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Let T1, T2 be integers such that 0 ≤ T1 < T2. A sequence {xt}T2
t=T1

⊂ X is called

a program if (xt, xt+1) ∈ Ωt for all integers t satisfying T1 ≤ t < T2.
We assume that there exists a program {xt}∞t=0. Denote by M the set of all

sequences of functions {ft}∞t=0 such that for each integer t ≥ 0

(1.1) ft ∈ B(Ωt)

and that

(1.2) sup{∥ft∥ : t = 0, 1, . . . } < ∞.

For each pair of sequences {ft}∞t=0, {gt}∞t=0 ∈ M set

(1.3) d({ft}∞t=0, {gt}∞t=0) = sup{∥ft − gt∥ : t = 0, 1, . . . }.
It is easy to see that d : M×M → [0,∞) is a metric on M and that the metric
space (M, d) is complete.

Let {ft}∞t=0 ∈ M. We consider the following optimization problems

T2−1∑
t=T1

ft(xt, xt+1) → min s. t. {xt}T2
t=T1

is a program,

T2−1∑
t=T1

ft(xt, xt+1) → min s. t. {xt}T2
t=T1

is a program and xT1 = y,

T2−1∑
t=T1

ft(xt, xt+1) → min s. t. {xt}T2
t=T1

is a program and xT1 = y, xT2 = z,

where y, z ∈ X and integers T1, T2 satisfy 0 ≤ T1 < T2.
The interest in these discrete-time optimal problems stems from the study of

various optimization problems which can be reduced to this framework, e. g.,
continuous-time control systems which are represented by ordinary differential equa-
tions whose cost integrand contains a discounting factor [13], the study of the dis-
crete Frenkel-Kontorova model related to dislocations in one-dimensional crystals
[4, 28] and the analysis of a long slender bar of a polymeric material under tension
in [14, 17]. Similar optimization problems are also considered in mathematical eco-
nomics [10, 13, 19, 26, 32-36]. In [29] these problems were considered in the case
when ft = f0 and Ωt = X ×X for all integers t ≥ 0, in [30, 31] they were studied
in the case when Ωt = X ×X for all integers t ≥ 0 and in [33-36] we studied these
problems in the case when ft = f0 and Ωt = Ω0 for all integers t ≥ 0. Here we study
a general case when the optimal control system is determined by a nonstationary
sequence of objective functions {ft}∞t=0 and by a nonstationary sequence of sets of
admissible pairs {Ωt}∞t=0. This makes the situation more realistic but more difficult
and less understood.

For each y, z ∈ X and each pair of integers T1, T2 satisfying 0 ≤ T1 < T2 set

(1.4) U({ft}∞t=0, T1, T2) = inf
{ T2−1∑

t=T1

ft(xt, xt+1) : {xt}T2
t=T1

is a program
}
,

(1.5) U({ft}∞t=0, T1, T2, y)
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= inf
{ T2−1∑

t=T1

ft(xt, xt+1) : {xt}T2
t=T1

is a program and xT1 = y
}
,

(1.6) U({ft}∞t=0, T1, T2, y, z)

= inf
{ T2−1∑

t=T1

ft(xt, xt+1) :{xt}T2
t=T1

is a program and xT1 = y, xT2 = z
}
.

Here we assume that the infimum over empty set is ∞.
Denote by Mreg the set of all sequences of functions {fi}∞i=0 ∈ M for which

there exist a program {xft }∞t=0 and constants cf > 0, γf > 0 such that the following
conditions hold:

(C1) the function ft is lower semicontinuous for all integers t ≥ 0;
(C2) for each pair of integers T1 ≥ 0, T2 > T1,

T2−1∑
t=T1

ft(x
f
t , x

f
t+1) ≤ U({ft}∞t=0, T1, T2) + cf ;

(C3) for each ϵ > 0 there exists δ > 0 such that for each integer t ≥ 0 and each

(x, y) ∈ Ωt satisfying ρ(x, xft ) ≤ δ, ρ(y, xft+1) ≤ δ we have

|ft(xft , x
f
t+1)− ft(x, y)| ≤ ϵ;

(C4) for each integer t ≥ 0, each (xt, xt+1) ∈ Ωt satisfying ρ(xt, x
f
t ) ≤ γf and

each (x′t+1, x
′
t+2) ∈ Ωt+1 satisfying ρ(x′t+2, x

f
t+2) ≤ γf there is x ∈ X such that

(xt, x) ∈ Ωt, (x, x
′
t+2) ∈ Ωt+1;

moreover, for each ϵ > 0 there exists δ ∈ (0, γf ) such that for each integer t ≥ 0,

each (xt, xt+1) ∈ Ωt and each (x′t+1, x
′
t+2) ∈ Ωt+1 satisfying ρ(xt, x

f
t ) ≤ δ and

ρ(x′t+2, x
f
t+2) ≤ δ there is x ∈ X such that

(xt, x) ∈ Ωt, (x, x
′
t+2) ∈ Ωt+1, ρ(x, x

f
t+1) ≤ ϵ.

Denote by M̄reg the closure of Mreg in (M, d). Denote by Mc,reg the set of all
sequences {fi}∞i=0 ∈ Mreg such that fi ∈ C(Ωi) for all integers i ≥ 0 and by M̄c,reg

the closure of Mc,reg in (M, d).
We study the optimization problems stated above with the sequence of objective

functions {fi}∞i=0 ∈ Mreg. Our study is based on the relation between these finite
horizon problems and the corresponding infinite horizon optimization problem de-

termined by {fi}∞i=0. Note that the condition (C2) means that the program {xft }∞t=0

is an approximate solution of this infinite horizon problem.
We are interested in turnpike properties of approximate solutions of our opti-

mization problems, which are independent of the length of the interval T2 − T1, for
all sufficiently large intervals. To have these properties means that the approximate
solutions of the problems are determined mainly by the objective functions, and are
essentially independent of the choice of interval and endpoint conditions, except in
regions close to the endpoints. Turnpike properties are well known in mathematical
economics. The term was first coined by Samuelson in 1948 (see [27]) where he
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showed that an efficient expanding economy would spend most of the time in the
vicinity of a balanced equilibrium path (also called a von Neumann path).

In the classical turnpike theory [10, 19, 26] the space X is a compact convex
subset of a finite-dimensional Euclidean space, the sets Ωt are convex and ft = f0,
Ωt = Ω0 for all integers t ≥ 0, where the function f0 is strictly convex. Under
these assumptions the turnpike property can be established and the turnpike x̄
is a unique solution of the minimization problem f0(x, x) → min, (x, x) ∈ Ω0.
In this situation it is shown that for each program {xt}∞t=0 either the sequence

{
∑T−1

t=0 f0(xt, xt+1)−Tf0(x̄, x̄)}∞T=1 is bounded (in this case the program {xt}∞t=0 is
called (f0)-good) or it diverges to ∞. Moreover, it is also established that any (f0)-
good program converges to the turnpike x̄. This property is called as the asymptotic
turnpike property.

In [33, 34] we studied the stationary case with ft = f0, Ωt = Ω0 for all integers
t ≥ 0, and showed that the turnpike property follows from the asymptotic turnpike
property. More precisely, we assumed that any (f0)-good program converges to a
unique solution x̄ of the problem f0(x, x) → min, (x, x) ∈ Ω and showed that the
turnpike property holds and x̄ is the turnpike. Note that we did not use convexity
assumptions.

In [37] we generalize the results of [33, 34] and establish the turnpike property for
the general case when the optimal control system is determined by a nonstationary
sequence of objective functions {ft}∞t=0 and by a nonstationary sequence of sets of
admissible pairs {Ωt}∞t=0. The results of [37] are also a generalization of the results
of [31] obtained in the case when Ωt = X ×X for all integers t ≥ 0.

Let {fi}∞i=0 ∈ Mreg and let a program {xfi }∞i=0, cf > 0 and γf > 0 be such that
(C1)-(C4) hold.

