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Combining Gromov’s compactness Theorem and Proposition 1 we obtain the
following.

Proposition 2. The metric space M(n, κ) is complete.

A point in the metric space X ∈ M(n, κ) is called geodesically interior if it lies
on some segment, but is different from the endpoints of the segment. Is each point
of X a geodesically interior point? No, certainly, no conical point is geodesically
interior. Here, a point x ∈ X is conical if its space of directions Tx(X) has diameter
less than π. Points of X which are not geodesically interior are called endpoints.
They are of course endpoints of many geodesics. Alexandrov spaces without conical
points, but possessing endpoints are also known ([1], pp. 58–59).

On the other hand, no Riemannian manifold has any endpoint. More precisely,
for any point x of any Riemannian manifold, and for any tangent direction τ at x,
there exists a geodesic passing through x and admitting there the tangent directions
τ, −τ .

We shall treat in this paper the two-dimensional case only. We take here k ̸= 0,
and find out that most Alexandrov spaces in M(2, κ) have many endpoints, and
are therefore far away from being Riemann. Our main result follows.

Theorem. In most Alexandrov spaces belonging to M(2, κ) (κ ̸= 0), most points
are endpoints.

Note that the case of surfaces in M(2, 0) homeomorphic to the 2-sphere was
already investigated (see [12]), since all such surfaces are realized by boundaries of
convex bodies in IR3 by Alexandrov’s Theorem, cf. [1].

A correspondence between two metric spaces (X, dX) and (Y, dY ) is a relation R
between their elements such that every point x in X is related to at least one point
y in Y and vice versa. The distortion of the correspondence R is defined by

δR = sup
xRy;x′Ry′

|dX(x, x′)− dY (y, y
′)|.

Subsequently, the distortion distance between X and Y is

dC(X,Y ) = inf
R
(δR).

Proposition 3 ([3]). The metrics dC and dG on the class of all metric spaces are
equivalent; in fact, 2dG = dC .

Let µ1 denote 1-dimensional Hausdorff measure (length).

Petrunin-Alexandrov’s gluing Theorem ([8]). Let X,Y be Alexandrov surfaces
of curvature at least κ with non-empty boundaries bd X, bd Y , and consider the arcs
aXbX ⊂ bdX, aY bY ⊂ bdY .

1. If bd X and bd Y are isometric, then the surface obtained by gluing X and
Y along their isometric boundaries is an Alexandrov surface of curvature
bounded below by κ.
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2. If µ1(aXbX) = µ1(aY bY ), µ1TaX (X)+µ1TaY (Y ) ≤ π, µ1TbX (X)+µ1TbY (Y )
≤ π, then the surface obtained by gluing X and Y along the isometry aXbX ∼=
aY bY is an Alexandrov surface of curvature bounded below by κ.

In fact, only the first assertion is (the 2-dimensional case of) Petrunin-Alexandrov’s
theorem. But the second assertion admits a proof which largely parallels the proof
of the first.

Further, consider in a metric space (X, dX) the distinct elements x, y and a non-
negative real number ε. Define an ε-midpoint of {x, y} to be a point z which fulfils
both inequalities |2dX(x, z) − dX(x, y)| ≤ ε and |2dX(y, z) − dX(x, y)| ≤ ε. A
0-midpoint will also be called midpoint, for short.

The set of all midpoints coincides with the set of all geodesically interior points
in X.

Proof of the main result

We start with a proposition.

Proposition 4. Let X be a compact metric length space and x ∈ X. Suppose
for each ε > 0 there exists a metric length space Y with dC(X,Y ) < ε and a
correspondence R with distortion less than ε, such that x is related to some point
y ∈ Y which is midpoint of a segment of length λ. Then x is midpoint of a segment
in X of length λ.

Proof. Let ε′ be a positive real number. We will prove that x is an ε′-midpoint of
two points at distance λ − 2ε′. Then, by letting ε′ → 0, we will show that x is a
midpoint of two points at distance λ. Since the metric is intrinsic, this forces x to
lie in a segment between these two points.

Choose a metric space Y whose distortion distance from X is less than ε′/5 and
which fulfills the conditions of the Proposition with ε = ε′/5.

