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applications. In particular, given a property which elements of the space M may
have, it is of interest to determine whether this property is generic, that is, whether
the set of elements which do enjoy this property contains a countable intersection
of open and everywhere dense sets. Such an approach, when a certain property is
investigated for the whole spaceM and not just for a single point inM , has already
been successfully applied in many areas of Analysis. See, for example, [1–7] and the
references therein.

Using this approach, we have recently [2] established a generic fixed point theorem
which we now state.

Theorem 1.1. There exists a set F which is a countable intersection of open and
everywhere dense subsets of A such that:

1. Each C ∈ F has a unique fixed point xC ∈ K, that is, a unique point
satisfying CxC = xC .

2. For each C ∈ F and each ϵ > 0, there exist a neighborhood U of C in A and
a natural number nϵ such that for each B ∈ U and each integer n ≥ nϵ,

∥Bnx− xC∥ ≤ ϵ

for all x ∈ K.

Note that the classical result of De Blasi and Myjak [1] is a particular case
of our result where f = ∥ · ∥. As a matter of fact, the mappings studied here
can be considered generalized nonexpansive mappings with respect to f . Such an
approach, where in some problems of functional analysis the norm is replaced by a
general function, was used in [4, 5, 6] in the study of generalized best approximation
problems, which we now recall.

Given a closed subset S of a Banach space X and a point x ∈ X, we consider in
[4, 5, 6] the minimization problem

(P ) min{f(x− y) : y ∈ S}.
This problem was studied by many mathematicians mostly in the case where f(x) =
∥x∥. In this special case it is well known that if S is convex and X is reflexive, then
problem (P) always has at least one solution. This solution is unique when X is
strictly convex. In [4] and [5] we establish the generic solvability and well-posedness
of problem (P) for a general function f .

Set

(1.4) Df := sup{f(x− y) : x, y ∈ K}.
A mapping A ∈ A is called (f)-contractive if there exists a decreasing function

ψ : [0,∞) → [0, 1] such that

(1.5) ψ(t) < 1 for all t > 0,

and

(1.6) f(Ax−Ay) ≤ ψ(f(x− y))f(x− y) for all x, y ∈ K.

In the case where f(x) = ∥x∥, our definition coincides with the classical definition of
a contractive mapping used in the literature [6, Section 1.3]. In this case it is known
that a contractive mapping has a unique fixed point which attracts uniformly all
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the iterates of the mapping (see [6, Section 3.1] and the references mentioned there).
In the present paper we extend this result to the general case. We also show that a
generic (typical) mapping belonging to the space A is (f)-contractive. In the case
where f(x) = ∥x∥, this result can be found in [6, Section 3.1] and in the references
mentioned there.

More precisely, in this paper we establish the following results.

Theorem 1.2. Let a mapping A ∈ A be (f)-contractive. Then there exists a unique
fixed point x̄ ∈ K satisfying Ax̄ = x̄.

Theorem 1.2 is proved in Section 2.

Theorem 1.3. Let a mapping A ∈ A be (f)-contractive, assume that a point x̄ ∈ K
satisfies

Ax̄ = x̄

and let ϵ > 0. Then there exist δ > 0 and a natural number n0 > 2 such that for
each integer n ≥ n0 and each sequence {xi}ni=1 ⊂ K which satisfies

∥xi+1 −Axi∥ ≤ δ

for all i ∈ {1, . . . , n− 1}, the following inequality holds:

∥xi − x̄∥ ≤ ϵ, i = n0, . . . , n.

Corollary 1.4. Let a mapping A ∈ A be (f)-contractive and assume that x̄ ∈ K
satisfies

Ax̄ = x̄.

Then Aix→ x̄ as i→ ∞ for all x ∈ K, uniformly on K.

Theorem 1.3 is our stable convergence result. It follows from property (P1) and
the next result, which is proved in Section 3.

Theorem 1.5. Let a mapping A ∈ A be (f)-contractive, assume that x̄ ∈ K satisfies

Ax̄ = x̄

and let ϵ > 0. Then there exist δ > 0 and a natural number n0 > 2 such that for
each integer n ≥ n0 and each sequence {xi}ni=1 ⊂ K which satisfies

∥xi+1 −Axi∥ ≤ δ

for all i ∈ {1, . . . , n− 1}, the following inequality holds:

f(xi − x̄) ≤ ϵ, i = n0, . . . , n.

The following generic result is proved in Section 4.

