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Fan fixed-point theorem for an upper semicontinuous mapping with convex closed
values [5] using relations (1.1), (1.2).

If the multivalued mapping F : K → Lp(T,X) is lower semicontinuous, then
there exists an Lp-continuous selector of the mapping F [6, 19], i.e. a continuous
function f : K → Lp(T,X) such that

f(x) ∈ F(x), x ∈ K.

In this case as the mapping M(x) we take the function f(x).
If the multivalued mapping F is not lower semicontinuous and its values are non-

convex sets, then the construction of an upper semicontinuous in the weak topology
of the space Lp(T,X) multivalued mapping M(x) with convex closed values is a
rather difficult task. Such a mapping was first constructed in the paper [16]. In
order to state the result of this work we give next some definitions.

By a multivalued mapping we mean a mapping whose values are sets, including
the empty set. Let BX be the σ-algebra of Borel sets from X and L ⊗ BX be the
σ-algebra on T × X generated by the sets A × B with A ∈ L and B ∈ BX . A
multivalued mapping F : T ×X → X is called (weakly) L ⊗ BX -measurable if the
set

F−1(V ) = {(t, x) ∈ T ×X; F (t, x) ∩ V ̸= ∅}
is an element of the σ-algebra L ⊗ BX for any (open) closed set V ⊂ X [9]. Recall
that since the measure µ is complete, the definitions of measurability and weak
measurability for a multivalued mapping F : T → X with closed values are equiva-
lent [9]. The same definitions we also use for single-valued mappings.

A multivalued mapping ϕ : X → X has a closed graph at a point x0 if the
convergence of a sequence (xn, yn), yn ∈ ϕ(xn), n ≥ 1 to a point (x0, y0) implies that
y0 ∈ ϕ(x0). A multivalued mapping G : K → L1(T,X) has a weakly sequentially
closed graph if for any sequence zn ∈ K, n ≥ 1 converging to a point z and any
sequence un ∈ G(zn), n ≥ 1 converging to a point u in the weak topology of the
space L1(T,X) one has u ∈ G(z).

A function f : T ×X → R+ is integrally bounded on bounded sets from X if for
any bounded set A ⊂ X there exists a summable function mA : T → R+ such that
f(t, x) ≤ mA(t) a.e. for any x ∈ A.

Let O be the zero element of the space X, B(O, r) ⊂ X be the open ball centered
at O with radius r and B(O, r) be its closure. Denote by Cl(X) and comp(X) the
collections of all nonempty closed and compact subsets of X, respectively.

We consider a multivalued mapping F : T × X → Cl(X) with the following
properties H(F):

1) the mapping (t, x) 7→ F (t, x) is L ⊗ BX -measurable;
2) for a.e. t and for any point x ∈ X either the mapping F (t, ·) has a closed

graph at the point x and the set F (t, x) is convex or the restriction of F (t, ·)
to some neighborhood of the point x is lower semicontinuous;

3) there exists an integrally bounded on bounded subsets fromX Caratheodory
function f : T ×X → R+ such that

F (t, x) ∩B(O, f(t, x)) ̸= ∅
a.e. on T for any x.
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Theorem 1.1 (cf. [16, Theorem 2.1]). Let X be a finite-dimensional space and a
multivalued mapping F : T ×X → Cl(X) satisfy the properties H(F )1)− 3). Then
for any ε > 0 and any compact K ⊂ C(T,X) there exists a multivalued mapping
M : K → L1(T,X) with convex closed values and a weakly sequentially closed graph
such that

(1.3) v(t) ∈ F (t, x(t)),

(1.4) ∥v(t)∥ ≤ f(t, x(t)) + ε

for any x ∈ K and any v ∈ M(x) a.e. on T .

Theorem 1.2 (cf. [17, Ch. 2, Theorem 6.6]). Let X be a separable Banach space
and a multivalued mapping F : T ×X → comp(X) satisfy the properties H(F )1), 3)
and the property H(F) 2’):

2’) for a.e. t ∈ T and for any point x ∈ X either the multivalued mapping
F (t, ·) is upper semicontinuous at the point x and the set F (t, x) is convex
or the restriction of F (t, ·) to some neighborhood of the point x is lower
semicontinuous.

Then the statements of Theorem 1.1 hold true.

In the paper [7] in the case when X is a finite-dimensional space one proved the
existence of a multivalued upper semicontinuous selector M : K → L1(T,X) with
closed convex values of the multivalued Nemytskii operator generated by multival-
ued mappings F : T ×X → comp(X). The mapping F considered in [7, Examples
3.10 (4)] satisfies hypotheses H(F) 1), 2’) and 3’):

3’) there exists an integrable γ : T → R such that ∥y∥ ≤ γ(t) for every (t, x)
and y ∈ F (t, x).

The one from [7, Examples 3.10 (3)] satisfies hypotheses H(F) 1) and instead of
hypotheses H(F) 2’), 3’) one considered the hypotheses H(F) 2”), 3”):

2”) the multivalued mapping F (t, ·) is upper semicontinuous a.e. on T and for
each (t, x) such that F (t, ·) is nonconvex the multivalued mapping F (t, ·) is
continuous at x.