It is not difficult to see that the assumption (C2) implies the following useful
result obtained in [37, Proposition 2.1].

Proposition 1.1. Let S ≥ 0 be an integer and {xi}∞i=S be a program. Then either

the sequence {
∑T−1

i=S fi(xi, xi+1)−
∑T−1

i=S fi(x
f
i , x

f
i+1)}∞T=S+1 is bounded or

lim
T→∞

[ T−1∑
i=S

fi(xi, xi+1)−
T−1∑
i=S

fi(x
f
i , x

f
i+1)

]
= ∞.

A program {xt}∞t=S , where S ≥ 0 is an integer, is called ({fi}∞i=0)-good if the
sequence { T−1∑

i=S

fi(xi, xi+1)−
T−1∑
i=S

fi(x
f
i , x

f
i+1)

}∞

T=S+1

is bounded [10, 13, 19, 32].
We say that the sequence {fi}∞i=0 possesses an asymptotic turnpike property (or

briefly (ATP)) with {xfi }∞i=0 being the turnpike if for each integer S ≥ 0 and each
({fi}∞i=0)-good program {xi}∞i=S ,

lim
i→∞

ρ(xi, x
f
i ) = 0.

We say that the sequence {fi}∞i=0 possesses a turnpike property (or briefly (TP))
if for each ϵ > 0 and each M > 0 there exist δ > 0 and a natural number L such
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that for each pair of integers T1 ≥ 0, T2 ≥ T1+2L and each program {xt}T2
t=T1

which
satisfies

T2−1∑
i=T1

fi(xi, xi+1)≤ min{U({fi}∞i=0, T1, T2, xT1 , xT2) + δ, U({fi}∞i=0, T1, T2) +M},

the inequality ρ(xi, x
f
i ) ≤ ϵ holds for all integers i = T1 + L, . . . , T2 − L.

The sequence {xfi }∞i=0 is called the turnpike of {fi}∞i=0.
In [37, Theorem 2.1] we prove the following result.

Theorem 1.2. The sequence {fi}∞i=0 possesses the turnpike property if and only if
{fi}∞i=0 possesses (ATP) and the following property:

(P) For each ϵ > 0 and each M > 0 there exist δ > 0 and a natural number L

such that for each integer T ≥ 0 and each program {xt}T+L
t=T which satisfies

T+L−1∑
i=T

fi(xi, xi+1) ≤ min{U({fi}∞i=0, T, T + L, xT , xT+L) + δ,

U({fi}∞i=0, T, T + L) +M}

there is an integer j ∈ {T, . . . , T + L} for which ρ(xj , x
f
j ) ≤ ϵ.

The property (P) means that if a natural number L is large enough and a program

{xt}T+L
t=T is an approximate solution of the corresponding finite horizon problem,

then there is j ∈ {T, . . . , T + L} such that xj is close to xfj .

We also show in [37] that {fi}∞i=0 is approximated by elements of Mreg possessing
(TP).

For each r ∈ (0, 1) and all integers i ≥ 0 set

f
(r)
i (x, y) = fi(x, y) + rρ(x, xfi ), (x, y) ∈ Ωi.

Clearly, {f (r)
i }∞i=0 ∈ Mreg for all r ∈ (0, 1) and

lim
r→0+

d({f (r)
i }∞i=0, {fi}∞i=0) = 0.

In [37, Proposition 2.2] we prove the following result.

Proposition 1.3. For each r ∈ (0, 1), {f (r)
i }∞i=0 possesses (TP) with {xfi }∞i=0 being

the turnpike.

In the sequel we use the following notation. For each y, z ∈ X, each pair of
integers T1, T2 satisfying 0 ≤ T1 < T2 and each finite sequence of functions gi ∈
B(Ωi), i = T1, . . . , T2 − 1 set

(1.7) U({gi}T2−1
i=T1

, T1, T2) = inf
{ T2−1∑

t=T1

gt(xt, xt+1) : {xt}T2
t=T1

is a program
}
,

(1.8) U({gi}T2−1
i=T1

, T1, T2, y)
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= inf
{ T2−1∑

t=T1

gt(xt, xt+1) : {xt}T2
t=T1

is a program and xT1 = y
}
,

(1.9) U({gi}T2−1
i=T1

, T1, T2, y, z)

= inf
{ T2−1∑

t=T1

gt(xt, xt+1) : {xt}T2
t=T1

is a program and xT1 = y, xT2 = z
}
.

Here again we assume that the infimum over empty set is ∞.
In [38] we assume that {fi}∞i=0 possesses (TP) and show that the turnpike prop-

erty is stable under small perturbations of the objective functions. These results
generalize the results of [35] obtained in the stationary case with ft = f0, Ωt = Ω0

for all integers t ≥ 0 with the stationary turnpike.
Note that in [37, 38] we consider optimal control systems, associated with {fi}∞i=0

∈ Mreg, without discounting. In the present paper we show that the turnpike
property together with its stability established in [37, 38] also hold for the models
with discounting.

Our results are a generalization of the results of [36] obtained for optimal control
systems with discounting in the stationary case with ft = f0, Ωt = Ω0 for all integers
t ≥ 0 with the stationary turnpike.

2. Main results

We suppose that the sum over empty set is zero.

Let {fi}∞i=0 ∈ Mreg and let a program {xfi }∞i=0, cf > 0 and γf ∈ (0, 1) be such
that (C1)-(C4) hold.

We suppose that {fi}∞i=0 possesses (ATP) and the property (P). Then by Theorem
1.2, {fi}∞i=0 possesses (TP). (Note that by Theorem 1.2 we can assume that {fi}∞i=0
possesses (TP)).

In [38, Theorem 2.1] we prove the following result which shows that the turnpike
property is stable under small perturbations of the objective functions in the case
without discounting.

Theorem 2.1. Let ϵ ∈ (0, 1) and M > 0. Then there exist a natural number L0

and a real number

δ0 ∈ (0,min{ϵ, γf})
such that for each integer L1 ≥ L0 the following assertion holds with δ = (8L1)

−1δ0.
Assume that integers T1 ≥ 0, T2 > T1 + 2L1, {gi}∞i=0 ∈ M satisfies

d({fi}∞i=0, {gi}∞i=0) ≤ δ

and that a program {xt}T2
t=T1

and a finite sequence of integers {Si}qi=0 (where q is a

natural number) satisfy

S0 = T1, T2 ≥ Sq > T2 − L1,

Si+1 − Si ∈ [L0, L1] for all integers i ∈ [0, q − 1],
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Si+1−1∑
t=Si

gt(xt, xt+1) ≤ U({gj}∞j=0, Si, Si+1) +M for all i = 0, . . . , q − 1,

T2−1∑
t=Sq−1

gt(xt, xt+1) ≤ U({gj}∞j=0, Sq−1, T2) +M,

Si+2−1∑
t=Si

gt(xt, xt+1)≤U({gj}∞j=0, Si, Si+2, xSi , xSi+2)+δ0 for all i = 0, . . . , q−2,

T2−1∑
t=Sq−2

gt(xt, xt+1) ≤ U({gj}∞j=0, Sq−2, T2, xSq−2 , xT2) + δ0.

Then
ρ(xt, x

f
t ) ≤ ϵ for all integers t ∈ [T1 + L1, T2 − L1].

Let S ≥ 0 be an integer. A point x ∈ X is called ({fi}∞i=0, S)-good if there exists
an ({fi}∞i=0)-good program {xt}∞t=S such that xS = x.

A point x ∈ X is called ({fi}∞i=0, S,M)-good, where M is a positive number, if
there exists a program {xt}∞t=S such that xS = x and for all integers T > S,

T−1∑
t=S

ft(xt, xt+1)−
T−1∑
t=S

ft(x
f
t , x

f
t+1) ≤ M.

The following theorem is our main result.

