, g} with initial point w € D converges to & or 1.

The proof is an immediate consequence of Proposition 2.4 and Nadler’s fixed
point theorem [9].

Proposition 2.8. Let {f,g} € C with f,g contractive with Lipschitz constant 0 <
A <1 and let &,n be the fized points of f,g. Let {x,}5°, be a trajectory relative to
{f, g} with initial point xo € D. If there exists n € Ny and p € N such that

(2.6) Tn = Tnip
Then xn, =& or x, = 1.

Proof. Suppose that z,4+1 = f(zy,) (if 1 = g(z,) the argument is similar). We
have

(2.7) [Znt1 — Tn| = |f(2n) — 20| < [g(@0) — 20l
then, as x,4p = Tn,
[Tni1 = @n| = [f(@n) = 2ol = [f(@n4p) = Tnapl < |9(@n4p) — Tnip|

If 2p4p = f(Tn4p—1) then

ZTnt1 = Zn| = [f (@n4p) = f@ntp-1] < Al@nsp — Tngp-1l-
If 2p4p = g(Tp4p—1) then

|Tna1 — op| < ‘g(xn-&-p) - 9($n+p—1‘ < /\‘xn-&-p - $n+p—1’
In both cases

|Tn41 — Tn| < NEpyp — Tnap-1l
Since, by (2.5) ,
|Zntp — Tntp-1] < Ap_l‘fvn—irl — T
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it follows
|xn+1 - 55n| < Ap’l‘nJrl - l'n|

Then x,+1 = x, which implies f(x,) = x, and so z,, = &. O

Proposition 2.9. Let {f,g} € C with f,g contractive with Lipschitz constant 0 <
A< 1andlet&n , &F#n be the fized points of f,g. Let {x,}2, be a trajectory
relative to {f, g} with initial point xo € D. Then either

(i) all the x,, are pairwise distinct
or

(ii) there exists m € No such that x, is a fized point and x; # xj , i #j, 0 <
i,j<m.

Proof. Suppose that (i) is valid. Then for every n € Ny z,, is not a fixed point. In
fact if x,, = £ ,say , then 0 = |f(&) —&| < |g(&) — | otherwise f and g would have
equal fixed points, it follows that x,11 = f(§) = £ = x, a contradiction. Suppose
that (i) is not valid, then there exist ¢, j € Ny , ¢ < j such that x; = x;. Proposition
2.8 implies that z; is a fixed point, say . Let m be the smallest index for which
T =& then x; # x5, 1 # j, 0 <4,7 < m otherwise, by Proposition 2.8 , x; = ¢
with ¢ < m a contradiction . 0

3. AUXILIARY RESULTS

In this Section we prove some auxiliary results which are necessary for proving
the main theorem of the paper.

Proposition 3.1. Let {f,g} € C with f,g contractive with Lipschitz constant 0 <
A <1 and let £, 1 be the fized points of f,g. Then for any & > 0 there exist ¢ and ¢
contractive with Lipschitz constant X such that {¢,v¥} € By ({f,g},€) and ¢,v have
different fixed points.

Proof. Suppose that & = n, otherwise there is nothing to prove. Let € > 0 and
u € D, u+#¢ be fixed and let 0 < ¢ < 5. Define

¢(x) =tut+ (1 =)f(z) , ¢(@)=g(x)

Clearly ¢ and 1 are contractive with Lipschitz constant A and

[o(z) — f(@)| = [tu+ (1 =) f(z) — f(z)| =t]f(z) —u| <td <e
then

Furthermore |$(&) — & = [tu + (1 — 1) f(§) — & = ¢[§ —ul > 0. As (&) = g(&) = ¢
this implies that ¢ and v have different fixed points. O

Theorem 3.2. Let {f,g} € C f, g contractive with Lipschitz constant0 < A < 1 and
suppose that f, g have fized points £,m , & # n. Let {xz,} be a trajectory relative to
{f, g} with initial point xo € D. Then for any e > 0 there exist § > 0 and maps ¢,
contractive with Lipschitz constant (A +1)/2, {¢,v } € By({f, g}, 0) such that the
trajectory {yn} relative to {p,v} with initial point yo = x¢ is regular and [{y,} —
{zp}| <e.
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Proof. The sequence {z,} converges to £ or 7, to fix the ideas suppose that
(3.1) Ty — &

