SINGULAR POINTS OF NON-MONOTONE POTENTIAL OPERATORS

BIAGIO RICCERI
Dedicated to the memory of Francesco Saverio De Blasi

Abstract

In this paper, we establish some results about the singular points of certain non-monotone potential operators. Here is a sample: If X is an infinitedimensional reflexive real Banach space and if $T: X \rightarrow X^{*}$ is a non-monotone, closed, continuous potential operator such that the functional $x \mapsto \int_{0}^{1} T(s x)(x) d s$ is sequentially weakly lower semicontinuous and $\lim _{\|x\| \rightarrow+\infty}\left(\int_{0}^{1} T(s x)(x) d s+\right.$ $\varphi(x))=+\infty$ for all $\varphi \in X^{*}$, then the set of all singular points of T is not σ-compact.

Here and in what follows, $(X,\|\cdot\|)$ is a reflexive real Banach space, with topological dual X^{*}, and $T: X \rightarrow X^{*}$ is a continuous potential operator. This means that the functional

$$
x \rightarrow J_{T}(x):=\int_{0}^{1} T(s x)(x) d s
$$

is of class C^{1} in X and its Gâteaux derivative is equal to T. Let us recall a few classical definitions.

Definition 1. T is said to be monotone if

$$
(T(x)-T(y))(x-y) \geq 0
$$

for all $x, y \in X$.
This is equivalent to the fact that the functional J_{T} is convex.
Definition 2. T is said to be closed if for each closed set $C \subseteq X$, the set $T(C)$ is closed in X^{*}.

Definition 3. T is said to be compact if for each bounded set $B \subset X$, the set $\overline{T(B)}$ is compact in X^{*}.

Definition 4. T is said to be proper if for each compact set $K \subset X^{*}$, the set $T^{-1}(K)$ is compact in X.

[^0]Definition 5. T is said to be a local homeomorphism at a point $x_{0} \in X$ if there are a neighbourhood U of x_{0} and a neighbourhood V of $T\left(x_{0}\right)$ such that the restriction of T to U is a homeomorphism between U and V. If T is not a local homeomorphism at x_{0}, we say that x_{0} is a singular point of T.

We denote by S_{T} the set of all singular points of T. Clearly, the set S_{T} is closed. Assume that the restriction of T to some open set $A \subseteq X$ is of class C^{1}.
We then denote by $\tilde{S}_{T_{\mid A}}$ the set of all $x_{0} \in A$ such that the operator $T^{\prime}\left(x_{0}\right)$ is not invertible. Since the set of all invertible operators belonging to $\mathcal{L}\left(X, X^{*}\right)$ is open in $\mathcal{L}\left(X, X^{*}\right)$, by the continuity of T^{\prime}, the set $\tilde{S}_{T_{\mid A}}$ is closed in A.
Definition 6. T is said to be a Fredholm operator of index zero in A if, for each $x \in A$, the codimension of $T^{\prime}(x)(X)$ and the dimension of $\left(T^{\prime}(x)\right)^{-1}(0)$ are finite and equal.
Definition 7. A set in a topological space is said to be σ-compact if it is the union of an at most countable family of compact sets.
Definition 8. A functional $I: X \rightarrow \mathbf{R}$ is said to be coercive if

$$
\lim _{\|x\|+\infty} I(x)=+\infty .
$$

The aim of this note is to establish the following results:
Theorem 9. If X is infinite-dimensional, T is closed and non-monotone, J_{T} is sequentially weakly lower semicontinuous and $J_{T}+\varphi$ is coercive for all $\varphi \in X^{*}$, then both S_{T} and $T\left(S_{T}\right)$ are not σ-compact.
Theorem 10. In addition to the assumptions of Theorem 9, suppose that there exists a closed, σ-compact set $B \subset X$ such that the restriction of T to $X \backslash B$ is of class C^{1}.

Then, both $\tilde{S}_{T_{\mid(X \backslash B)}}$ and $T\left(\tilde{S}_{T_{\mid(X \backslash B)}}\right)$ are not σ-compact.
Theorem 11. Assume that $(X,\langle\cdot, \cdot\rangle)$ is a Hilbert space, with $\operatorname{dim}(X) \geq 3$, and that T is compact and of class C^{1} with

$$
\begin{equation*}
\liminf _{\|x\| \rightarrow+\infty} \frac{J_{T}(x)}{\|x\|^{2}} \geq 0 \tag{1}
\end{equation*}
$$

and, for some $\lambda_{0} \geq 0$,

$$
\begin{equation*}
\lim _{\|x\| \rightarrow+\infty}\|x+\lambda T(x)\|=+\infty \tag{2}
\end{equation*}
$$

for all $\lambda>\lambda_{0}$.
Set

$$
\Gamma=\left\{(x, y) \in X \times X:\left\langle T^{\prime}(x)(y), y\right\rangle<0\right\}
$$

and, for each $\mu \in \mathbf{R}$,

$$
A_{\mu}=\left\{x \in X: T^{\prime}(x)(y)=\mu y \text { for some } y \in X \backslash\{0\}\right\} .
$$