Theorem 2.2. Let M > 0 and ϵ ∈ (0, γf ). Then there exist a number δ ∈ (0, ϵ),
a natural number L and λ ∈ (0, 1) such that for each pair of integers T1 ≥ 0,
T2 > T1 + 2L, each {gi}∞i=0 ∈ M such that gi is a lower semicontinuous function
for all integers i ≥ 0 and that

d({fi}∞i=0, {gi}∞i=0) ≤ δ,

each finite sequence {αi}T2−1
i=T1

⊂ (0, 1] such that

αiα
−1
j ≥ λ for all i, j ∈ {T1, . . . , T2 − 1} satisfying |i− j| ≤ L,

αiα
−1
j ≥ λ for all i, j ∈ {T1, . . . , T2 − 1} satisfying j ≥ i

and each program {xt}T2
t=T1

such that the point xT1 is ({fi}∞i=0, T1,M)-good and

T2−1∑
t=T1

αtgt(xt, xt+1) = U({αigi}T2−1
i=T1

, T1, T2, xT1)

the following inequality holds:

ρ(xt, x
f
t ) ≤ ϵ for all integers t ∈ [T1 + L, T2 − L].

Theorem 2.2 establishes the turnpike property of solutions of optimal finite hori-
zon problems associated with the objective functions αigi, i = T1, . . . , T2− 1, where
the sequence of functions {gi}∞i=0 ∈ M and the sequence of discount coefficients

{αt}T2−1
t=T1

⊂ (0, 1] satisfy the assumptions of the theorem. Roughly speaking, the
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turnpike property holds if the sequence of functions {gi}∞i=0 belongs to a small neigh-

borhood {fi}∞i=0 and the discount coefficients {αt}T2−1
t=T1

⊂ (0, 1] are changed rather
slowly.

Let S ≥ 0 be an integer and gi ∈ B(Ωi) for all integers i ≥ S. A program {xt}∞t=S
is called ({gi}∞i=S)-overtaking optimal [10, 13, 19, 32] if for each program {x′t}∞t=S
satisfying x′S = xS ,

lim sup
T→∞

[ T−1∑
t=S

gt(xt, xt+1)−
T−1∑
t=S

gt(x
′
t, x

′
t+1)

]
≤ 0.

Note that the existence of an ({gi}∞i=S)-overtaking optimal program when the
functions {gi}∞i=S tends to zero rapidly is a well-known fact. Here we present a
version of this result.

Theorem 2.3. Let {gi}∞i=0 ⊂ M be such that for each integer t ≥ 0 the function gt
is lower semicontinuous and

∞∑
i=0

||gi|| < ∞,

S ≥ 0 be an integer and let z ∈ X be such that there exists a program {xt}∞t=S
satisfying xS = z.

Then there exists a ({gi}∞i=S)-overtaking optimal program {x∗t }∞t=S satisfying x∗S =
z.

Proof. Clearly, for any program {zt}∞t=S ,

∞∑
t=S

|gt(zt, zt+1)| ≤
∞∑
i=0

∥gi∥ < ∞.

Set

(2.1) ∆ = inf
{ ∞∑

t=S

gt(yt, yt+1) : {yt}∞t=S is a program and yS = z
}
.

Clearly, ∆ is well defined and finite. In order to prove Theorem 2.3 it is sufficient
to show that there is a program {x∗i }∞i=S such that

x∗S = z,

∞∑
t=S

gt(x
∗
t , x

∗
t+1) = ∆.

By (2.1), for each integer k ≥ 1, there is a program {x(k)t }∞t=S such that

(2.2) x
(k)
S = z,

∞∑
t=S

gt(x
(k)
t , x

(k)
t+1) ≤ ∆+ 1/k.

Extracting a subsequence and re-indexing if necessary we may assume without loss
of generality that for any integer t ≥ S there exists

(2.3) x∗t = lim
k→∞

x
(k)
t .

Clearly, {x∗i }∞i=S is a program satisfying x∗S = z.
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Let ϵ > 0. Then there is a natural number S0 > S such that

(2.4)
∞∑

t=S0

∥gt∥ < ϵ.

By (2.2), (2.3) and (2.4) for all integers T > S0,

T−1∑
t=S

gt(x
∗
t , x

∗
t+1) ≤ lim inf

k→∞

T−1∑
t=S

gt(x
(k)
t , x

(k)
t+1)

≤ lim inf
k→∞

( ∞∑
t=S

gt(x
(k)
t , x

(k)
t+1) + ϵ

)
≤ lim

k→∞
(∆ + k−1 + ϵ) = ∆+ ϵ

and
∞∑
t=S

gt(x
∗
t , x

∗
t+1) ≤ ∆+ ϵ.

Since ϵ is any positive number we conclude that
∑∞

t=S gt(x
∗
t , x

∗
t+1) ≤ ∆. Theorem

2.3 is proved. □
Theorem 2.4. Let M > 0, ϵ = γf/4 and let δ ∈ (0, ϵ), a natural number L and
λ ∈ (0, 1) be as guaranteed by Theorem 2.2.

Let {gi}∞i=0 ∈ M be such that for each integer t ≥ 0, the function gt is lower
semicontinuous and that

(2.5) d({fi}∞i=0, {gi}∞i=0) ≤ δ

and let

(2.6) {αi}∞i=0 ⊂ (0, 1], lim
i→∞

αi = 0,

(2.7) αiα
−1
j ≥ λ for all nonnegative integers i, j satisfying |i− j| ≤ L

and

(2.8) αiα
−1
j ≥ λ for all nonnegative integers i, j satisfying j ≥ i.

Then for each integer S ≥ 0 and each ({fi}∞i=0, S,M)-good z ∈ X there exists a

program {x(S,z)t }∞t=S such that x
(S,z)
S = z and that the following property holds:

For each γ > 0 there is a natural number n0 such that for each integer S ≥ 0,
each integer T ≥ S + n0 and each ({fi}∞i=0, S,M)-good point z ∈ X,∣∣∣U({αtgt}T−1

t=S , S, T, z)−
T−1∑
t=S

αtgt(x
(S,z)
t , x

(S,z)
t+1 )

∣∣∣ ≤ γ.

It is clear that Theorem 2.4 establishes the existence of ({αtgt}∞t=S)-overtaking op-
timal program when (2.5)-(2.8) hold. Roughly speaking, an ({αtgt}∞t=S)-overtaking
optimal program exists if {gi}∞i=0 belongs to a small neighborhood of {fi}∞i=0 and
the sequence of the discount coefficients {αi}∞i=0 tends to zero slowly.

We will prove the following result which establishes the turnpike property for
overtaking optimal programs.
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Theorem 2.5. Let M > 0 and ϵ ∈ (0, γf ). Then there exist a number δ ∈ (0, ϵ),
a natural number L and λ ∈ (0, 1) such that for each {gi}∞i=0 ∈ M, where gi is a
lower semicontinuous function for all integers i ≥ 0, which satisfies

d({fi}∞i=0, {gi}∞i=0) ≤ δ,

each integer T1 ≥ 0, each sequence {αi}∞i=T1
⊂ (0, 1] such that

αiα
−1
j ≥ λ for all integers i, j ≥ T1 satisfying |i− j| ≤ L,

αiα
−1
j ≥ λ for all integers i, j satisfying j ≥ i ≥ T1

and each ({αigi}∞t=T1
)-overtaking optimal program {xt}∞t=T1

for which the point xT1

is ({fi}∞i=0, T1,M)-good, the following inequality holds:

ρ(xt, x
f
t ) ≤ ϵ for all integers t ≥ T1 + L.

The paper is organized as follows. Theorems 2.2 and 2.5 are proved in Section 3.
Theorem 2.4 is proved in Section 4.

3. Proof of Theorems 2.2 and 2.5

Choose

(3.1) d0 > sup{∥fi∥ : i = 0, 1, . . . }.
We prove Theorems 2.2 and 2.5 simultaneously. Choose a number

(3.2) M1 > M + 4.