It follows
0=|f(&) —¢&l <|g(&) —¢]

otherwise f and g would have equal fixed points. By a continuity argument there
exists > 0, § < e/8 such that
(3.2)
lz=¢l <0, o(2) = f(2) <d , [W(z) —g(2)| <d = |o(2) — 2| <|(z) — 2],
this implies that z is regular with respect to {¢(2), ¥ (z)}.

By Proposition 2.9 either

or
(ii) there exists m € Ny such that x,,, = and x; #z;, i#j, 0<4i,j <m.
Suppose (i) holds
Let m € Ny be the smallest index for which z,, € B(§,9). Clearly |z, — &| > § for
every n < m. Furthermore |z, — &| < ¢ for all n > m in fact
|Znt1 — &l = |f(@n) — O] < Alzy — €] <6

Note that, by (3.2), {z,} is regular with respect to {f(x,), g(zy)} for every n > m.
As the points z; are pairwise distinct, there exists r € R

O<r<d
such that
(3.3) |lem =&l <d—1r , |zi—zj|>2r , |, =& >0, i#j 0<i,j<m.
Set
(3.4) 0=8""(1—-Nr.

We now define yy,, ¢(yn), ¥ (yn) with the following properties :

if xp11 = f(zy) then ypr1 = é(yn) and if x,41 = g(y,) then Y1 = Y (yn).
Yn is regular with respect to {¢(yn), ¥ (yn)}-

Yn 18 close to x,,.

Claim 1. There exist points yg, y1, ..., Ym and maps ¢, such that for 0 <n < m
we have

(35)  |Ynt1 —zns1| <8"0 , |d(yn) — f(yn)| <870 , [(yn) — g(yn)| < 8"0
)

and y,, is regular with respect to {d(yn), ¥ (yn)}-

Let yo = o and suppose that 1 = f(x¢) (if 1 = g(z¢) the argument is similar).
Clearly
(3.6) |f (o) — 2ol < [g(z0) — o

If the inequality is strict then we define
¢(yo) = f(yo) and ¥ (yo) = 9(yo)
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Clearly v is regular with respect to {¢(yo), ¥ (o)} and y1 = ¢(yo). Furthermore

¢(yo) = f(yo) =0, ¥(yo) = 9(yo) =0, [y1 — z1| = |d(yo) — f (20| = 0.
If (3.6) is an equality then we define

¢(yo) = (L = 1) f(yo) +tyo and  ¢(yo) = 9(yo)
where 0 < t < % . It follows

|p(yo) — yo| = (1 = t)[f(v0) — vol = (1 = )|g(v0) — ol < |¥(yo) — yol-

Then yq is regular with respect to {¢(yo), ¥ (yo)} and y1 = ¢(yo).
Furthermore

[¢(yo) — f(yo)| =t[f(yo) —yol <td <0, [(yo) — g(yo)| =0
and
ly1 — x| = [6(yo) — f (o) < t|f(yo) — ol <td < 0.
Then (3.5) is satisfied for n = 0.

Let 0 < n < m and suppose that y,, &(yn—1) , ¥(yn—1) have been defined and
satisfy (3.5). Let

(3.7) Tnir = f(xn)

(if zp4+1 = g(xy,) the argument is similar). Clearly
(3.8) |f(zn) — 20| < [9(zn) — 20|
If

(a1) | f(yn) = ynl < 9(yn) — ynl
we define

&(Yn) = f(yn) and Y(yn) = g(yn)-
Clearly y, is regular with respect to {¢(yn), ¥ (yn)} and yn1+1 = ¢(yp). Furthermore

0(yn) = F(yn)l = 1f(wn) = Flyn)l =0 5 [(yn) = 9(yn)l = |9(yn) — 9(yn)| = 0

and

[Ynt1 — Tnt1| =[0(yn) — f(@n)] < |6(Yn) — f(yn)| + [f(yn) — f(20)]

(3.9) <04 Ayn — x| < X810 < 89
Hence in this case (3.5) is satisfied.