Let y be a point in Y corresponding to x in X, which is midpoint of a segment
sY ⊂ Y of length λ, whose endpoints are eY and e′Y . Let eX and e′X be points in
X corresponding to eY and e′Y , respectively. By construction, x is an ε′-midpoint
of eX , e′X . For ε′ → 0, a subsequence of the resulting sequence {(eX)n, (e

′
X)n}∞n=1

will converge to a pair of points {e, e′} ⊂ X, which have x as their exact midpoint,
and dX(e, e′) = λ. □

By specialising to the case X = Y in Proposition 4, it follows that the set of
midpoints in X ∈ M(2, κ) of segments of a given length is closed.

Proposition 5. Let X ∈ M(2, κ). For any k ∈ IN, the set

Ik(X) =
{
m(s) : ∃s ∈ X segment, µ1(s) =

1

k

}
,

where m(s) is the midpoint of the segment s, is closed in X.
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Let S2
κ be the Lobachevsky plane of curvature κ if κ < 0, and the 2-dimensional

sphere of curvature κ, if κ > 0.
An ε-net in a metric space X is a subset of X meeting every compact ball of

diameter ϵ > 0 in X.

Proposition 6. If X∗ ∈ M(2, κ), κ ̸= 0 and ε > 0, then there exists X ′ ∈ M(2, κ)
containing an ε-net of conical points, such that dG(X

∗, X ′) < ε.

Proof. At distance less than ε/4 from each space X∗ in M(2, κ,D) we find one of
dimension 2. Let this one be X. It is known that X is a topological manifold.

If κ < 0, we apply a dilation λ > 1 to X with λ close to 1, and obtain the space
λX ∈ M(2, κ′), where κ′ > κ and dG(X,λX) < ε/2.

If κ > 0, we apply a contraction λ < 1 to X with λ close to 1, and obtain the
space λX ∈ M(2, κ′), where still κ′ > κ and dG(X,λX) < ε/2.

Since λX is compact, there exists a finite (ε/8)-net N = {x1, ..., xm} ⊂ λX.
If x1 is a conical point of λX, i.e. µ1Tx(λX) < 2π, then define y1 = x1.
If not, consider three directions τ1, τ2, τ3 ∈ Tx at mutual distances 2π/3. Close

to each τi we find the direction of a segment x1ui. Let V be a neighbourhood of x1
homeomorphic to a disc. Take vi ∈ x1ui such that

v1v2 ∪ v2v3 ∪ v3v1 ⊂ V.

Let wi be the midpoint of x1vi. See the figure. Consider the comparison triangle

w∗
1w

∗
2w

∗
3 in S2

κ, i.e. with {w∗
1, w

∗
2, w

∗
3} isometric to {w1, w2, w3}. By choosing each

vi close enough to x1, we can arrange the diameters of both w1w2w3 and w∗
1w

∗
2w

∗
3

to be less than ε/8m.
Since κ < κ′, we have

∠w2w1v1 + ∠w3w1v1 + ∠w∗
2w

∗
1w

∗
3 < 2π,

while ∠wiw1v1 < π (i = 2, 3). Under these circumstances there exists a point
z1 ∈ w∗

2w
∗
3 such that

∠z1w∗
1w

∗
i + ∠wiw1v1 < π (i = 2, 3).

Take analogously z2 ∈ w∗
3w

∗
1 and z3 ∈ w∗

1w
∗
2. Let {s1} = w∗

2z2 ∩w∗
3z3, and s2, s3 be

defined analogously. The triangle w∗
1w

∗
2w

∗
3 is decomposed in three triangles, w∗

1w
∗
2s3,

w∗
2w

∗
3s1, w

∗
3w

∗
1s2, and a fourth, s1s2s3, which can degenerate to a point.
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By Petrunin-Alexandrov’s gluing Theorem, the quadrilateral v1w1w2v2 and the
triangle s3w

∗
1w

∗
2 can be glued together along the isometry w1w2

∼= w∗
1w

∗
2. Anal-

ogously, the other two pairs of one quadrilateral and one triangle can be glued
together. The angle condition is satisfied at w1 = w∗

1, w2 = w∗
2, w3 = w∗

3. This
shows that the surface X1 obtained from λX by replacing the triangle w1w2w3 with
the triangle w∗

1w
∗
2w

∗
3 is Alexandrov. The point w1 is now conical; put y1 = w1.