By the property (P) there exist δ0 ∈ (0, γf/4) and a natural number L0 such that
the following property holds:

(P1) For each integer T ≥ 0 and each program {xt}T+L0
t=T which satisfies

T+L0−1∑
i=T

fi(xi, xi+1) ≤ min{U({fi}∞i=0, T, T + L0, xT , xT+L0) + δ0,

U({fi}∞i=0, T, T + L0) + cf + 4 +M1}

there is an integer j ∈ {T, . . . , T + L0} for which ρ(xj , x
f
j ) ≤ γf/4.

By Theorem 2.1 there exist a natural number L1 ≥ 4 and a real number

(3.3) δ1 ∈ (0,min{ϵ, γf})
such that for each integer L2 ≥ L1, each pair of integers T1 ≥ 0, T2 > T1 +2L2 and
each {gi}∞i=0 ∈ M satisfying

(3.4) d({ft}∞t=0, {gt}∞t=0) ≤ (8L2)
−1δ1

the following property holds:
(P2) Assume that {xt}T2

t=T1
is a program, q is a natural number, {Si}qi=1 is a finite

sequence of integers such that:

S1 = T1, T2 ≥ Sq > T2 − L2,

for each integer i satisfying 1 ≤ i ≤ q − 1,

Si+1 − Si ∈ [L1, L2],
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Si+1−1∑
t=Si

gt(xt, xt+1) ≤ U({gj}∞j=0, Si, Si+1) +M1 + cf + 8(d0 + 1) + 4,

T2−1∑
t=Sq−1

gt(xt, xt+1) ≤ U({gj}∞j=0, Sq−1, T2) +M1 + cf + 8(d0 + 1) + 4,

for each integer i ∈ [1, q − 2],

Si+2−1∑
t=Si

gt(xt, xt+1) ≤ U({gj}∞j=0, Si, Si+2, xSi , xSi+2) + δ1,

T2−1∑
t=Sq−2

gi(xi, xi+1) ≤ U({gj}∞j=0, Sq−2, T2, xSq−2 , xT2) + δ1.

Then

ρ(xt, x
f
t ) ≤ ϵ for all integers t ∈ [T1 + L2, T2 − L2].

Choose a natural number

(3.5) p0 ≥ 6 +M1 + 16(L0 + 4)(d0 + 4) + L1.

Set

(3.6) L2 = (p0 + 4)L0 + 2L1.

Choose a natural number

(3.7) L ≥ 4L0p0 + 4L2,

a positive number

(3.8) δ < min{(16L0)
−1δ0, (48L2)

−1δ1}

and a number λ ∈ (0, 1) such that

18L0(1 + d0)(1− λ)λ−1 < δ0,

(3.9) λp0 > 2−1, 96L2(1 + d0)(1− λ) < δ1.

Assume that {gi}∞i=0 ∈ M, for each integer i ≥ 0 the function gi is lower semi-
continuous,

(3.10) d({fi}∞i=0, {gi}∞i=0) ≤ δ,

T1 ≥ 0 is an integer and x̃ ∈ X is an ({fi}∞i=0, T1,M)-good point.
In the case of Theorem 2.2 we assume that an integer

(3.11) T2 > T1 + 2L, {αi}T2−1
i=T1

⊂ (0, 1],

(3.12) αiα
−1
j ≥ λ for all i, j ∈ {T1, . . . , T2 − 1} satisfying |i− j| ≤ L,

(3.13) αiα
−1
j ≥ λ for all i, j ∈ {T1, . . . , T2 − 1} satisfying j ≥ i
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and that a program {xt}T2
t=T1

satisfies

(3.14) xT1 = x̃,

T2−1∑
t=T1

αtgt(xt, xt+1) = U({αigi}T2−1
i=T1

, T1, T2, xT1).

In the case of Theorem 2.5 we assume that

(3.15) {αi}∞i=T1
⊂ (0, 1],

(3.16) αiα
−1
j ≥ λ for all integers i, j ≥ T1 satisfying |i− j| ≤ L,

(3.17) αiα
−1
j ≥ λ for all integers i, j satisfying j ≥ i ≥ T1

and that an ({αigi}∞t=T1
)-overtaking optimal program {xt}∞t=T1

satisfies

(3.18) xT1 = x̃.

In order to complete the proof in the case of Theorem 2.2 it is sufficient to show
that

ρ(xt, x
f
t ) ≤ ϵ for all integers t ∈ [T1 + L, T2 − L]

and in the case of Theorem 2.5 it is sufficient to show that

ρ(xt, x
f
t ) ≤ ϵ for all integers t ≥ T1 + L.

Since the point x̃ is ({fi}∞i=0, T1,M)-good it follows from (3.14) and (3.18) that
there is a program {z̃t}∞t=T1

such that z̃T1 = x̃ and that for each integer T > T1,

(3.19)
T−1∑
t=T1

ft(z̃t, z̃t+1) ≤
T−1∑
t=T1

ft(x
f
t , x

f
t+1) +M.

In the case of Theorem 2.2 set I = [T1, T2] and in the case of Theorem 2.5 set
I = [T1,∞).

We show that the following property holds:
(P3) If an integer S satisfies

(3.20) [S, S + L0] ⊂ I, min{ρ(xt, xft ) : t = S, . . . , S + L0} > γf/4,

then
S+L0−1∑

t=S

αtgt(xt, xt+1) ≥
S+L0−1∑

t=S

αtgt(x
f
t , x

f
t+1) + 3αS .

Assume that an integer S satisfies (3.20). By (3.14) in the case of Theorem 2.2
and the ({αigi}∞t=T1

)-overtaking optimality of the program {xt}∞t=T1
in the case of

Theorem 2.5,

(3.21)

S+L0−1∑
t=S

α−1
S αtgt(xt, xt+1) = U({α−1

S αigi}S+L0−1
i=S , S, S + L0, xS , xS+L0).

By (3.10), (3.7), (3.13), (3.16), (3.8) and (3.9), for each integer q ≥ 0 and each

program {yt}q+L0
t=q ,∣∣∣ S+L0−1∑

t=S

ft(yt, yt+1)−
S+L0−1∑

t=S

α−1
S αtgt(yt, yt+1)

∣∣∣
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≤ L0max{∥ft − α−1
S αtgt∥ : t = S, . . . , S + L0 − 1}

≤ L0max{∥ft − gt∥+ ∥gt − α−1
S αtgt∥ : t = S, . . . , S + L0 − 1}(3.22)

≤ L0δ + L0max{|1− α−1
S αt|∥gt∥ : t = S, . . . , S + L0 − 1}

≤ L0δ + L0(1 + d0)(1− λ)λ−1 < δ0/8.

By (3.22), (3.21) and (C2),

S+L0−1∑
t=S

ft(xt, xt+1) <

S+L0−1∑
t=S

α−1
S αtgt(xt, xt+1) + δ0/8

= U({α−1
S αigi}S+L0−1

i=S , S, S + L0, xS , xS+L0) + δ0/8(3.23)

≤ U({fi}∞i=0, S, S + L0, xS , xS+L0) + δ0/4.

By (3.20), (3.23) and the property (P1),

S+L0−1∑
t=S

ft(xt, xt+1) ≥ U({fi}∞i=0, S, S + L0) + 4 + cf +M1

≥
S+L0−1∑

t=S

ft(x
f
t , x

f
t+1) + 4.(3.24)

By (3.23), (3.24) and (3.22),

S+L0−1∑
t=S

α−1
S αtgt(xt, xt+1) ≥

S+L0−1∑
t=S

ft(xt, xt+1)− δ0/8

≥
S+L0−1∑

t=S

ft(x
f
t , x

f
t+1) + 4− δ0/8

≥
S+L0−1∑

t=S

α−1
S αtgt(x

f
t , x

f
t+1) + 4− δ0/4

This implies that

S+L0−1∑
t=S

αtgt(xt, xt+1) ≥
S+L0−1∑

t=S

αtgt(x
f
t , x

f
t+1) + 3αS .