3”) there exists an integrable γ : T → R such that ∥y∥ ≤ (1+∥x∥)γ(t) for every
(t, x) and y ∈ F (t, x).

We now show that under hypothesis H(F) 2”) for the points (t, x) in which the
set F (t, x) is nonconvex the multivalued mapping F (t, ·) is continuous not only at
the point x but also in some neighborhood of x. Assume that this is not true.
Then, there exists a sequence of points xn, n ≥ 1 converging to x for which the sets
F (t, xn), n ≥ 1 are convex. Since the mapping F (t, ·) is continuous at the point x the
sequence of sets F (t, xn), n ≥ 1 converges in the Hausdorff metric to the set F (t, x).
The completeness of the space of convex compacts with the Hausdorff metric should
then imply that the set F (t, x) is convex, which is a contradiction. Therefore, for the
points (t, x) in which the set F (t, x) is nonconvex the multivalued mapping F (t, ·)
is continuous in some neighborhood of x and thus is lower semicontinuous in this
neighborhood. Consequently, the multivalued mappings F in [7, Examples 3.10 (3),
(4)] are particular instances of the multivalued mapping F for which Theorem 1.2
holds true.
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If a multivalued mapping M : K → L1(T,X) with convex closed values is upper
semicontinuous, then it is upper semicontinuous in the weak topology of the space
L1(T,X) and hence it has a weakly sequentially closed graph. This shows that
Theorems 1.1 and 1.2 have a wider range of applications than the statements in [7,
Examples 3.10 (3), (4)].

Note that differential inclusions in a finite-dimensional space with multivalued
mappings F having different semicontinuity type were studied in [10,12,14], where
theorems on existence of solutions were proved by constructing approximate solu-
tions. In [14] the multivalued mapping F satisfies hypotheses H(F) 1), 2”), 3’),
in [12] and [10] hypotheses H(F) 1), 2’), 3’) and H(F) 1), 2’), 3), respectively, and
the results of these works are thus corollaries of Theorem 3.1 in [16] proved using
Theorem 1.1 and the Ky Fan fixed-point theorem.

2. Modification of Theorems 1.1. and 1.2 for applications

In this section we revise the statements of Theorems 1.1 and 1.2 in view of
applications we consider in the sequel. For convenience of the reader we give next
several definitions.

Let Z and Y be metric spaces and U : Z → Y be a multivalued mapping with
closed values. The multivalued mapping U is upper semicontinuous at a point z0 if
for any open set W ⊂ Y , U(z0) ⊂ W there exists a neighborhood V (z0) of the point
z0 such that U(z) ⊂ W for all z ∈ V (z0). The multivalued mapping U is lower
semicontinuous at a point z0 if for any open set W ⊂ Y , U(z0)∩W ̸= ∅ there exists
a neighborhood V (z0) of the point z0 such that U(z)∩W ̸= ∅ for all z ∈ V (z0). The
mapping U is continuous at a point z0 if it is both upper and lower semicontinuous
at z0.

If the multivalued mapping U is upper semicontinuous at a point z0, then it has a
closed graph at this point. If for some neighborhood V (z0) of a point z0 there exists
a compact set K ⊂ Y such that U(z) ⊂ K for all z ∈ V (z0), then the closedness of
the graph of U at z0 implies the upper semicontinuity of U at z0.

A function f : T ×X → R+ is p-integrally bounded on bounded sets A ⊂ X if
there exists a function mA ∈ Lp(T,R+), 1 ≤ p < ∞ such that f(t, x) ≤ mA(t) a.e.
on T for any x ∈ A.

Theorems 1.1 and 1.2 were proved for multivalued mappings with values in the
space L1(T,X). However, in a large variety of problems multivalued mappings
with values in the spaces Lp(T,X), 1 < p < ∞, are used. The following theorem
is an analogue of Theorem 1.2 for multivalued mappings in the spaces Lp(T,X),
1 ≤ p < ∞.

Theorem 2.1. Let X be a separable reflexive Banach space and a multivalued
mapping F : T × X → comp(X) satisfy the properties H(F) 1), 2’), 3) with a
Caratheodory function f : T × X → R+ which is p-integrally bounded on bounded
subsets from X, 1 ≤ p < ∞. Then for any ε > 0 and any compact K ⊂ C(T,X)
there exists an upper semicontinuous in the weak topology of the space Lp(T,X)
multivalued mapping M : K → Lp(T,X) with convex weakly compact values such
that relations (1.3), (1.4) hold for any x ∈ K and any v ∈ M(x) a.e. on T .
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Proof. Since the set K ⊂ C(T,X) is compact there exists a p-integrable function
m : T → R+ such that

(2.1) f(t, x(t)) ≤ m(t) a.e. on T for any x(·) ∈ K.

Consider a multivalued mapping Γ : T → X defined by the rule

(2.2) Γ(t) = {x ∈ X; ∥x∥ ≤ m(t) + ε a.e. on T},
which is measurable with convex weakly compact values. Let

(2.3) Sp = {x ∈ Lp(T,X); x(t) ∈ Γ(t) a.e. on T}.
Then, Sp is convex weakly compact subset of the space Lp(T,X), 1 ≤ p < ∞. Let
M : K → L1(T,X) be the multivalued mapping with the properties established in
Theorem 1.2. From (1.4) and (2.1) - (2.3) it follows that

(2.4) M(x) ⊂ Sp, x ∈ K.