When $\Gamma \neq \emptyset$, set also

$$
\tilde{\mu}=\max \left\{-\frac{1}{\lambda_{0}}, \inf _{(x, y) \in \Gamma} \frac{\left\langle T^{\prime}(x)(y), y\right\rangle}{\|y\|^{2}}\right\} .
$$

Then, the following assertions are equivalent:
(i) the operator T is not monotone;
(ii) there exists $\mu<0$ such that $A_{\mu} \neq \emptyset$;
(iii) $\Gamma \neq \emptyset$ and, for each $\mu \in] \tilde{\mu}, 0\left[\right.$, the set A_{μ} contains an accumulation point.

Remark 12. Of course, Theorem 10 is meaningful only when X and X^{*} are linearly isomorphic. Indeed, if not, the fact that $\tilde{S}_{T_{\mid(X \backslash B)}}$ is not σ-compact follows directly from the equality $\tilde{S}_{T_{\mid(X \backslash B)}}=X \backslash B$.

The previous theorems extend and improve the results of [3] in a remarkable way. The reason for this resides in the tools used to prove them. Precisely, in [3], the main tools were Theorems A and B below jointly with the minimax theorem proved in [2]. This latter theorem contains a severe restriction: one of the two variables on which the underlying function depends must run over a real interval. In the current paper, we still continue to use Theorems A and B in an essential way but, this time, jointly with a consequence of another very recent minimax theorem ([4], Theorem 3.2) which is not affected by the above recalled restriction.

So, let us recall Theorems A and B.
Theorem A ([6], Theorem 2.1). If X is infinite-dimensional, if T is closed and if S_{T} is σ-compact, then the restriction of T to $X \backslash S_{T}$ is a homeomorphism between $X \backslash S_{T}$ and $X^{*} \backslash T\left(S_{T}\right)$.

Theorem B ([1], Theorem 5). If $\operatorname{dim}(X) \geq 3$, if T is a C^{1} proper Fredholm operator of index zero and if \tilde{S}_{T} is discrete, then T is a homeomorphism between X and X^{*}.

As we said above, besides Theorems A and B, the other major tool that we will use is a consequence of the following minimax theorem (here stated in a particular version which is enough for our purposes):

Theorem C ([4], Theorem 3.2). Let Y be a convex set in a real vector space E and let $f: X \times E \rightarrow \mathbf{R}$ be sequentially weakly lower semicontinuous and coercive in X, and linear in E. Assume also that

$$
\sup _{Y} \inf _{X} f<\inf _{X} \sup _{Y} f
$$

Then there exists $\tilde{y} \in Y$ such that the functional $f(\cdot, \tilde{y})$ has at least two global minima.

Let us introduce the following notations. We denote by \mathbf{R}^{X} the space of all functionals $\varphi: X \rightarrow \mathbf{R}$. For each $I \in \mathbf{R}^{X}$ and for each of non-empty subset A of X, we denote by $E_{I, A}$ the set of all $\varphi \in \mathbf{R}^{X}$ such that $I+\varphi$ is sequentially weakly lower semicontinuous and coercive, and

$$
\inf _{A} \varphi \leq 0
$$

Here is the above mentioned consequence of Theorem C:

Theorem 13. Let $I: X \rightarrow \mathbf{R}$ be a functional and A, B two non-empty subsets of X such that

$$
\begin{equation*}
\sup _{A} I<\inf _{B} I . \tag{3}
\end{equation*}
$$

Then, for every convex set $Y \subseteq E_{I, A}$ such that

$$
\begin{equation*}
\inf _{x \in B} \sup _{\varphi \in Y} \varphi(x) \geq 0 \text { and } \inf _{x \in X \backslash B} \sup _{\varphi \in Y} \varphi(x)=+\infty \tag{4}
\end{equation*}
$$

there exists $\tilde{\varphi} \in Y$ such that the functional $I+\tilde{\varphi}$ has at least two global minima.
Proof. Consider the function $f: X \times \mathbf{R}^{X} \rightarrow \mathbf{R}$ defined by