If

(a2) [F(Yn) = ynl = 19(yn) — nl
we define

d(yn) = (1 =) f(yn) +tyn and ¢(yn) = g(yn)
where 0 < t < % . We have

[0(Yn) = ynl = (L = O[f(yn) = yul = (L = D)[g(yn) = ynl < [¥(yn) — ynl-
Then y, is regular with respect to {¢(yn), ¥ (yn)} and ynt1 = ¢(yn). Furthermore

|p(yn) — f(yn)| <t f(yn) —yn| < td <0
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and
[Yn+1 = Tna1] = [0(yn) — flan)| < (L=0)[f(yn) — f(@n)] + t]f(2n) — ynl
(3'10) S (1 _t)Myn_xn| +t‘f(xn) _yn|
<A =AM +td <810+ 6 < 8.

Then also in this case (3.5) is satisfied.
It remains the case when

(a3) |f(yn) = ynl > 19(yn) — ynl -
Observe that
Lf(Wn) = ynl < 1f(yn) — fl@n)l + [f(2n) — 2ol + |20 — ynl
(3'11) < ()‘+1)|xn_yn|+|f($n)_$n|
and
19(yn) — ynl = |g(zn) — 20| = |9(yn) — g(zn)| — |20 — ynl
(3'12) > ‘Q(In) _xn| _()‘+1)‘$n_yn|'
In view of (3.8), (3.11) and (3.12) it follows
|f(n) = ynl = 19(yn) — yn| < [f(zn) — 2al = [g(zn) — 2al + 2(A + 1) |20 — ¥y
(3'13) < 2(>‘+1)’$n_yn| < 4|$n_yn‘
and

| f(yn) — ynl < |f(n) — Zn| + 2|yn — 20| < |f(n) — zn| + 2|yn — zn]
19(Yn) = Ynl = |9(wn) — 2n| = 2|yn — 20| ~ |f(zn) — Tn| = 2|yn — 24|
< |f(zn) — 2n| = 2|Yyn — T0| + 4|yn — 24
B |f(n) — zn| — 2|yn — zn]

4|:L'n - yn|
<1+
|f(xn) - xn| - 2|xn - yn|
4(1=\)r 3
< 8 =
< 1+2r— SN < 5"
8
Set
(3.14) — " =14«
‘g(yn) - yn|
and define
d(yn) = (1 — @) f(yn) + ayn and ¥(yn) = g(yn).
It follows

|9(Yn) = ynl = (1 = )| f(yn) — yn| < 141F0‘\f(yn) — Ynl
= ‘g(yn) - yn| = w)(yn) - yn|
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then y, is regular with respect to {¢(yn), ¥(yn)} and yp+1 = ¢(yn). From (3.14) we

obtain
_ W o W Wn) =yl = 19(yn) — ynl
(3.15) |p(yn) — f(yn)| = | f(Yn) — ynl o) = ol

Finally from the latter, (3.12) and (3.13) we obtain
1p(yn) — fyn)| < 6]@n —yn| < 6 87710 < 876

and
[Yn+1 — Tot1l < [0(yn) — f(@n)| < |6(Yn) — f(yn)] + Ayn — 20
< (64 N)|yn — 1z, <8810 =80

This proves Claim 1.
Observe that (3.5) implies

1—
(3.16) [y — 2n| < 8710 < 8"TI8TM(1 — A1 < (8)\)T , 1<n<m.
Set E = {v0,91, -, Ym—1} and note that
1—=X)r
i 351 > foi = 5|~ i — il — Iy — 5] > 20— 28 s

Claim 2. The maps ¢, : E — D are contractive with Lipschitz constant %

We prove the claim for the map ¢ (for the map v the argument is similar). In view
of (3.5) it follows

[P(yi) — d(y;)| < |d(yi) — fil + [f (i) — fysl + [£(y5) — oy

(1=X)
8

) . r
< 80+ Alyi —y;| + 86 <2 Ay =yl

< (g3 b=

4lyi — yjl
(1-\)r A1
< <4T T Jyi =yl < —5—lyi — il

Then Claim 2 is proved.