Thus the property (P3) holds.
By (3.19) and (C2),

T1+L0−1∑
t=T1

ft(z̃t, z̃t+1) ≤
T1+L0−1∑

t=T1

ft(x
f
t , x

f
t+1) +M

≤ U({fi}∞i=0, T1, T1 + L0) +M + cf .(3.25)

By (3.19) and (3.25) there exists a program {ỹt}T1+L0
t=T1

such that

ỹT1 = z̃T1 = x̃, ỹT1+L0 = z̃T1+L0 ,
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(3.26)

T1+L0−1∑
t=T1

ft(ỹt, ỹt+1) = U({fi}∞i=0, T1, T1 + L0, x̃, z̃T1+L0).

By (3.25), (3.26) and the property (P1), there is an integer

(3.27) j̃ ∈ {T1, . . . , T1 + L0}

for which

(3.28) ρ(ỹj̃ , x
f

j̃
) ≤ γf/4.

If j̃ < T1 + L0, then (ỹj̃ , ỹj̃+1) ∈ Ωj̃ ; if j̃ = T1 + L0, then by (3.26) (ỹj̃ , z̃j̃+1) ∈ Ωj̃ .
Thus in both cases

(ỹj̃ , y) ∈ Ωj̃ with some y ∈ X.

Combined with (3.28) and (C4) this implies that there is ỹ ∈ X such that

(3.29) (ỹj̃ , ỹ) ∈ Ωj̃ , (ỹ, x
f

j̃+2
) ∈ Ωj̃+1.

Set

(3.30) x̃i = ỹi, i = T1, . . . , j̃, x̃j̃+1 = ỹ, x̃i = xfi for all integers i ≥ j̃ + 2.

Clearly, {x̃i}∞i=T1
is a program. By (3.26), (3.30) and (3.27),

(3.31) x̃T1 = x̃, x̃i = xfi for all integers i ≥ T1 + L0 + 2.

We show that there an integer j ∈ I such that

(3.32) ρ(xj , x
f
j ) ≤ γf/4.

Assume the contrary. Then

(3.33) ρ(xi, x
f
i ) > γf/4 for all integers i ∈ I.

In the case of Theorem 2.5 set

(3.34) p = ∞.

In the case of Theorem 2.2 choose a natural number p such that

(3.35) pL0 ≤ T2 − T1 < (p+ 1)L0.

By (3.34), (3.35), (3.11) and (3.1),

(3.36) p ≥ 2p0.

Assume that an integer j satisfies

(3.37) 0 ≤ j, j + 1 ≤ p.

By (3.33), (3.35) and the property (P3),

(3.38)

T1+(j+1)L0−1∑
t=T1+jL0

αtgt(xt, xt+1) ≥
T1+(j+1)L0−1∑

t=T1+jL0

αtgt(x
f
t , x

f
t+1) + 3αT1+jL0 .
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Consider the case of Theorem 2.2. By (3.31), (3.14), (3.35), (3.13), (3.38), (3.10),
(3.36), (3.7), (3.12), (3.9) and (3.5),

0 ≥
T2−1∑
t=T1

αtgt(xt, xt+1)−
T2−1∑
t=T1

αtgt(x̃t, x̃t+1)

=

T2−1∑
t=T1

αtgt(xt, xt+1)−
T2−1∑
t=T1

αtgt(x
f
t , x

f
t+1)

+

T2−1∑
t=T1

αtgt(x
f
t , x

f
t+1)−

T2−1∑
t=T1

αtgt(x̃t, x̃t+1)

≥
p−1∑
j=0

(

T1+(j+1)L0−1∑
t=T1+jL0

αtgt(xt, xt+1)−
T1+(j+1)L0−1∑

t=T1+jL0

αtgt(x
f
t , x

f
t+1))

+
∑

{αtgt(xt, xt+1)− αtgt(x
f
t , x

f
t+1) :

t is an integer such that T1 + pL0 ≤ t < T2}
− 2(L0 + 2)αT1λ

−1 sup{||gi|| : i is an integer and i ≥ 0}

≥ 3

p−1∑
j=0

αT1+jL0 − 4(L0 + 2)αT1λ
−1 sup{||gi|| : i is an integer and i ≥ 0}

≥ 3

p−1∑
j=0

αT1+jL0 − 4(L0 + 2)αT1λ
−1(d0 + 1)

≥ 3

p0−1∑
j=0

αT1+jL0 − 4(L0 + 2)αT1λ
−1(d0 + 1)

≥ 3αT1

p0−1∑
j=0

λj − 4(L0 + 2)αT1λ
−1(d0 + 1)

≥ 3αT1(p0/2)− 8(L0 + 2)αT1(d0 + 1)

= αT1(p0 − 8(L0 + 2)(d0 + 1)) > 4αT1 ,

a contradiction. The contradiction we have reached proves that in the case of
Theorem 2.2 there is an integer j ∈ I such that (3.32) holds.

Consider the case of Theorem 2.5. Since {xt}∞t=T1
is an ({αigi}∞t=T1

)-overtaking
optimal program, it follows from (3.31), (3.18), (3.38), (3.10), (3.17), (3.16), (3.9)
and (3.5) that

0 ≥ lim sup
T→∞

[ T∑
t=T1

αtgt(xt, xt+1)−
T∑

t=T1

αtgt(x̃t, x̃t+1)
]

≥ lim sup
k→∞

[ T1+kL0−1∑
t=T1

αtgt(xt, xt+1)−
T1+kL0−1∑

t=T1

αtgt(x
f
t , x

f
t+1)
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+

T1+kL0−1∑
t=T1

αtgt(x
f
t , x

f
t+1)−

T1+kL0−1∑
t=T1

αtgt(x̃t, x̃t+1)
]

≥ lim sup
k→∞

[
3

k−1∑
j=0

αT1+jL0 − 2(L0 + 2)αT1λ
−1

sup{||gi|| : i is an integer and i ≥ 0}
]

≥ 3

p0−1∑
j=0

αT1+jL0 − 2(L0 + 2)αT1λ
−1(d0 + 1)

≥ 3αT1

p0−1∑
j=0

λj − 2(L0 + 2)αT1λ
−1(d0 + 1)

≥ 3αT1(p0/2)− 4(L0 + 2)αT1(d0 + 1) > αT1 ,

a contradiction. The contradiction we have reached proves that in the case of
Theorem 2.5 there is an integer j ∈ I such that (3.32) holds.

Assume that an integer τ satisfies

(3.39) T1 ≤ τ, L0(1 + p0) + τ ∈ I, ρ(xτ , x
f
τ ) ≤ γf/4.

We show that there is an integer S such that

(3.40) S ∈ I, S ≥ τ + L0, ρ(xS , x
f
S) ≤ γf/4.

Assume the contrary. Then

(3.41) ρ(xS , x
f
S) > γf/4 for all integers S ∈ I satisfying S ≥ τ + L0.

In the case of Theorem 2.5 set

(3.42) p = ∞.

In the case of Theorem 2.2 there is an integer p such that

(3.43) pL0 ≤ T2 − (τ + L0) < (p+ 1)L0.

By (3.43) and (3.39),

(3.44) p0 ≤ p.

Assume that an integer j satisfies

(3.45) 1 ≤ j ≤ p.

By (3.45), (3.43), (3.39) and the property (P3),

(3.46)

τ+(j+1)L0−1∑
t=τ+jL0

αtgt(xt, xt+1) ≥
τ+(j+1)L0−1∑

t=τ+jL0

αtgt(x
f
t , x

f
t+1) + 3ατ+jL0 .

By (3.39) and (C4) there is ξ ∈ X such that

(3.47) (xτ , ξ) ∈ Ωτ , (ξ, x
f
τ+2) ∈ Ωτ+1.
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By (3.47) there is a program {ξt}t∈I such that

ξt = xt, t = T1, . . . , τ, ξτ+1 = ξ, ξt = xft

(3.48) for all integers t ∈ I satisfying t ≥ τ + 2.