$$
f(x, \varphi)=I(x)+\varphi(x)
$$

for all $x \in X, \varphi \in \mathbf{R}^{X}$. Fix $\varphi \in Y$. In view of (3), we also can fix $\left.\epsilon \in\right] 0, \inf _{B} I-$ $\sup _{A} I\left[\right.$. Since $\inf _{A} \varphi \leq 0$, there is $\bar{x} \in A$ such that $\varphi(\bar{x})<\epsilon$. Hence, we have

$$
\inf _{x \in X}(I(x)+\varphi(x)) \leq I(\bar{x})+\varphi(\bar{x})<\sup _{A} I+\epsilon
$$

from which it follows that

$$
\begin{equation*}
\sup _{\varphi \in Y} \inf _{x \in X}(I(x)+\varphi(x)) \leq \sup _{A} I+\epsilon<\inf _{B} I \tag{5}
\end{equation*}
$$

On the other hand, in view of (4), one has
(6) $\inf _{B} I \leq \inf _{x \in B}\left(I(x)+\sup _{\varphi \in Y} \varphi(x)\right)=\inf _{x \in B} \sup _{\varphi \in Y}(I(x)+\varphi(x))=\inf _{x \in X} \sup _{\varphi \in Y}(I(x)+\varphi(x))$.

Finally, from (5) and (6), it follows that

$$
\sup _{\varphi \in Y} \inf _{x \in X} f(x, \varphi)<\inf _{x \in X} \sup _{\varphi \in Y} f(x, \varphi)
$$

Therefore the function f satisfies the assumptions of Theorem C and the conclusion follows.

More precisely, we will use the following corollary of Theorem 13:
Corollary 14. Let $I: X \rightarrow \mathbf{R}$ be a sequentially weakly lower semicontinuous, non-convex functional such that $I+\varphi$ is coercive for all $\varphi \in X^{*}$.

Then, for every convex set $Y \subseteq X^{*}$ dense in X^{*}, there exists $\tilde{\varphi} \in Y$ such that the functional $I+\tilde{\varphi}$ has at least two global minima.

Proof. Since I is not convex, there exist $x_{1}, x_{2} \in X$ and $\left.\lambda \in\right] 0,1[$ such that

$$
\lambda I\left(x_{1}\right)+(1-\lambda) I\left(x_{2}\right)<I\left(x_{3}\right)
$$

where

$$
x_{3}=\lambda x_{1}+(1-\lambda) x_{2}
$$

Fix $\psi \in X^{*}$ so that

$$
\psi\left(x_{1}\right)-\psi\left(x_{2}\right)=I\left(x_{1}\right)-I\left(x_{2}\right)
$$

and put

$$
\tilde{I}(x)=I\left(x_{3}-x\right)-\psi\left(x_{3}-x\right)
$$

for all $x \in X$. It is easy to check that

$$
\begin{equation*}
\tilde{I}\left(\lambda\left(x_{1}-x_{2}\right)\right)=\tilde{I}\left((1-\lambda)\left(x_{2}-x_{1}\right)\right)<\tilde{I}(0) \tag{7}
\end{equation*}
$$

Fix a convex set $Y \subseteq X^{*}$ dense in X^{*} and put

$$
\tilde{Y}=-Y-\psi
$$

Hence, \tilde{Y} is convex and dense in X^{*} too. Now, set

$$
A=\left\{\lambda\left(x_{1}-x_{2}\right),(1-\lambda)\left(x_{2}-x_{1}\right)\right\}
$$

Clearly, we have

$$
\begin{equation*}
X^{*} \subset E_{\tilde{I}, A} \tag{8}
\end{equation*}
$$

Since \tilde{Y} is dense in X^{*}, we have

$$
\sup _{\varphi \in \tilde{Y}} \varphi(x)=+\infty
$$

for all $x \in X \backslash\{0\}$. Hence, in view of (7) and (8), we can apply Theorem 13 with $B=\{0\}, I=\tilde{I}, Y=\tilde{Y}$. Accordingly, there exists $\tilde{\varphi} \in Y$ such that the functional $\tilde{I}-\tilde{\varphi}-\psi$ has two global minima in X, say $u_{1} \neq u_{2}$. At this point, it is clear that $x_{3}-u_{1}, x_{3}-u_{2}$ are two global minima of the functional $I+\tilde{\varphi}$, and the proof is complete.

Remark 15. We remark that Corollary 14 was also obtained very recently in [7] by means of a radically different proof.