Theorem 1.6. There exists a set F which contains a countable intersection of open
and everywhere dense subsets of A such that each element in F is an (f)-contractive
mapping.
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2. Proof of Theorem 1.2

By assumption, there exists a decreasing function ψ : [0,∞) → [0, 1] such that
(1.5) and (1.6) hold.

Let ϵ > 0 be given. We claim that there exists a point xϵ ∈ K such that

f(xϵ −Axϵ) ≤ ϵ.

Fix x ∈ K and consider the sequence {Aix}∞i=0. We assert that there exists an
integer i ≥ 0 such that

f(Aix−Ai+1x) ≤ ϵ.

Assume the contrary. Then for each integer i ≥ 0,

(2.1) f(Aix−Ai+1x) > ϵ.

Let i ≥ 0 be an integer. Then (2.1) holds. Since the function ψ is decreasing, it
follows from (1.5), (1.6) and (2.1) that

f(Ai+1x−Ai+2x) ≤ f(A(Aix)−A(Ai+1x))

≤ ψ(f(Aix−Ai+1x))f(Aix−Ai+1x)

≤ ψ(ϵ)f(Aix−Ai+1x)

and so,

f(Aix−Ai+1x)− f(Ai+1x−Ai+2x) ≥ (1− ψ(ϵ))f(Aix−Ai+1x)

≥ (1− ψ(ϵ))ϵ.(2.2)

By (2.2), for any natural number n,

f(x−Ax) ≥ f(A0x−A1x)− f(Anx−An+1x)

=

n−1∑
i=0

[f(Aix−Ai+1x)− f(Ai+1x−Ai+2x)]

≥ (1− ψ(ϵ))ϵn→ ∞ as n→ ∞.

The contradiction we have reached proves that there indeed exists an integer i ≥ 0
such that

f(Aix−Ai+1x) ≤ ϵ,

as asserted. Thus we have shown that the following property holds:
(P4) for each ϵ > 0, there exists a point xϵ ∈ K such that

f(xϵ −Axϵ) ≤ ϵ.

We now show that the following property also holds:
(P5) for each ϵ > 0, there exists δ > 0 such that for each x, y ∈ K satisfying

f(x−Ax) ≤ δ and f(y −Ay) ≤ δ,

the inequality ∥x− y∥ ≤ ϵ holds.
To this end, let ϵ > 0 be given. By (P1), there exists ϵ1 ∈ (0, ϵ) such that

(2.3) if x, y ∈ K and f(x− y) ≤ ϵ1, then ∥x− y∥ ≤ ϵ.
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Since the function (x, y) 7→ f(x− y), x, y ∈ K, is uniformly continuous on K ×K,
there exists ϵ2 ∈ (0, ϵ1) such that for each z1, z2, z3, z4 ∈ K satisfying

∥z1 − z3∥, ∥z2 − z4∥ ≤ ϵ2,

the following inequality holds:

(2.4) |f(z1 − z2)− f(z3 − z4)| ≤ (1− ψ(ϵ1))ϵ1/8.

By property (P1), there exists δ ∈ (0, ϵ2) such that

(2.5) if z1, z2 ∈ K satisfy f(z1 − z2) ≤ δ, then ∥z1 − z2∥ ≤ ϵ2.

Let x, y ∈ K satisfy

(2.6) f(x−Ax) ≤ δ and f(y −Ay) ≤ δ.

We claim that the inequality ∥x− y∥ ≤ ϵ holds.
Assume the contrary. Then

(2.7) ∥x− y∥ > ϵ.

By (2.3) and (2.7),

(2.8) f(x− y) > ϵ1.

Since the function ψ is decreasing, it follows from (1.6) and (2.8) that

f(Ax−Ay) ≤ ψ(f(x− y))f(x− y) ≤ ψ(ϵ1)f(x− y)

and

(2.9) f(x− y)− f(Ax−Ay) ≥ (1− ψ(ϵ1))f(x− y) ≥ (1− ψ(ϵ1))ϵ1.

In view of (2.5) and (2.6),

(2.10) ∥x−Ax∥, ∥y −Ay∥ ≤ ϵ2.

By (2.10) and the choice of ϵ2 (see (2.4)),

|f(x− y)− f(Ax−Ay)| ≤ (1− ψ(ϵ1))ϵ1/8.

This contradicts (2.9). The contradiction we have reached proves that, in fact,
∥x− y∥ ≤ ϵ. Thus property (P5) holds.