Set »
H=D\ | B(x:,2r)
and define =
(3.17) o(y) = f(y) and Y(y) =g(y), y € H.

Claim 8. The maps ¢,v : H U E — D are contractive with Lipschitz constant
%. Again, we prove the claim for the map ¢ (for the map ¢ the argument is
similar).

If u,v € H then

which implies
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If u,v € E we have proved in Claim 1 that

[P(u) — ¢(v)| <
Ifue H and v € E, say v = y; then

u =l

6(u) — )] < 1) — F(w)|+ 1) — 0] < M — s + L
(e =Y g (g 122
S‘“_W</\+8\u—yi|)S’ yz\<)\+ 8 )
)\+1
< |u— il

This completes the proof of Claim 3.
By the Kirszbraun-Valentine theorem [17] the maps ¢, 1/1 can be extended to all

of D with the same Lipschitz constant. That is there exist qﬁ D—D w D—D
such that

o(y)=odly) , U(y) =) if ye HUE.

T 7 . . . . A1
and ¢, v contractive with Lipschitz constant <5—.

Claim 4. For any y € D
(3.18) 6y) — f)l <e , [y) —gly)l <e.

As above we prove the Claim for the map gﬁ being the other case similar. Indeed,
either y € H or y € B(x;,2r) for some 0 <i < m.
If y € H then ¢(y) = ¢(y) = f(y) and (3.18) clearly holds.
If y € B(x;,2r) then, being ¢ lipschitzian with Lipschitz constant% and ¢(y;) =
o(y;) it follows

60u) — FW)] < [6u) — 0ws)| + [0) — F(w] + |F(w:) — Fw)

14+
< 51y =yl H10(yi) = Fya)l + Aly —yil < 8r <e.

This proves Claim 4. R
If y, € Bar(€,0) then, by the definition of H and (3.3), it follows that ¢(y,) =

d(yn) = f(yn) and ¥ (yn) = ¥(yn) = g(yn) which, in view of (3.2), implies that y,
is regular with respect to {¢(yn), ¥ (yn)}.

Claim 5. For alln > m
(3.19) lyn — &l <0 .
We have

‘ym_ﬂ < ‘ym_xm‘+’xm_§| < |ym_xm|+5_7'
(1—=Mr r
0 — 0— =
3 + r < 5
then (3.19) holds for n = m. Suppose that (3.19) is valid for n = p > m and prove it
forn=p+1. As y, € B(£,0) C H, in view of (3.2) one has yp+1 = ¢(yn) = f(yn)-
It follows

<

Yn1 =&l = [d(yn) =& < |f(yn) — F(E)] < Alyn =&
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Then (3.19) holds for n = p+ 1 and then for any n > m.
This proves Claim 5.
From (3.19) it follows that, for any n > m , 1y, is regular with respect to
{@(yn),zﬂ(yn)} On the other hand vy, is regular with respect to {gﬁ(yn),ds(yn)} for
0 < n <m, then

{yn} is regular with respect to {¢,1}.

Furthermore
[Yn — Tn| < |y — &l F|xn — €| <6 +6<e  forn>m.

and, by (3.5),
(I—=Mr

|yn—xn\<T<5 forn <m

it follows that

Hyn} = {zn}l <e.

This completes the proof of case (i).

Suppose (ii) holds
From Proposition 2.8 the trajectory {z,} is equal to {zg, 21, ..., Tm—1,§,&, ... }
where z; # x; if ¢ # 7, 0 <4,j < m. By following step by step the previous case
(i) we complete the proof of the theorem. O

4. GENERIC CONVERGENCE OF TRAJECTORY
In this section we establish the main result of the paper.

Theorem 4.1. Let {f,g} € C f,g contractive with Lipschitz constant 0 < X < 1.
Suppose that f, g have fized points £,n, & #n and let {x,} be a reqular trajectory
relative to {f,g} with initial point w € D. Then for any € > 0 there exists § > 0
such that {¢, v} € N, {o,v} € By({f,g},9) imply that the trajectory {y,} relative
to {¢, v} with initial point u, is reqular and

H{zn} = {yn}l <e.