Since on the set Sp the weak topologies of the spaces L1(T,X) and Lp(T,X), 1 ≤
p < ∞ coincide M(x) is a multivalued mapping from K to Lp(T,X) with convex
weakly compact values and a weakly sequentially closed graph. The fact that the
set Sp, 1 ≤ p < ∞ is metrizable in the weak topology of the space Lp(T,X) implies
that the multivalued mapping M(x) is upper semicontinuous in the weak topology
of the space Lp(T,X) and satisfies relations (1.3), (1.4). The theorem follows. □

Using Theorem 2.1 we give an analogue of Theorem 1.1 for multivalued mappings
with values in the spaces Lp(T,X), 1 ≤ p < ∞.

Corollary 2.2. Let X be a finite-dimensional space and a multivalued mapping
F : T×X → Cl(X) satisfy the properties H(F) 1) - 3) with a Caratheodory function
f : T × X → R+ which is p-integrally bounded on bounded subsets from X. Then
the statements of Theorem 2.1 hold true.

Proof. Consider a multivalued mapping

(2.5) C(t, x) = F (t, x) ∩B(O, f(t, x) + 2 ε).

Let ηn ≥ 0, n ≥ 1 be a monotone increasing sequence converging to 2 ε and

Bn(t, x) = B(O, f(t, x) + ηn).

Then

(2.6) F (t, x) ∩B(O, f(t, x) + 2ε) =
∞∪
n=1

(
F (t, x) ∩Bn(t, x)

)
.

Since f(t, x) is a Caratheodory function it follows from the Scorza-Dragoni theorem

that there exists a sequence of compacts Tk ⊂ Tk+1, k ≥ 1 such that µ(T \
∞∪
k=1

Tk) = 0

and the restriction of f(t, x) to Tk×X, k ≥ 1 is continuous. Therefore, the restriction
of the multivalued mapping Bn(t, x) to Tk×X, k ≥ 1 is continuous and hence lower
semicontinuous. This means that the restriction of Bn(t, x) to Tk × X, k ≥ 1 is

weakly L⊗BX -measurable. From the equality µ(T \
∞∪
k=1

Tk) = 0 it follows that the

multivalued mapping Bn(t, x) is weakly L⊗BX -measurable. According to Theorem
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3.5 in [9] the multivalued mapping F (t, x) is weakly L⊗BX -measurable as well. Now
from (2.6), Theorem 4.1 and Proposition 2.4 in [9] we infer that the multivalued
mapping F (t, x)∩B(O, f(t, x)+2ε) is weakly L⊗BX -measurable. Using Proposition
2.6 and Theorem 3.5 from [9] we see that the multivalued mapping C(t, x) is L⊗BX -
measurable with nonempty compact values.

At the points in which the set F (t, x) is convex we have

(2.7) C(t, x) = F (t, x) ∩B(O, f(t, x) + 2ε).

Therefore, at those points x where the multivalued mapping F (t, x) has a closed
graph and the set F (t, x) is convex the multivalued mapping C(t, x) has the same
properties. According to (2.7) for all y from a neighborhood V (x) of the point x
the inclusion

C(t, y) ⊂ B(O, r)

takes place for some r > 0. Since the set B(O, r) is compact the multivalued
mapping C(t, ·) is upper semicontinuous at the points x in which the multivalued
mapping C(t, ·) has a closed graph and the set C(t, x) is convex.

At those points x where the multivalued mapping F (t, ·) is lower semicontinuous
the multivalued mapping x → F (t, x) ∩ B(O, f(t, x) + 2ε) is lower semicontinu-
ous as well. Then, at these points the multivalued mapping C(t, x) is also lower
semicontinuous. Therefore, all the assumptions of Theorem 2.1 hold for the mul-
tivalued mapping C(t, x). According to this theorem for an ε > 0 and a compact
K ⊂ C(T,X) there exists an upper semicontinuous in the weak topology of the
space Lp(T,X) multivalued mapping M : K → Lp(T,X), 1 ≤ p < ∞ with convex
weakly compact values such that

v(t) ∈ C(t, x(t)) ⊂ F (t, x(t)),

∥v(t)∥ ≤ f(t, x(t)) + ε,

and the corollary thus follows. □

3. Main results

In this section we use Theorem 2.1 to prove the existence of a solution to an
evolution inclusion with a subdifferential operator and a multivalued perturbation
with different semicontinuity types at different points.

Let R = (−∞,+∞], H be a separable Hilbert space with the norm ∥ · ∥ and the
inner product ⟨·, ·⟩. A function φt : H → R is called proper if its effective domain
domφ = {x ∈ H;φ(x) < ∞} is nonempty. Denote by Γ0(H) the class of all proper,
convex and lower semicontinuous functions φ : H → R. For a function φ ∈ Γ0(H)
denote by ∂φ(x) its subdifferential at a point x and by dom ∂φ the domain of ∂φ.
It is known that dom ∂φ ⊂ domφ and dom ∂φ = domφ, where the bar stands for
the closure in H.