By property (P4), there exists a sequence {xi}∞i=1 ⊂ K such that

(2.11) lim
i→∞

f(xi −Axi) = 0.

In view of (2.11) and property (P5), {xi}∞i=1 is a Cauchy sequence. Therefore there
exists

(2.12) x̄ = lim
i→∞

xi

in the norm topology of X. By (2.11), (2.12) and the continuity of A and f ,

f(x̄−Ax̄) = 0

and in view of property (P1), it follows that

Ax̄ = x̄.

Assume that y ∈ K satisfies Ay = y. If y ̸= x̄, then by (1.5) and (1.6),

f(x̄− y) = f(Ax̄−Ay) ≤ f(x̄− y)ψ(f(x̄− y)) < f(x̄− y),
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a contradiction. The contradiction we have reached completes the proof of Theorem
1.2.

3. Proof of Theorem 1.5

By assumtion, there exists a decreasing function ψ : [0,∞) → [0, 1] such that
(1.5) and (1.6) hold.

By property (P3), there exists a number δ ∈ (0, ϵ) such that

(3.1) |f(y1 − y2)− f(z1 − z2)| ≤ (1− ψ(ϵ/2))ϵ/8

for each y1, y2, z1, z2 ∈ K satisfying

∥yi − zi∥ ≤ δ, i = 1, 2.

Choose a natural number

(3.2) n0 > 2 + 2ϵ−1(1− ψ(ϵ))−1 sup{f(z1 − z2) : z1, z2 ∈ K}.
Assume that n ≥ n0 is an integer and that a sequence {xi}ni=1 ⊂ K satisfies

(3.3) ∥xi+1 −Axi∥ ≤ δ

for all i ∈ {1, . . . , n− 1}.
We claim that there exists an integer j ∈ {1, . . . .n0} such that

f(xj − x̄) ≤ ϵ.

Indeed, assume the contrary. Then for all i ∈ {1, . . . , n0},
(3.4) f(xi − x̄) > ϵ.

Let i ∈ {1, . . . , n0}. Then (3.4) holds. By (1.6), (3.4) and the equality Ax̄ = x̄,

f(Axi − x̄) ≤ ψ(f(xi − x̄))f(xi − x̄)

≤ ψ(ϵ)f(xi − x̄)

and

(3.5) f(xi − x̄)− f(Axi − x̄) ≥ (1− ψ(ϵ))f(xi − x̄) ≥ (1− ψ(ϵ))ϵ.

By (3.3) and the choice of δ (see (3.1)),

|f(Axi − x̄)− f(xi+1 − x̄)| ≤ (1− ψ(ϵ/2))ϵ/8.

When combined with (3.5), this implies that

(3.6) f(xi − x̄)− f(xi+1 − x̄) ≥ (1− ψ(ϵ))ϵ/2.

In view of (3.6),

f(x1 − x̄) ≥ f(x1 − x̄)− f(xn0+1 − x̄)

=

n0∑
i=1

[f(xi − x̄)− f(xi+1 − x̄)]

≥ n0(1− ψ(ϵ))ϵ/2

and

n0 ≤ 2ϵ−1(1− ψ(ϵ))−1f(x1 − x̄).
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This contradicts (3.2). The contradiction we have reached proves that there exists
j ∈ {1, . . . , n0} such that

f(xj − x̄) ≤ ϵ,

as claimed. Assume now that an integer i ∈ {j, . . . , n} \ {n} satisfies

(3.7) f(xi − x̄) ≤ ϵ.

There are two cases:

(3.8) f(xi − x̄) ≤ ϵ/2;

(3.9) f(xi − x̄) > ϵ/2

Assume that (3.8) holds. By (1.1), (3.8) and the equality Ax̄ = x̄,

(3.10) f(Axi − x̄) ≤ ϵ/2.

In view of (3.3) and the choice of δ (see (3.1)),

|f(xi+1 − x̄)− f(Axi − x̄)| ≤ ϵ/8.

When combined with (3.10), this implies that

f(xi+1 − x̄) ≤ f(Axi − x̄) + |f(xi+1 − x̄)− f(Axi − x̄)| ≤ ϵ.

Assume that (3.9) holds. By (1.6), (3.7) and (3.9),

f(Axi − x̄) ≤ ψ(f(xi − x̄))f(xi − x̄)

≤ ψ(ϵ/2)f(xi − x̄)(3.11)

≤ ψ(ϵ/2)ϵ.