Proof. The regular trajectory {x,} converges to £ or 7, to fix the ideas suppose
that z,, — &.
Clearly

0=£(&) =&l <lg(§) ¢l

otherwise f and g would have equal fixed points. By a continuity argument there
exists 0 > 0 such that

41)  |z=¢&l <o, {o,9} e By({f,9},0) imply |¢(z) — 2| < |ib(2) — 2|.

From the latter it follows that z is regular with respect to {¢(z), ¥ (z)}.
By assumption the trajectory {x,} converges to . From Proposition 2.9 there are
two possible cases, either
(i) $i7é$j i,j€ENg i # 7
or
(ii) there exists m € N such that x; #x; i,j <m,i#j and x, =¢.
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Suppose (i) holds.
As x, — & there exists m € N such that
(4.2) |z, — &l <6/2 , n>m

then |f(zy) — xn| < |g(xn) — zp| which implies z,41 = f(xn).
Consider the m points xg, x1, ..., T;m—1. By assumption the trajectory {z,} is regular
then, by continuity argument, there exists o, 0 < o < § such that, if

(4.3 0.0} € B ({00, 705

then the first m terms of the trajectory {y,} relative to {¢,%} with initial point
Yo = To = u are regular and satisfy
(4.4) |yn, — xn| < 6/2 , n=0,1,...,m— 1.

We prove by induction that actually (4.4) is valid for every n € Ny. Clearly (4.4) is
true for n = m — 1. Suppose that is true for n = p > m and prove that is true for
n = p + 1. By the inductive assumption and (4.2) we have
lyp =&l < lyp — @p| + |2p — €] < /24 6/2 =146
then by (4.1) [¢(yp) — yp| < [¢(yp) — yp| which implies ypi1 = ¢(yp). From (4.4) it
follows
Yp+1 — Tp1| = [@(yp) — [(2p)| < |d(yp) — fyp)| + | f(yp) — f(2p)]
(1 —=N) 0(1—=X) 6 0
_ ——L A==
< 2 2 + 2 2

Hence (4.4) is valid for n = p+ 1 and then for any n € Ny. As 6 < € the proof of (i)
is complete.

+ Ay — x| <

Suppose (ii) holds.
As in the Theorem 3.2 the trajectory {x,} is equal to {zg,x1, ..., Tm—1,&, &, ... }.
Again, by following step by step case (i) we complete the proof of the theorem. [

Theorem 4.2. For a typical {¢,¢v} € N any trajectory {x,} relative to {¢, 1}
with initial point u € D converges to a point z € fix(¢) U fix(y).

Proof. Let Cy be the set of all maps {f, g} € C such that f and g have distinct fixed
points and the trajectory {z,} relative to {f, g} with initial point u is regular. It is
easily seen that Cy is dense in N i.e.

(4.5) Co=N.

In fact let {fo,90} € N ande > 0 be given. By Proposition 3.1 there exists
{f1,91} € C such that f; and g1 have distinct fixed points and h({ fo, g0}, {f1,91}) <
£/2. Furthermore, by Theorem 3.2, there exists {f2,92} € C such that
h({f2, 92}, {f1,91}) < €/2 and the trajectory {y,} relative to {f2, g2} with initial
point u is regular. Clearly {f2, 92} € Co and h({fo, 90}, {f2,92}) < e. This proves
(4.5).