Consider the case of Theorem 2.2. By (3.48), (3.14), (3.13), (3.43), (3.10), (3.46),
(3.12), (3.9) and (3.5),

0 ≥
T2−1∑
t=T1

αtgt(xt, xt+1)−
T2−1∑
t=T1

αtgt(ξt, ξt+1)

=

T2−1∑
t=τ

αtgt(xt, xt+1)−
T2−1∑
t=τ

αtgt(ξt, ξt+1)

=

τ+L0−1∑
t=τ

αtgt(xt, xt+1)−
τ+L0−1∑

t=τ

αtgt(ξt, ξt+1)

+

T2−1∑
t=τ+L0

αtgt(xt, xt+1)−
T2−1∑

t=τ+L0

αtgt(ξt, ξt+1)

≥
T2−1∑

t=τ+L0

αtgt(xt, xt+1)−
T2−1∑

t=τ+L0

αtgt(x
f
t , x

f
t+1)

− ατλ
−12(L0 + 4) sup{∥gt∥ : t = 0, 1, . . . }

≥
p∑

j=1

( τ+(j+1)L0−1∑
t=τ+jL0

αtgt(xt, xt+1)−
τ+(j+1)L0−1∑

t=τ+jL0

αtgt(x
f
t , x

f
t+1)

)
+

∑
{αtgt(xt, xt+1)− αtgt(x

f
t , x

f
t+1) :

t is an integer such that τ + (p+ 1)L0 ≤ t < T2}
− 2ατλ

−1(L0 + 4)(d0 + 1)

≥
p∑

j=1

3ατ+jL0 − 4ατλ
−1(L0 + 4)(d0 + 1)

≥ 3ατ

p0∑
j=1

λj − 8ατ (L0 + 4)(d0 + 1)

≥ 3ατ (p0/2)− 8ατ (L0 + 4)(d0 + 1)

≥ ατ (p0 − 8(L0 + 4)(d0 + 2)) ≥ ατ ,

a contradiction. The contradiction we have reached proves that in the case of
Theorem 2.2 there is an integer S which satisfies (3.40).
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Consider the case of Theorem 2.5. Since {xt}∞t=T1
is an ({αigi}∞t=T1

)-overtaking
optimal program, it follows from (3.48) that

(3.49) 0 ≥ lim sup
T→∞

[ T−1∑
t=T1

αtgt(xt, xt+1)−
T−1∑
t=T1

αtgt(ξt, ξt+1)
]
.

By (3.48), (3.49), (3.17), (3.10), (3.46), (3.16), (3.7), (3.5) and (3.9),

0 ≥ lim sup
T→∞

[ T−1∑
t=T1

αtgt(xt, xt+1)−
T−1∑
t=T1

αtgt(ξt, ξt+1)
]

= lim sup
T→∞

[ T−1∑
t=τ

αtgt(xt, xt+1)−
T−1∑
t=τ

αtgt(ξt, ξt+1)
]

= lim sup
T→∞

[ τ+L0−1∑
t=τ

αtgt(xt, xt+1)−
τ+L0−1∑

t=τ

αtgt(ξt, ξt+1)

+

T−1∑
t=τ+L0

αtgt(xt, xt+1)−
T−1∑

t=τ+L0

αtgt(ξt, ξt+1)
]

≥ lim sup
k→∞

[
− 2L0ατλ

−1 sup{||gi|| : i is an integer and i ≥ 0}

+

τ+(k+1)L0−1∑
t=τ+L0

αtgt(xt, xt+1)−
τ+(k+1)L0−1∑

t=τ+L0

αtgt(x
f
t , x

f
t+1)

− 4ατλ
−1 sup{||gi|| : i is an integer and i ≥ 0}

]
≥ lim sup

k→∞

[
− 2(d0 + 1)(L0 + 2)ατλ

−1

+

k∑
j=1

( τ+(j+1)L0−1∑
t=τ+jL0

αtgt(xt, xt+1)−
τ+(j+1)L0−1∑

t=τ+jL0

αtgt(x
f
t , x

f
t+1)

)]

≥ −2(d0 + 1)(L0 + 2)ατλ
−1 + lim sup

k→∞

k∑
j=1

3ατ+jL0

≥ −2(d0 + 1)(L0 + 2)ατλ
−1 +

p0∑
j=1

3ατ+jL0

≥ −2(d0 + 1)(L0 + 2)ατλ
−1 + 3ατ

p0∑
j=1

λj

≥ −4(d0 + 1)(L0 + 2)ατ + 3ατ (p0/2)

≥ ατ (p0 − 4(d0 + 1)(L0 + 2)) > ατ ,



EXISTENCE AND A TURNPIKE PROPERTY OF SOLUTIONS 1173

a contradiction. The contradiction we have reached proves that in the case of
Theorem 2.5 there is an integer S which satisfies (3.40). Thus we have shown that
the following property holds:

(P4) for each integer τ satisfying (3.39) there is an integer S satisfying (3.40).
We show that the following property holds:
(P5) for each integer τ satisfying

(3.50) τ ∈ I, τ − L0(1 + p0) ≥ T1, ρ(xτ , x
f
τ ) ≤ γf/4

there is an integer S such that

(3.51) T1 ≤ S ≤ τ − L0, ρ(xS , x
f
S) ≤ γf/4.

Let an integer τ satisfy (3.50). We show that there is an integer S satisfying
(3.51). Assume the contrary. Then

(3.52) ρ(xt, x
f
t ) > γf/4 for all integers t = T1, . . . , τ − L0.

By (3.50), there is a natural number p such that

(3.53) p0 ≤ p, pL0 ≤ τ − L0 − T1 < (p+ 1)L0.

Assume that an integer

(3.54) j ∈ [1, p].

By (3.54), (3.52), (3.53) and the property (P3),

(3.55)

τ−jL0−1∑
t=τ−(j+1)L0

αtgt(xt, xt+1) ≥
τ−jL0−1∑

t=τ−(j+1)L0

αtgt(x
f
t , x

f
t+1) + 3ατ−(j+1)L0

.

We continue to consider the program {x̃t}∞t=T1
satisfying (3.31).

By (3.50) and (C4) there is η ∈ X such that

(3.56) (η, xτ ) ∈ Ωτ−1, (x
f
τ−2, η) ∈ Ωτ−2.

By (3.31), (3.50), (3.56) and (3.5) there is a program {ηt}τt=T1
such that

(3.57) ηt = x̃t, t = T1, . . . , τ − 2, ητ−1 = η, ητ = xτ .

By (3.57), (3.31), (3.14), (3.18), (3.50) and (3.5),

(3.58) ηT1 = x̃T1 = x̃ = xT1 , ηt = xft for all integers t = T1 + L0 + 2, . . . , τ − 2.

By (3.58) and (3.14) (in the case of Theorem 2.2) and ({αigi}∞t=T1
)-overtaking opti-

mality of the program {xt}∞t=T1
(in the case of Theorem 2.5), (3.57), (3.50), (3.52),

(3.13), (3.17), (3.55), (3.10), (3.12), (3.16), (3.9) and (3.5),

0 ≥
τ−1∑
t=T1

αtgt(xt, xt+1)−
τ−1∑
t=T1

αtgt(ηt, ηt+1)

=

p∑
j=1

τ−jL0−1∑
t=τ−(j+1)L0

(αtgt(xt, xt+1)− αtgt(ηt, ηt+1))

+
∑

{αtgt(xt, xt+1)− αtgt(ηt, ηt+1) :

t is an integer such that T1 ≤ t < τ − (p+ 1)L0}
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+
∑

{αtgt(xt, xt+1)− αtgt(ηt, ηt+1) :

t is an integer such that τ − L0 ≤ t < τ}

=

p∑
j=1

( τ−jL0−1∑
t=τ−(j+1)L0

αtgt(xt, xt+1)−
τ−jL0−1∑

t=τ−(j+1)L0

αtgt(x
f
t , x

f
t+1)

)

+

τ−L0−1∑
t=τ−(p+1)L0

αtgt(x
f
t , x

f
t+1)−

τ−L0−1∑
t=τ−(p+1)L0

αtgt(ηt, ηt+1)

− 4L0 sup{∥gt∥ : t = 0, 1, . . . }αT1λ
−1

≥
p∑

j=1

3ατ−(j+1)L0
− 2 sup{∥gi∥ : i = 0, 1, . . . }αT1λ

−1(L0 + 4)

− 4L0αT1λ
−1 sup{||gi|| : i is a nonnegative integer}

≥ 3ατ−(p+1)L0

p−1∑
j=0

λj − αT1λ
−1(d0 + 1)8(L0 + 2)

≥ 3αT1λ

p−1∑
j=0

λj − 2αT1(d0 + 1)8(L0 + 2)

≥ 3αT1(p0/2)− 16αT1(d0 + 1)(L0 + 2)

≥ αT1((p0 − 16(d0 + 1)(L0 + 2)) > αT1 ,

a contradiction. The contradiction we have reached proves that there is an integer
S satisfying (3.51) and that the property (P5) holds.