By ω-H and ω-L2(T,H) we denote the spaces H and L2(T,H) equipped with
the weak topologies. The same notations are used for subsets of the spaces ω-H
and ω-L2(T,H).
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Consider the inclusion

(3.1)
−Aẋ(t) ∈ ∂φtx(t) +B(t, x(t)) + F (t, x(t)) a.e.,

x(0) = x0 ∈ domφ0.

Here, φt ∈ Γ0(H), t ∈ T , A : H → H is a continuous linear operator, B(t, ·) :
domB(t, ·) ⊂ H → H, t ∈ T is a nonlinear mapping, F : T × H → H is a
multivalued mapping with closed values.

By a solution of inclusion (3.1) we mean a function x(·) ∈ W 1,2(T,H), x(0) = x0,
such that x(t) ∈ dom ∂φt a.e. and the inclusion

(3.2) −Aẋ(t) ∈ ∂φtx(t) +B(t, x(t)) + f(t)

holds a.e. for some f ∈ L2(T,H) such that

(3.3) f(t) ∈ F (t, x(t)) a.e.

It is known that if x(t) is a solution of inclusion (3.1), then x(t) ∈ domφt, t ∈ T .
We make the following assumptions on A, φt, B and F :

Hypothesis H(φ). The family of functions φt ∈ Γ0(H), t ∈ T has the property:

for each r > 0 there exists absolutely continuous functions ar, br : T → R
such that ȧr ∈ L2(T,R), ḃr ∈ L1(T,R) and for any s, t ∈ T , s ≤ t and any
x ∈ domφs with ∥x∥ ≤ r there is an element y ∈ domφt satisfying the
inequalities

∥x− y∥ ≤ |ar(t)− ar(s)|
(
|φs(x)|

1
2 + 1

)
,

φt(y)− φs(x) ≤ |br(t)− br(s)| (|φs(x)|+ 1) .

Hypothesis H(A). The operator A : H → H is linear continuous self-adjoint and

lA∥x∥2 ≤ ⟨x,Ax⟩, x ∈ H, lA > 0.

Hypothesis H(B). The mapping B(t, x) has the following properties

1) B(t, ·) is a single-valued operator from H to H with the domain domB(t, ·)
such that

domB(t, ·) ⊃ Q ⊃
∪
s∈T

domφs

for each t ∈ T , where Q is a convex Borel set;
2) for each t ∈ T the operator B(t, ·) is demicontinuous and monotone, i.e. if

xn → x in H, then B(t, xn) → B(t, x) in the weak topology of the space H
and

⟨B(t, x)−B(t, y), x− y⟩ ≥ 0;

3) for each x ∈ Q the function t → B(t, x) is measurable;
4) for each 0 < η ≤ 1 there exists a nondecreasing function Lη : [0,+∞) →

[0,+∞), Lη1(r) ≤ Lη2(r), η1 ≤ η2, r ∈ [0,+∞), such that

∥B(t, x)∥ ≤ η∥
(
∂φt

)0
x∥+ Lη(∥x∥),

t ∈ T , x ∈ domφt, where
(
∂φt

)0
x is an element of minimal norm of the set

∂φtx.
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Hypothesis H1(F). The mapping F : T ×H → comp(H) is such that

1) F satisfies the properties H(F) 1), 2’), 3) with the function

f(t, x) = m(t) + n(t)∥x∥, m, n ∈ L2(T,R+);

2) there exists ε > 0 such that for any bounded set C ⊂ H the set

F (t, C) ∩B(Θ,m(t) + n(t)∥C∥+ ε)

is relatively compact, where F (t, C) = {F (t, x); x ∈ C}, Θ is the zero
element of the space H and ∥C∥ = sup{∥x∥; x ∈ C}.

Remark 3.1. If the mapping B(t, x) satisfies a traditional growth condition

∥B(t, x)∥ ≤ a+ b∥x∥ a.e., a, b > 0,

then it satisfies Hypothesis H(B) 4). In this case, we may choose the function
Lη(r) = (1 + η)(a+ br), r ∈ [0,+∞), 0 < η ≤ 1.

In what follows, we will denote for convenience

(3.4) f(t, ∥x∥) = m(t) + n(t)∥x∥.

Lemma 3.2. Let the multivalued mapping F : T ×H → comp(H) satisfy the prop-
erties H(F ) 1), 3) with the function f(t, ∥x∥) defined by (3.4). Then, the multivalued
mapping

t → F (t, x(t)) ∩B (Θ, f(t, ∥x∥) + ε)

is measurable for any continuous function x : T → H.

Proof. Let a function x : T → H be continuous, V ⊂ H be a closed set and
T = {t ∈ T ; F (t, x(t)) ∩ V ̸= ∅}. Since the multivalued mapping F is L ⊗ BH -
measurable

F−1(V ) = {(t, x); F (t, x) ∩ V ̸= ∅} ∈ L ⊗ BH .

The fact that the graph grx of the function x is a closed subset of the space T ×H
implies that F−1(V ) ∩ grx ∈ L ⊗ BH .