In view of (3.3) and the choice of δ (see (3.1)),

|f(xi+1 − x̄)− f(Axi − x̄)| ≤ (1− ψ(ϵ/2))ϵ/8.

When combined with (3.11), this implies that

f(xi+1 − x̄) ≤ f(Axi − x̄) + |f(xi+1 − x̄)− f(Axi − x̄)|
≤ ψ(ϵ/2))ϵ+ (1− ψ(ϵ/2))ϵ/8 < ϵ.

Thus in both cases

(3.12) f(xi+1 − x̄) ≤ ϵ.

Therefore

f(xj − x̄) ≤ ϵ

and if an integer i ∈ {j, . . . , n} \ {n} satisfies (3.7), then (3.12) also holds. This
implies that (3.7) holds for all i = j, . . . , n. Theorem 1.5 is proved.
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4. Proof of Theorem 1.6

We use the convention that the supremum over the empty set is zero.
For each natural number n, we denote by Fn the set of all A ∈ A such that

(4.1) sup{f(Ax−Ay)f(x− y)−1 : x, y ∈ K and f(x− y) ≥ n−1Df} < 1.

Define

(4.2) F = ∩∞
n=1Fn.

Let A ∈ F be given. We now show that the mapping A is (f)-contractive. To this
end, set

ψ(0) = 1

and for each t > 0, put

(4.3) ψ(t) = sup{f(Ax−Ay)f(x− y)−1 : x, y ∈ K and f(x− y) ≥ t}.
Clearly, ψ : [0,∞) → [0, 1] is a decreasing function. In view of (4.1) and (4.3),

ψ(t) < 1 for all t > 0.

By property (P1) and (4.3), for all x, y ∈ K satisfying x ̸= y,

f(x− y) > 0

and

f(Ax−Ay)f(x− y)−1 ≤ ψ(f(x− y).

Thus the mapping A is (f)-contractive.
Let n be a natural number. In order to complete the proof of the theorem, it is

sufficient to show that Fn contains an open and everywhere dense subset of A.
Fix

θ ∈ K.

Let A ∈ A and r ∈ (0, 1]. Fix a number γ ∈ (0, 1) such that

(4.4) γdiam(K) ≤ r/4.

Set

(4.5) Aγx = (1− γ)Ax+ γθ, x ∈ K.

Clearly,

Aγ(K) ⊂ K.

By (4.4) and (4.5),

d(Aγ , A) = sup{∥(1− γ)Ax+ γθ −Ax∥ : x ∈ K}
≤ sup{γ∥θ −Ax∥ : x ∈ K}(4.6)

≤ γdiam(K) ≤ r/4.

In view of (P3), there exists δ ∈ (0, 1) such that for each y1, y2, z1, z2 ∈ K satisfying

∥yi − zi∥ ≤ δ, i = 1, 2,

we have

(4.7) |f(y1 − y2)− f(z1 − z2)| ≤ (1− ϕ(1− γ))(8n)−1Df .
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Assume that

(4.8) B ∈ A and d(B,Aγ) ≤ δ.

By (1.1), (4.5) and property (P3), for each x, y ∈ K,

f(Aγx−Aγy) = f((1− γ)Ax− (1− γ)Ay))

= f((1− γ)(Ax−Ay))(4.9)

≤ ϕ(1− γ)f(x− y).

Let x, y ∈ K satisfy

(4.10) f(x− y) ≥ n−1Df .

It follows from (1.3), (4.8) and the choice of δ (see (4.7)) that

(4.11) |f(Bx−By)− f(Aγx−Aγy)| ≤ (1− ϕ(1− γ))(8n)−1Df .

In view of (4.9), (4.10) and (4.11),

f(Bx−By) ≤ f(Aγx−Aγy) + |f(Bx−By)− f(Aγx−Aγy)|
≤ ϕ(1− γ)f(x− y) + 8−1(1− ϕ(1− γ))n−1Df

≤ ϕ(1− γ)f(x− y) + 8−1(1− ϕ(1− γ))f(x− y)

and

f(Bx−By)f(x− y)−1 ≤ ϕ(1− γ) + 8−1(1− ϕ(1− γ))

= (7/8)ϕ(1− γ) + 1/8 < 1.

Since the above relation holds for all x, y ∈ K satisfying (4.10), we conclude that
B ∈ Fn. Thus each mapping B satisfying (4.8) belongs to Fn. In view of (4.6), we
see that Fn contains an open and everywhere dense subset of A. This completes
the proof of Theorem 1.6.
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