We now establish the following technical proposition:
Proposition 16. If V is an infinite-dimensional real Banach space space and if $U \subset V$ is a σ-compact set, then there exists a convex cone $C \subset V$ dense in V, such that $U \cap C=\emptyset$.
Proof. This proposition was proved in [3] when V is a Hilbert space ([3], Proposition 2.4). As in [3], we distinguish two cases. First, we assume that V is separable. In this case, the proof provided in [3] can be repeated word for word, and so we omit it. So, assume that V is not separable. Let $\left\{x_{\gamma}\right\}_{\gamma \in \Gamma}$ be a Hamel basis of V. Set

$$
\Lambda=\left\{\gamma \in \Gamma: x_{\gamma} \notin \operatorname{span}(U)\right\}
$$

and

$$
L=\operatorname{span}\left(\left\{x_{\gamma}: \gamma \in \Lambda\right\}\right)
$$

Clearly, $\operatorname{span}(U)$ is separable since U is so. Hence, Λ is infinite. Introduce in Λ a total order \leq with no greatest element. Next, for each $\gamma \in \Lambda$, let $\psi_{\gamma}: L \rightarrow \mathbf{R}$ be a linear functional such that

$$
\psi_{\gamma}\left(x_{\alpha}\right)= \begin{cases}1 & \text { if } \gamma=\alpha \\ 0 & \text { if } \gamma \neq \alpha\end{cases}
$$

Now, set

$$
D=\left\{x \in L: \exists \beta \in \Lambda: \psi_{\beta}(x)>0 \text { and } \psi_{\gamma}(x)=0 \forall \gamma>\beta\right\}
$$

Of course, D is a convex cone. Fix $x \in L$. So, there is a finite set $I \subset \Lambda$ such that $x=\sum_{\gamma \in I} \psi_{\gamma}(x) x_{\gamma}$. Now, fix $\beta \in \Lambda$ so that $\beta>\max I$. For each $n \in \mathbf{N}$, put

$$
y_{n}=x+\frac{1}{n} x_{\beta}
$$

Clearly, $\psi_{\beta}\left(y_{n}\right)=\frac{1}{n}$ and $\psi_{\gamma}\left(y_{n}\right)=0$ for all $\gamma>\beta$. Hence, $y_{n} \in D$. Since $\lim _{n \rightarrow \infty} y_{n}=x$, we infer that D is dense in L. At this point, it is immediate to check that the set $D+\operatorname{span}(U)$ is a convex cone, dense in V, which does not meet U.

Proof of Theorem 9. Let us prove that S_{T} is not σ-compact. Arguing by contradiction, assume the contrary. Then, by Theorem A, for each $\varphi \in X^{*} \backslash T\left(S_{T}\right)$, the equation

$$
T(x)=\varphi
$$

has a unique solution in X. Moreover, since T is continuous, $T\left(S_{T}\right)$ is σ-compact too. Therefore, in view of Proposition 16, there is a convex set $Y \subset X^{*}$ dense in X^{*}, such that $T\left(S_{T}\right) \cap Y=\emptyset$. On the other hand, since T is not monotone, the functional J_{T} is not convex and so, thanks to Corollary 14, there is $\tilde{\varphi} \in Y$ such that the functional $J_{T}-\tilde{\varphi}$ has at least two global minima in X which are therefore solutions of the equation

$$
T(x)=\tilde{\varphi}
$$

a contradiction. Now, let us prove that $T\left(S_{T}\right)$ is not σ-compact. Arguing by contradiction, assume the contrary. Consequently, since T is proper ([6], Theorem 1), $T^{-1}\left(T\left(S_{T}\right)\right)$ would be σ-compact. But then, since S_{T} is closed and $S_{T} \subseteq T^{-1}\left(T\left(S_{T}\right)\right)$, S_{T} would be σ-compact, a contradiction. The proof is complete.

Proof of Theorem 10. By Theorem 9, the set S_{T} is not σ-compact. Now, observe that if $x \in X \backslash\left(\tilde{S}_{T_{\mid X \backslash B)}} \cup B\right)$, then, by the inverse function theorem, T is a local homeomorphism at x, and so $x \notin S_{T}$. Hence, we have

$$
S_{T} \subseteq \tilde{S}_{T_{\mid(X \backslash B)}} \cup B
$$

We then infer that $\tilde{S}_{T_{\mid(X \backslash B)}}$ is not σ-compact since, otherwise, $\tilde{S}_{T_{\mid(X \backslash B)}} \cup B$ would be so, and hence also S_{T} would be σ-compact being closed. Finally, the fact that $T\left(\tilde{S}_{T_{\mid(X \backslash B)}}\right)$ is not σ-compact follows as in the final part of the proof of Theorem 9 , taking into account that $\tilde{S}_{T_{\mid(X \backslash B)}}$ is closed in the open set $X \backslash B$ and so it turns out to be the union of an at most countable family of closed sets.
Proof of Theorem 11. Clearly, since X is a Hilbert space, we are identifying X^{*} to X. Let us prove that $(i) \rightarrow(i i i)$. So, assume (i). Since J_{T} is not convex, by a classical characterization ([8], Theorem 2.1.11), the set Γ is non-empty. Fix $\mu \in] \tilde{\mu}, 0[$. For each $x \in X$, put