Consider a mapping v : T → H defined by the rule

v(t) = {y ∈ H; (t, y) ∈ F−1(V ) ∩ grx}.
The mapping v(t) is single-valued and may admit the empty set as its values. From
[9, Theorem 3.5 (iii)] it follows that the mapping v(t) is measurable. Then, according
to [9, Proposition 2.2] the set dom v = {t ∈ T ; v(t) ̸= ∅} is measurable. Since
T = dom v, the multivalued mapping t → F (t, x(t)) is measurable.

The measurability of the multivalued mapping t → B (Θ, f(t, ∥x∥) + ε) is proved
along the same lines as that of t → F (t, x(t)). Indeed, similarly to the proof
of Corollary 2.2 we may see that the multivalued mapping B (Θ, f(t, ∥x∥) + ε) is
L ⊗ BH -measurable. Hence, according to [9, Theorem 3.5 (iii)] the graphs of the
multivalued mappings t → F (t, x(t)) and t → B (Θ, f(t, ∥x∥) + ε) are L ⊗ BH -
measurable. So is the graph of their intersection. This and [9, Theorem 3.5 (iii)]
finally imply that the multivalued mapping t → F (t, x(t)) ∩ B (Θ, f(t, ∥x∥) + ε) is
measurable and the lemma follows. □

In the sequel, we will need the following theorem
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Theorem 3.3 (cf. [18, Theorem 6.2]). Let Hypotheses H(φ),H(A) and H(B) hold
true. Then for any f ∈ L2(T,H), ∥f∥L2(T,H) ≤ R, there exists a unique solution
x(f) of inclusion (3.2) and

(3.5) ∥x(f)(t)∥ ≤ N(R), t ∈ T, ∥ẋ(f)∥L2(T,H) ≤ N(R),

(3.6) |φt(x(f)(t))| ≤ N(R), t ∈ T,

where N(R) > 0 is some constant depending only on R. For any two solutions
x(fi), fi ∈ L2(T,H), i = 1, 2 we have

(3.7) ∥x(f1)(t)− x(f2)(t)∥ ≤ l−1
A

∫ t

0
∥f1(s)− f2(s)∥ds.

Let x(Θ) be the solution of inclusion (3.2) for f(t) ≡ Θ, and r0 = max{∥x(Θ)(t)∥;
t ∈ T}. From (3.7) it follows that

(3.8) ∥x(f)(t)∥ ≤ r0 + l−1
A

∫ t

0
∥f(s)∥ds, t ∈ T, f ∈ L2(T,H).

Consider the differential equation

(3.9)
ṙ(t) = l−1

A (f(t, r(t)) + ε),
ṙ(0) = r0,

with the function f(t, r) = m(t) + n(t)r, which has a unique solution r(t) ≥ 0
defined on T . Let

(3.10) S = {g ∈ L2(T,H); ∥g(t)∥ ≤ f(t, r(t)) + ε a.e.}.
The set S is a convex metrizable compact of the space ω-L2(T,H). Denote by

T : L2(T,H) → C(T,H) the operator which with each f ∈ L2(T,H) associates the
unique solution x(f) of inclusion (3.2), i.e.

x(f) = T (f).

Let
C(S) = {x(f) ∈ C(T,H); f ∈ S}

and
C(S)(t) = {x(f)(t); f ∈ S}

From inequalities (3.8)− (3.10) it follows that for any x(·) ∈ C(S) the inequality

∥x(t)∥ ≤ r0 +

∫ t

0
l−1
A (f(s, r(s)) + ε)ds = r(t).

holds. Hence,

(3.11) ∥C(S)(t)∥ ≤ r(t), t ∈ T.

Let Hypotheses H1(F ) hold true. Then, from (3.10) we infer that the set
F (t, C(S)(t)) ∩B (Θ, f(t, ∥C(S)(t)∥) + ε) is relatively compact for each t ∈ T . De-
note by

(3.12) Γ(t) = co
(
F (t, C(S)(t)) ∩B (Θ, f(t, ∥C(S)(t)∥) + ε)

)
.

Then, Γ(t) is a multivalued mapping with convex compact values. Let

(3.13) SΓ = {f ∈ L2(T,H); f(t) ∈ Γ(t) a.e.}.
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From our Lemma 3.2 and Theorems 5.5, 5.6 in [9] it follows that for each x ∈ C(S)
the mapping

t → F (t, x(t)) ∩B (Θ, f(t, ∥x(t)∥) + ε)

has a measurable selector which according to (3.11) is an element of the space
L2(T,H). Therefore, SΓ is a nonempty convex metrizable compact of the space
ω-L2(T,H).

Lemma 3.4. Let Hypotheses H1(F ) hold true. Then the operator T is continuous
from ω-SΓ to C(T,H).

Proof. Let fn ∈ SΓ, n ≥ 1 converges to f in the topology of the space ω-L2(T,H).
From (3.10), (3.13) we see that SΓ ⊂ S. Then x(fn), x(f) ∈ C(S), n ≥ 1. Hence

(3.14) ∥x(fn)(t)∥ ≤ r(t), ∥x(f)(t)∥ ≤ r(t), t ∈ T.

From (3.12), (3.11) it follows that ∥fn∥L2(T,H) ≤ R for some R > 0. Using (3.5)
and Hölder’s inequality we obtain

(3.15) ∥x(fn)(t)− x(fn)(s)∥ ≤ N(R)|t− s|
1
2 .