Let N* C N be defined by

(4.6) N = U Bnx{f.g}.0)

1=0 {f,g}eco
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where §; corresponds to &; = 1/i according to Theorem (4.1). N* is the countable
intersection of open and dense subset of the complete space A, then is a residual
set of N. We are going to prove that each element of A'* satisfies the statement of
the Theorem. To this end let {¢, %} € N* be arbitrary and let {y,} be a trajectory
relative to {¢, 1} with initial point © € D. By (4.6), for each i € N, there exists
{fi, gi} € Cp such that

(4.7) {o,v} € By({fi5 i}, 0i)-

Let {z7,}°°, be the regular trajectory relative to {f;,g;} with initial point u. From
Theorem 4.1 it follows that

{untnzo — {2 nZol < e
Claim. The trajectory {y,} is Cauchy.
Let € > 0 be given and fix 7 such that e; < /3. As {fi,9:} € Co the trajectory
{z,}7° , converges, then there exists k € N such that

lat — a2l | <ei/3 n,m >k
It follows
[Yn = Ym| < |yn _x:z‘ + ]w; _w:n’ + Wn —Ym| <3e; <e

and consequently

|Yn —ym| <& n,m >k

The claim is proved.
We now prove that {y,} converges to z € fixg U fixi. By the previous claim
the Cauchy sequence {y,} converges to a z € D. For each n, either y,,+1 = ¢(yy) or

Yn+1 = ¥ (yn). Let

A={neN:y,r1=0yn)} B={neN:y,1=19(yn)}
Clearly AU B = N and at least one of the sets A and B is infinite, suppose A. Let
{ykn} be a subsequence of {y,} whose elements are in A. Thus

(4.8) Y1 = 0y, )

As {y, +1} and {y, } are subsequences of the sequence {y,} which converges to z,
they also converge to z. From (4.8) it follows that z = ¢(z) and then z € fiz ¢.
Since {¢, 1} is an arbitrary element of N'* the proof is complete. O

Example. Let D C B[0,1] and let f,g: D — R? be given by
f(xvy) = (—y,x) g(w,y) = (y7 _1")'
The maps f and g are non expansive, thus {f, g} € A and each of them has a unique

fixed point (0,0). Let z,(z,y) be any trajectory relative to {f, g} with initial point
(xo,y0) # (0,0). From the definition of trajectory

n(,y) =\ 28 +y5

and then z,(z,y) does not converge to (0,0). Actually z,(z,y) does not converge

at all because
St (0,9) = 2alo,y) = 20/a3 + 3.
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By adapting an argument of [3] one obtains the following result.
Theorem 4.3. The set C is of the Baire first category in N .
Proof. Let
Co={f,9} €N+ h({f(2),9(x)},{F (), 9(»)}) < Anlw —yl}

where \,, = nLH

Clearly C, is closed and
c=\Jcn
n=1

We claim the C), has empty interior. Suppose, by contradiction, that int C,, # 0,
that is there exist {f, g} € int C}, and € > 0 such that By/({f,g},e) C Cy. Let &,
be the fixed points of f, g and set

e(l— X,
Y
Define
¢p(x)=a if ze€B(d) , ¢(x)=f(x) if € D~B(§,e)
{w@)—g®)
It is easily seen that ¢ is nonexpansive in the set B(£,9) U (D ~ B(&,¢)). In fact, if

x,y € B(§,0) then the Lipschitz constant of ¢ is equal to 1, while if z € D~ B(§,¢)
the Lipschitz constant is equal to \,,. If x € B(&,d) and y € D \ B(§,¢) then

l9(z) — oY) = |z = FW)] < [z — &l + Anly — & < (1 + Anlz — & + Anlz =yl
Then

|z =y [z —y
As |z — & < d and |[x —y| > e/2 — § it follows
6(z) — 6] _ |
[z -yl

By Kirszbraun-Valentine theorem there exists 45 which extend ¢ to the whole D
with the same Lipschitz constant, equal to 1. Furthermore |¢(z) — f(x)] = 0 if

x € D\ B(§,¢) while if z € B(¢,¢) then [¢(z) — f(z)| = [¢(z) — o(§)] + [¢(£) —
flz) < |z =& + Az — & < 2¢/2 = ¢ By setting ¢(x) = g(z) it follows that
{&,1&} € By({f,g},¢) and {qg,@/A)} ¢ C,, , a contradiction. Then C' is a countable
union of nowhere dense subsets of A. This implies that C is of the Baire first

category. This completes the proof. O
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