$$
I_{\mu}(x):=\frac{1}{2}\|x\|^{2}-\frac{1}{\mu} J_{T}(x) .
$$

Clearly, for some $(x, y) \in \Gamma$, we have

$$
\left\langle y-\frac{1}{\mu} T^{\prime}(x)(y), y\right\rangle<0
$$

and so, since

$$
I_{\mu}^{\prime \prime}(x)(y)=y-\frac{1}{\mu} T^{\prime}(x)(y)
$$

the above recalled characterization implies that the functional I_{μ} is not convex. Since T is compact, on the one hand, J_{T} is sequentially weakly continuous ([10], Corollary 41.9) and, on the other hand, in view of (2) the operator I_{μ}^{\prime} (recall that $-\frac{1}{\mu}>\lambda_{0}$) is proper ([9], Example 4.43). The compactness of T also implies that, for each $x \in X$, the operator $T^{\prime}(x)$ is compact ([9], Proposition 7.33) and so, for each $\lambda \in \mathbf{R}$, the operator $y \rightarrow y+\lambda T^{\prime}(x)(y)$ is Fredholm of index zero ([9], Example 8.16). Therefore, the operator I_{μ}^{\prime} is non-monotone, proper and Fredholm of index zero. Clearly, by (1), the functional $x \rightarrow I_{\mu}(x)+\langle z, x\rangle$ is coercive for all $z \in X$. Then, in view of Corollary 14, the operator I_{μ}^{\prime} is not injective. At this point, we can apply Theorem B to infer that the set $\tilde{S}_{I_{\mu}^{\prime}}$ contains an accumulation point. Finally, notice that

$$
\tilde{S}_{I_{\mu}^{\prime}}=A_{\mu},
$$

and (iii) follows. The implication $(i i i) \rightarrow(i i)$ is trivial. Finally, the implication $(i i) \rightarrow(i)$ is provided by Theorem 2.1.11 of [8] again.

Remark 17. Some applications of the above results to weighted eigenvalue problems (which cannot be obtained by means of the results in [3]) are presented in [5].

Acknowledgements.

The author thanks the referees and Professor Reich for their remarks.

References

[1] R. A. Plastock, Nonlinear Fredholm maps of index zero and their singularities, Proc. Amer. Math. Soc. 68 (1978), 317-322.
[2] B. Ricceri, A further improvement of a minimax theorem of Borenshtein and Shul'man, J. Nonlinear Convex Anal. 2 (2001), 279-283.
[3] B. Ricceri, On the singular set of certain potential operators in Hilbert spaces, in Progr. Nonlinear Differential Equations Appl., 75, Birkhäuser, 2007, pp. 377-391.
[4] B. Ricceri, A strict minimax inequality criterion and some of its consequences, Positivity, 16 (2012), 455-470.
[5] B. Ricceri, Weights sharing the same eigenvalue, J. Nonlinear Convex Anal., to appear.
[6] R. S. Sadyrkhanov, On infinite dimensional features of proper and closed mappings, Proc. Amer. Math. Soc., 98 (1986), 643-658.
[7] J. Saint Raymond, Characterizing convex functions by variational properties, J. Nonlinear Convex Anal. 14 (2013), 253-262.
[8] C. Zălinescu, Convex analysis in general vector spaces, World Scientific, 2002.
[9] E. Zeidlier, Nonlinear Functional Analysis and its Applications, vol. III, Springer-Verlag, New York, 1985.
[10] E. Zeidler, Nonlinear Functional Analysis and its Applications, vol. I, Springer-Verlag, New York, 1986.

Manuscript received June 4, 2014
revised September 12, 2014

[^1]
[^0]: 2010 Mathematics Subject Classification. 47G40, 47H05, 47A75, 47A53, 58C15.
 Key words and phrases. Potential operator, non-monotone operator, Fredholm operator, singular point, minimax theorem.

 The author has been supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

[^1]: Biagio Ricceri
 Department of Mathematics, University of Catania, Viale A. Doria 6, 95125 Catania, Italy E-mail address: ricceri@dmi.unict.it