From this inequality it follows that the sequence x(fn), n ≥ 1 is equicontinuous
in C(T,H). Then, from (3.14) and Theorem 4 in [11] we infer that the sequence
x(fn), n ≥ 1 is relatively compact in the space ω-C(T,H). Since the space C(T,H)
is separable, any compact of the space ω-C(T,H) is metrizable. Therefore, there
exists a subsequence nk, k ≥ 1 of the sequence n ≥ 1 such that

(3.16) x(fnk
) → z(·) in ω-C(T,H).

From (3.16) and Theorem 3 in [11] it follows that

⟨x(fnk
)(t)− z(t), h⟩ → 0, t ∈ T for any h ∈ H.

Using (3.2) and Hypotheses H(A), H(B) 2) we obtain

1

2
lA∥x(fnk

)(t)− x(f)(t)∥2 ≤
∫ t

0
⟨x(fnk

)(τ)− z(τ), f(τ)− fnk
(τ)⟩ dτ

+

∫ t

0
⟨z(τ)− x(f)(τ), f(τ)− fnk

(τ)⟩ dτ(3.17)

Since ⟨x(fnk
)(τ)− z(τ), h⟩ → 0 for any h ∈ H, the sequence of functions h →

⟨x(fnk
)(τ)− z(τ), h⟩ is equicontinuous. It is known that for each equicontinuous

set the topology of pointwise convergence coincides with the topology of uniform
convergence on compacts. The facts that f(τ), fnk

(τ) ∈ Γ(τ) and that the set Γ(τ)
is a convex compact in the space H imply that

⟨x(fnk
)(τ)− z(τ), f(τ)− fnk

(τ)⟩ → 0 as k → ∞.

Now, from (3.14), the inclusion SΓ ⊂ S, (3.10) and Lebesgue’s dominated conver-
gence theorem we obtain∫ t

0
⟨x(fnk

)(τ)− z(τ), f(τ)− fnk
(τ)⟩ dτ → 0 t ∈ T.
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Then, from the convergence fnk
→ f in the space ω-L2(T,H) and (3.17) it follows

that
x(fnk

)(t) → x(f)(t) in H for any t ∈ T.

Using (3.15) we further infer that

x(fnk
) → x(f) in C(T,H).

If we suppose that the sequence x(fn), n ≥ 1 does not converge to x(f) in
C(T,H), then there would exist a subsequence x(fnk

), k ≥ 1 of the sequence x(fn),
n ≥ 1 such that any subsequence of the sequence x(fnk

), k ≥ 1 does not converge
to x(f). Repeating this argument to the sequence x(fnk

), k ≥ 1 we arrive at a
contradiction. Consequently, T (fn) → T (f) in C(T,H) and the lemma follows. □
Theorem 3.5. Let Hypotheses H(φ),H(A),H(B) and H1(F ) hold true. Then
inclusion (3.1) has a solution.

Proof. Since SΓ is a convex compact subset of the space ω-L2(T,H), Lemma 3.4
implies that the set

K = {x(f) ∈ C(T,H); f ∈ SΓ}
is a compact subset of the space C(T,H). According to Theorem 2.1 there exists an
upper semicontinuous mapping M : K → ω-L2(T,H) with convex compact values
such that for any x ∈ K and any v ∈ M(x) we have

(3.18) v(t) ∈ F (t, x(t)) a.e.,

(3.19) ∥v(t)∥ ≤ f(t, ∥x(t)∥+ ε) a.e.

Consider a multivalued mapping M(T ) : SΓ → L2(T,H) defined by the rule
M(T )(f) = M(T (f)). From Lemma 3.4 we conclude that M(T ) is an upper
semicontinuous mapping from ω-SΓ to ω-L2(T,H) with convex compact values.
Since K ⊂ C(S) from (3.18) it follows that

v(t) ∈ F (t, C(S)(t)) ∩B (Θ, f(t, ∥C(S)(t)∥) + ε) a.e.

Hence v ∈ SΓ. Consequently M(T )(f) ⊂ SΓ for any f ∈ SΓ. Then, from the Ky
Fan theorem [5] it follows that there exists a fixed point f∗ ∈ SΓ of the mapping
M(T ), i.e.

f∗ ∈ M(T (f∗)).

Setting x∗ = T (f∗) and taking into account (3.18) we obtain

f∗(t) ∈ F (t, x∗(t)) a.e.

Therefore, x∗ = T (f∗) is a solution of inclusion (3.1). The theorem follows. □
Using Theorem 3.5 we now prove an existence theorem for sweeping process with

perturbation under assumptions different from those traditionally used.
Consider the evolution inclusion

(3.20)
−Aẋ(t) ∈ NC(t)(x(t)) + ∂V (x(t)) +B(t, x(t)) + F (t, x(t)) a.e.,

x(0) = x0 ∈ C(0).

Here, C : T → H is a multivalued mapping with closed convex values, V : H → R is
a convex function, NC(t)(x) is the normal cone to the set C(t) at a point x ∈ C(t),
A, B(t, x) and F (t, x) have the same sense as in inclusion (3.1).
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By a solution of inclusion (3.20) we mean a function x ∈ W 1,2(T,H), x(t) ∈ C(t),
t ∈ T , x(0) = x0, such that

−Aẋ(t) ∈ NC(t)(x(t)) + ∂V (x(t)) +B(t, x(t)) + f(t) a.e.

for some f ∈ L2(T,H),

f(t) ∈ F (t, x(t)) a.e.