In the case of Theorem 2.2 it follows from (3.11), (3.37), (3.32) and the properties
(P4) and (P5) that there exist a natural number q and a finite strictly increasing
sequence of integers {Si}qi=1 ⊂ [T1, T2] such that for each t ∈ {T1, . . . , T2},

(3.59) ρ(xt, x
f
t ) ≤ γf/4 if and only if t ∈ {S1, . . . , Sq},

(3.60) q ≥ 2, S1 < T1 + L0(1 + p0), Sq > T2 − L0(1 + p0).

In the case of Theorem 2.5 it follows from (3.32) and the properties (P4) and (P5)
that there exists a strictly increasing sequence of integers {Si}∞i=1 ⊂ [T1,∞) such
that for each integer t ∈ [T1,∞),

(3.61) ρ(xt, x
f
t ) ≤ γf/4 if and only if t ∈ {Si : i is a natural number},

S1 < T1 + L0(1 + p0).

In the case of Theorem 2.5 set

(3.62) q = ∞.

Let an integer k satisfy

(3.63) 1 ≤ k and k + 1 ≤ q.
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We show that

(3.64) Sk+1 − Sk ≤ (p0 + 2)L0.

Assume the contrary. Then

(3.65) Sk+1 − Sk > (p0 + 2)L0.

By (3.65) there is a natural number p such that

(3.66) p > p0, (p+ 2)L0 ≤ Sk+1 − Sk < (p+ 3)L0.

By (3.59),

(3.67) ρ(xt, x
f
t ) > γf/4 for all integers t = Sk + 1, . . . , Sk+1 − 1.

Let an integer

(3.68) j ∈ [0, p− 1].

By (3.68), (3.67), (3.66) and the property (P3),

(3.69)

Sk+(j+2)L0−1∑
t=Sk+(j+1)L0

αtgt(xt, xt+1) ≥
Sk+(j+2)L0−1∑
t=Sk+(j+1)L0

αtgt(x
f
t , x

f
t+1) + 3αSk+(j+1)L0

.

By (3.59), (3.65), (3.5) and (C4) there exist η1, η2 ∈ X such that

(3.70) (xSk
, η1) ∈ ΩSk

, (η1, x
f
Sk+2) ∈ ΩSk+1,

(xfSk+1−2, η2) ∈ ΩSk+1−2, (η2, xSk+1) ∈ ΩSk+1−1.

By (3.70), (3.64) and (3.5) there is a program {x̂t}t∈I such that

x̂t = xt, t = T1, . . . , Sk, x̂Sk+1 = η1,

x̂t = xft , t = Sk + 2, . . . , Sk+1 − 2, x̂Sk+1−1 = η2,

(3.71) x̂t = xt for all integers t ∈ I satisfying t ≥ Sk+1.

By (3.71), (3.14) (in the case of Theorem 2.2) and ({αigi}∞i=T1
)-overtaking optimality

of the program {xt}∞t=T1
(in the case of Theorem 2.5), (3.13), (3.17), (3.66), (3.10),

(3.69), (3.12), (3.9) and (3.16),

0 ≥
Sk+1−1∑
t=T1

αtgt(xt, xt+1)−
Sk+1−1∑
t=T1

αtgt(x̂t, x̂t+1)

=

Sk+1−1∑
t=Sk

αtgt(xt, xt+1)−
Sk+1−1∑
t=Sk

αtgt(x̂t, x̂t+1)

≥
Sk+1−1∑
t=Sk

αtgt(xt, xt+1)−
Sk+1−1∑
t=Sk

αtgt(x
f
t , x

f
t+1)

− 8(sup{∥gt∥ : t = 0, 1, . . . }αSk
λ−1

≥
Sk+L0−1∑

t=Sk

(αtgt(xt, xt+1)− αtgt(x
f
t , x

f
t+1))
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+

p−1∑
j=0

( Sk+(j+2)L0−1∑
t=Sk+(j+1)L0

αtgt(xt, xt+1)− αtgt(x
f
t , x

f
t+1)

)

+

Sk+1−1∑
t=Sk+(p+1)L0

(αtgt(xt, xt+1)− αtgt(x
f
t , x

f
t+1))− 8αSk

λ−1(d0 + 1)

≥ −2αSk
λ−1L0 sup{∥gt∥ : t = 0, 1, . . . }+

p−1∑
j=0

3αSk+(j+1)L0

− 4αSk
λ−1L0 sup{∥gt∥ : t = 0, 1, . . . } − 8αSk

λ−1(d0 + 1)

≥ 3αSk

p0−1∑
j=0

λj+1 − 2αSk
(6L0 + 8)(d0 + 1)

≥ 3αSk
(p0/2)− 2αSk

(6L0 + 8)(d0 + 1)

≥ αSk
(p0 − (12L0 + 16)(d0 + 1)) > αSk

,

a contradiction. The contradiction we have reached proves that the following prop-
erty holds:

(P6) Sk+1 − Sk ≤ (p0 + 2)L0 for all integers k satisfying 1 ≤ k and k + 1 ≤ q.
We set

(3.72) S̃1 = S1.

In the case of Theorem 2.5 set

(3.73) S∞ = Sq = ∞.

Assume that j is a natural number and that we have already defined a finite strictly
increasing sequence of integers

(3.74) {S̃i}ji=1 ⊂ {Si : i is a natural number for which i ≤ q}

such that for each i satisfying 1 ≤ i < j,

(3.75) S̃i+1 − S̃i ∈ [L1, L2].

(Clearly, for j = 1 our assumption holds.)

If S̃j + L2 > Sq, then the construction is completed. Assume that

(3.76) S̃j + L2 ≤ Sq.

Then by (3.6) and (3.76),

(3.77) S̃j + L1 + (p0 + 4)L0 ≤ S̃j + L2 ≤ Sq.

By (3.56), (3.61) and (3.72) there is a natural number k such that

(3.77) S̃j + L1 ∈ [Sk−1, Sk].

By (3.74), (3.77) and (3.75),

(3.78) S̃j ≤ Sk−1, k ≤ q.
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We set

(3.79) S̃j+1 = Sk.

By (3.79), (3.77), (3.6) and (P6),

L1 ≤ S̃j+1 − S̃j ≤ L1 + Sk − Sk−1 ≤ L1 + (p0 + 2)L0 ≤ L2

and the assertion made for j also holds for j + 1.
In the case of Theorem 2.5 we obtain a sequence of integers {S̃i}∞i=1 such that

{S̃i}∞i=1 ⊂ {Si}∞i=1, S̃1 = S1 < T1 + L0(1 + p0),

(3.80) S̃i+1 − S̃i ∈ [L1, L2] for all integers i ≥ 1.

In the case of Theorem 2.2 our construction is completed after a finite number of
steps and we obtain a finite strictly increasing sequence of integers {S̃i}ki=1, where
k is a natural number, such that

{S̃i}ki=1 ⊂ {S1, . . . , Sq},

(3.81) S̃1 = S1 < T1 + L0(1 + p0), S̃k > Sq − L2 > T2 − L0(1 + p0)− L2,

(3.82) S̃i+1 − S̃i ∈ [L1, L2] for all integers i satisfying 1 ≤ i < k.