Similarly, by taking x2 instead of x1, we obtain the surface X2 replacing X1 and
the conical point y2 ∈ X2, and so on, until we obtain Xm and ym ∈ Xm.

We relate through the relation R the points of w1w2w3 in λX to all points
of w∗

1w
∗
2w

∗
3 in Xm, and vice-versa. All other points of λX are related to their

counterparts in Xm through the natural isometry, and vice-versa. p and p′ will
denote related points.

We now estimate the distance dC(λX,Xm). Let x′, y′ ∈ Xm, and let xRx′, yRy′.
Join x ∈ λX to y ∈ λX by a segment xy. Assume that x and y do not lie in any of
the small triangles like w1w2w3. Let t1r1, t2r2,..., tqrq (q ≤ m) be the subsegments
of xy which lie in triangles like w1w2w3 around x1, x2, ..., xm, met on the way. Since
dXm(t

′
i, r

′
i) ≤ ε/8m, we have

dXm(x
′, y′) ≤ dXm(x

′, t′1) + dXm(t
′
1, r

′
1) + dXm(r

′
1, t

′
2) + · · ·+ dXm(r

′
q, y

′)

≤ dλX(x, t1) + dλX(t1, r1) + dλX(r1, t2) + · · ·+ dλX(rq, y)

≤ dλX(x, y) + ε/8.

We leave to the reader the cases when x or y or both do lie in those small triangles.
Analogously,

dλX(x, y) ≤ dXm(x
′, y′) + ε/8.

Thus, dC(λX,Xm) ≤ ε/8.
This inequality together with dG(X

∗, X) < ε/4 and dG(X,λX) < ε/2, implies
dG(X

∗, Xm) < ε.
It remains to show that Xm contains an ε-net of conical points. Indeed, the set

of conical points {y1, ..., ym} is such a net. For, let x′ be an arbitrary point in Xm.
Let xRx′ with x ∈ λX. There exists a point xi ∈ N at distance at most ε/8 from
x. Since xRx′ and xiRyi, from dλX(x, xi) ≤ ε/8m we deduce dXm(x

′, yi) ≤ ε. □

Proof of the Theorem. Let I(X) be the set of all geodesically interior points of
X ∈ M(2, κ). We have

I(X) =

∞∪
k=1

Ik(X).

Let
A = {X ∈ M(n, κ,D) : I(X) is of 2nd category},

Ak = {X ∈ M(n, κ,D) : Ik(X) is not nowhere dense},
Ak,l = {X ∈ M(n, κ,D) : ∃x ∈ X, s.t. B(x, 1/l) ⊂ Ik(X)}.

We have, using Proposition 5,

A =

∞∪
k=1

Ak, Ak =

∞∪
l=1

Ak,l.
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It remains to show that each Ak,l is nowhere dense.
Suppose Ak,l is not nowhere dense. Proposition 5 and the compactness of X

imply that each Ak,l is closed. Hence there exists a whole open set O ⊂ Ak,l. Take
X ∈ O.

By Proposition 6, we find a surface Σ ∈ M(2, κ) ∩ O with a (1/2l)-net on it
consisting of conical points. Let x be chosen arbitrarily in Σ. Clearly, B(x, 1/l)
contains some point of the (1/2l)-net, whence Σ /∈ Ak,l, and a contradiction is
obtained. □

Remark. Ironically, precisely the case κ = 0, which essentially corresponds, for
orientable surfaces, to the convex ones (and was treated in [12] using extrinsic
approximation), constitutes a remarkable exception! More precisely, M(2, 0) has
four components, one of which corresponds to the space of all convex surfaces,
see [9].

The Theorem is not valid for κ = 0.
Indeed, in a whole neighbourhood in M(2, 0) of a flat torus or Klein bottle, every

surface is a flat torus or a flat Klein bottle (by the Perelman stability Theorem [7]).
These remain, however, the only exceptions. Most surfaces in M(2, 0) have Euler
characteristic χ = 0 and are flat or, on them, most points are endpoints. For χ = 0,
the flatness is imposed by κ = 0, and for χ > 0 the universal cover being a sphere
the result essentially follows from [12].
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