We make the following assumptions:

Hypothesis H(V). The function V : H → R is convex and bounded from above
on bounded sets from H.

Hypothesis H(C). C is a multivalued mapping from T to Cl(H) with convex
values and for any r ≥ 0 there exists an absolutely continuous function ar : T → R,
ȧr ∈ L2(T,R) such that for any s, t ∈ T , s ≤ t, ∥x∥ ≤ r the inequality

d(x,C(t)) ≤ d(x,C(s)) + |ar(s)− ar(t)|

holds, where d(x,C(t)) is the distance from the point x ∈ H to the set C(t).

Denote by IC(t) the indicator function of the set C(t), i.e.

IC(t)(x) =

{
Θ, x ∈ C(t),

+∞, x /∈ C(t).

Since the values of the mapping C are convex closed sets, IC(t) ∈ Γ0(H), t ∈ T
and NC(t)(x) is equal to the subdifferential ∂IC(t)(x) of the function IC(t) at the
point x [1].

Consider the function

(3.21) φt = IC(t)(x) + V (x), x ∈ H, t ∈ T.

From Hypothesis H(V ) it follows that V : H → R is a convex continuous function.
Then φt ∈ Γ0(H) and

(3.22) domφt = C(t), t ∈ T.

Since domV = H we have [4]

(3.23) ∂φt(x) = ∂IC(t)(x) + ∂V (x)

and

dom ∂φt(x) = C(t), t ∈ T.

From (3.23) we infer that the set NC(t)(x) + ∂V (x) is convex and closed. There-
fore, it has an element of minimal norm.

Theorem 3.6. Let Hypotheses H(A), H(F ),H(V ),H(C),H(B) 1) − 3) hold true,

and in Hypothesis H(B) 4) instead of
(
∂φt

)0
x we have

(
NC(t) + ∂V

)0
x which is

an element of minimal norm of the set NC(t)(x) + ∂V (x). Then inclusion (3.20)
has a solution.
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Proof. In view of (3.23) we may rewrite inclusion (3.20) as inclusion (3.1). From
Hypothesis H(C) and (3.22) it follows that for any r > 0, any s, t ∈ T , s ≤ t
and any x ∈ domφs with ∥x∥ ≤ r there is an element yt ∈ domφt satisfying the
inequality

(3.24) ∥x− yt∥ ≤ |ar(s)− ar(t)|.

Since the function V : H → R is convex and continuous, it is lower semicontinuous
in the topology of the space ω-H. Hence V is bounded from below on bounded sets
from H. Consequently, according to Hypothesis H(V ) the function V is bounded
on bounded sets from H. Let

(3.25) dr =

∫
T
|ȧr(τ)| dτ, mr = r + dr, r ≥ 0,

Mr = sup{|V (x)|; x ∈ B(Θ, 2mr)}.
From Proposition 5.11 in [3] it follows that there exists the constant Lr = 2Mr/mr

such that

(3.26) |V (x)− V (y)| ≤ Lr∥x− y∥, x, y ∈ B(Θ,mr).

Let s, t ∈ T , s ≤ t, ∥x∥ ≤ r, x ∈ domφs. Then from (3.24), (3.25) we infer that
x, yt ∈ B(0,mr). Hence, (3.24), (3.26) imply that

(3.27) |V (x)− V (yt)| ≤ Lr∥ar(s)− ar(t)∥.

Let br(t) = Lrar(t), t ∈ T . Then br ∈ L2(T,R), r ≥ 0. From (3.22), (3.27) it follows
that

(3.28) |φt(yt)− φs(x)| ≤ Lr∥br(s)− br(t)∥.

Using (3.24), (3.28) we obtain

∥x− yt∥ ≤ |ar(t)− ar(s)|
(
|φs(x)|

1
2 + 1

)
,

φt(yt)− φs(x) ≤ |br(t)− br(s)| (|φs(x)|+ 1) .

Therefore, the function φt defined by equality (3.21) satisfies Hypotheses H(φ).
Then, according to Theorem 3.5 inclusion (3.1) and thus inclusion (3.20) has a
solution. The theorem follows. □

Remark 3.7. If we assume that for each t ∈ T and r ≥ 0 the set {x ∈ H; ∥x∥ ≤
r, |φt(x)| ≤ r} is relatively compact in H, then Theorem 3.5 is true if Hypotheses
H(F) 1), 2’), 3) hold with the function f(t, ∥x∥) defined by equality (3.4). In this
case, the only changes in the proof are related to Lemma 3.4. In particular, from
(3.6) it follows that the set C(S) is relatively compact in the space C(T,H). It is
easy to show that the set C(S) is, in fact, compact in C(T,H). The further proof
of the lemma is then obvious.

Remark 3.8. If H is finite-dimensional, then Theorems 3.5, 3.6 are true if Hy-
potheses H(F) 1) - 3) hold with the function f(t, ∥x∥) defined by (3.4).
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A traditional assumption on the multivalued mapping C(t) with both convex and
nonconvex values is the validity of the inequality [2, 8, 15, and others]

(3.29) |d(x,C(t))− d(x,C(s))| ≤ |v(t)− v(s)|,
for x ∈ H, s, t ∈ T , where v : T → R is an absolutely continuous function. However,
as the following example shows, inequality (3.29) is rather demanding from the point
of view of existence theorems for sweeping processes.

Let w : T → H, ∥w∥ = 1, w ∈ W 1,2(T,H), b ∈ W 1,2(T,R). Consider the
multivalued mapping

C(t) = {x ∈ H; ⟨w(t), x⟩ − b(t) = 0}.
Since

d(x,C(t)) = |⟨w(t), x⟩ − b(t)|/∥w(t)∥
we have

(3.30) |d(x,C(t))− d(x,C(s))| ≤ ∥w(t)− w(s)∥ · ∥x∥+ |b(t)− b(s)|,
x ∈ H. Setting

ar(t) =

∫ t

0

(
∥ẇ(s)∥r + |ḃ(s)|

)
ds, r ≥ 0

and using (3.30) we obtain

(3.31) |d(x,C(t))− d(x,C(s))| ≤ |ar(t)− ar(s)|,
s, t ∈ T , ∥x∥ ≤ r, ar ∈ W 1,2(T,R). From (3.30) it follows that inequality (3.29)
cannot hold when the values of the mapping C(t) are hyperplanes. Nevertheless,
from (3.31) we see that the mapping C(t) satisfies Hypothesis H(C) under which
Theorem 3.6 holds true.

Note that our results (Theorem 3.6) compliment the results of the work [8] in
which the authors study a sweeping process with a perturbation F (t, x) satisfying
HypothesesH(F ) 1)−3) with the function f(t, ∥x∥) as in (3.4) in a finite-dimensional
space, and the sets C(t) are uniformly ρ-prox-regular for some fixed ρ ∈ (0,+∞]
and inequality (3.29) holds.
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[4] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Elsevier publ. company,

inc., New York, 1976.
[5] K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc.

Natl. Acad. Sci. USA 38 (1952) 121–126.
[6] A. Fryszkowski, Continuous selections for a class of non-convex multivalued maps, Stud. Math.

76 (1983) 163–174.
[7] A. Fryszkowski and L. Gorniewicz, Mixed semicontinuous mappings and their applications to

differential inclusions, Set-Valued Anal. 8 (2000), 203–217.
[8] T. Haddad and L. Thibault, Mixed semicontinuous perturbations of nonconvex sweeping pro-

cesses, Math. Program. 123 (2010), 225–240.
[9] C. J. Himmelberg, Measurable relations, Fundamenta Math. 87 (1975) 53–72.



CONVEX-VALUED SELECTORS OF NONCONVEX-VALUED NEMYTSKII OPERATOR 1145

[10] C. J. Himmelberg and F. S. van Vleck, Existence of solutions for generalized differential equa-
tions with unbounded right-hand side, J. Differ. Equations 61 (1986), 295–320.

[11] M. Kisielewicz, Weak compactness in spaces C(S,X), Information theory, statistical decision
functions, random processes, Trans. 11th Prague Conf. (Prague, 1990), Kluwer Acad. Publ.,
Dodrecht, 1992, pp. 101–106.

[12] S. Lojasiewicz, Some theorems of Scorza Dragoni type for multifunctions with application to the
problem of existence of solutions for differential multivalued equations, Mathematical control
theory, Banach Cent. Publ. 14 (1985), 625–643.

[13] J. J. Moreau, Evolution problem associated with a moving convex set in Hilbert space, J. Differ.
Equations 26 (1977), 347–374.

[14] C. Olech, Existence of solutions of non-convex orientor fields, Boll. Unione Mat. Ital. 4 (1975)
189–197.

[15] L. Thibault, Sweeping process with regular and nonregular sets, J. Differ. Equations 193 (2003),
1–26.

[16] A. A. Tolstonogov, Solutions of a differential inclusion with unbounded right-hand side, Sib.
Math. J. 29 (1988), 857–868.

[17] A. A. Tolstonogov, Differential inclusions in a Banach space, Kluwer Academic Publishers,
Dordrecht, Boston, London, 2000.

[18] A. A. Tolstonogov, Properties of the set of “trajectory-control” pairs of a control system with
subdifferential operators, J. Math. Sci. 162 (2009), 407–442.

[19] A. A. Tolstonogov and D. A. Tolstonogov, Lp-continuous extreme selectors of multifunctions
with decomposable values: Existence theorems, Set-Valued Anal. 4 (1996), 173–203.

Manuscript received January 7, 2014

revised May 7, 2014

A. A. Tolstonogov
Institute for System Dynamics and Control Theory, Siberian Branch, Russian Academy of Sciences,
Lermontov str., 134, Irkutsk, 664033 Russia

E-mail address: aatol@icc.ru

S. A. Timoshin
Institute for System Dynamics and Control Theory, Siberian Branch, Russian Academy of Sciences,
Lermontov str., 134, Irkutsk, 664033 Russia

E-mail address: sergey.timoshin@gmail.com