In the case of Theorem 2.2, by (3.81), (3.11) and (3.7),

S̃k − S̃1 > T2 − T1 − 2L0(p0 + 1)− L2

> 2L− 2L0(p0 + 1)− L2(3.83)

> 2L2.

In the case of Theorem 2.5 let k be any natural such that

(3.84) S̃k − S̃1 > 2L2.

We apply the property (P2) to the program {xt}S̃k

t=S̃1
. By (3.14) (in the case of

Theorem 2.2) and ({αigi}∞i=T1
)-overtaking optimality of the program {xt}∞t=T1

(in
the case of Theorem 2.5), for each pair of integers τ1, τ2 satisfying

S̃1 ≤ τ1 < τ2 ≤ S̃k,

we have

(3.85)

τ2−1∑
t=τ1

αtgt(xt, xt+1) = U({αigi}τ2−1
i=τ1

, τ1, τ2, xτ1 , xτ2).

By (3.10), (3.1), (3.7), (3.12), (3.16), (3.9) and (3.8) for each pair of integers τ1, τ2
satisfying

(3.86) S̃1 ≤ τ1 < τ2 ≤ S̃k, τ2 ≤ τ1 + 3L2,

each program {yt}τ2t=τ1
we have∣∣∣ τ2−1∑

t=τ1

ft(yt, yt+1)−
τ2−1∑
t=τ1

α−1
τ1 αtgt(yt, yt+1)

∣∣∣
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≤
τ2−1∑
t=τ1

|ft(yt, yt+1)− gt(yt, yt+1)|+
τ2−1∑
t=τ1

|gt(yt, yt+1)||1− α−1
τ1 αt|

≤ δ(τ2 − τ1) + (τ2 − τ1)(1 + d0)|λ− 1|λ−1(3.84)

≤ (τ2 − τ1)δ + 2(τ2 − τ1)(1 + d0)|1− λ|
≤ 3L2δ + 6L2(1 + d0)(1− λ) < δ1/8.

By (3.80), (3.82), (3.87) and (3.85), for each integer i satisfying 1 ≤ i ≤ k − 2,

S̃i+2−1∑
t=S̃i

ft(xt, xt+1) ≤
S̃i+2−1∑
t=S̃i

α−1
S̃i

αtgt(xt, xt+1) + δ1/8

= U({α−1
S̃i

αtgt}S̃i+2−1

t=S̃i
, S̃i, S̃i+2, xS̃i

, xS̃i+2
) + δ1/8(3.88)

≤ U({ft}∞t=0, S̃i, S̃i+2, xS̃i
, xS̃i+2

) + δ1/4.

Let an integer j satisfy 1 ≤ j < k. By (3.80) and (3.82),

(3.89) 4 ≤ L1 ≤ S̃j+1 − S̃j ≤ L2,

(3.90) ρ(xS̃j
, xf

S̃j
) ≤ γf/4, ρ(xS̃j+1

, xf
S̃j+1

) ≤ γf/4.

By (3.89), (3.90) and (C4) there is η1, η2 ∈ X such that

(xS̃j
, η1) ∈ ΩS̃j

, (η1, x
f

S̃j+2
) ∈ ΩS̃j+1,

(3.91) (xf
S̃j+1−2

, η2) ∈ ΩS̃j+1−2, (η2, xS̃j+1
) ∈ ΩS̃j+1−1.

Set

(3.92) x̄S̃j
= xS̃j

, x̃S̃j+1 = η1, x̄S̃j+1−1 = η2, x̄t = xft , t = S̃j + 2, . . . , S̃j+1 − 2,

x̄S̃j+1
= xS̃j+1

.

By (3.92) and (3.91), {x̄t}
S̃j+1

t=S̃j
is a program. By (3.86), (3.87), (3.80), (3.82), (3.85),

(3.92) and (C2),

S̃j+1−1∑
t=S̃j

ft(xt, xt+1) ≤
S̃j+1−1∑
t=S̃j

α−1
S̃j

αtgt(xt, xt+1) + δ1/8

≤
S̃j+1−1∑
t=S̃j

α−1
S̃j

αtgt(x̄t, x̄t+1) + δ1/8

≤
S̃j+1−1∑
t=S̃j

ft(x̄t, x̄t+1) + δ1/4(3.93)
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≤
S̃j+1−1∑
t=S̃j

ft(x
f
t , x

f
t+1) + 8(d0 + 1) + 1

≤ U({fi}∞i=0, S̃j , S̃j+1) + cf + 8(d0 + 1) + 1.

By (3.88) which holds for all integers i satisfying 1 ≤ i ≤ k − 2, (3.93) which holds
for all integers j satisfying 1 ≤ j < k, (3.10), (3.8), (3.83), (3.84), (3.80), (3.82) and

the property (P2) applied with the program {xt}S̃k

t=S̃1
,

(3.94) ρ(xt, x
f
t ) ≤ ϵ for all integers t ∈ [S̃1 + L2, S̃k − L2].

In the case of Theorem 2.2 it follows from (3.94), (3.81) and (3.7) that

ρ(xt, x
f
t ) ≤ ϵ for all integers t ∈ [T1 + L, T2 − L].

In the case of Theorem 2.5 since k is any sufficiently large natural number, it follows
from (3.94), (3.80) and (3.7) that

ρ(xt, x
f
t ) ≤ ϵ for all integers t ≥ T1 + L.

Theorems 2.2 and 2.5 are proved. □

4. Proof of Theorem 2.4

Fix

(4.1) d0 > sup{∥fi∥ : i = 0, 1, . . . }.

In the proof we use the following auxiliary result.

Lemma 4.1. Let γ > 0. Then there is a natural number n0 such that for each pair
of integers T1 ≥ 0, T2 > T1+n0, each integer S ∈ [T1+n0, T2−1] and each program

{xt}T2
t=T1

such that

(4.2) xT1 is ({fi}∞i=0, T1,M)− good,

(4.3)

T2−1∑
t=T1

αtgt(xt, xt+1) = U({αtgt}∞t=0, T1, T2, xT1)

the following inequality holds:

S−1∑
t=T1

αtgt(xt, xt+1) ≤ U({αtgt}∞t=0, T1, S, xT1) + γ.

Proof. By (2.6) there is a natural number

(4.4) n0 > 4L+ 4

such that for all integers t > n0 − L− 4

(4.5) αt ≤ γ(8L+ 8)−1(d0 + 1)−1.
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Assume that integers T1 ≥ 0, T2 > T1+n0, an integer S ∈ [T1+n0, T2−1] and that

a program {xt}T2
t=T1

satisfies (4.2) and (4.3). Clearly, there is a program {x̃t}St=T1

such that

(4.6) x̃T1 = xT1 ,
S−1∑
t=T1

αtgt(x̃t, x̃t+1) = U({αigi}∞i=0, T1, S, xT1).

By the choice of δ and L, (4.4), (2.5), (2.1), (2.8), (4.2), (4.3), (4.6), (4.7) and
Theorem 2.2,

(4.7) ρ(xt, x
f
t ) ≤ γf/4, t = T1 + L, . . . , T2 − L,

(4.8) ρ(x̃t, x
f
t ) ≤ γf/4, t = T1 + L, . . . , S − L.

By (4.7), (4.8) and (C4) there is ξ ∈ X such that

(4.9) (x̃S−L−1, ξ) ∈ ΩS−L−1, (ξ, xS−L+1) ∈ ΩS−L.

Define

(4.10) yt = x̃t, t = T1, . . . , S − L− 1, yS−L = ξ, yt = xt, t = S − L+ 1, . . . , T2.

By (4.9) and (4.10), {yt}T2
t=T1

is a program. In view of (4.5), (4.3), (4.10), (4.6),

(2.5) and (4.1),

0 ≥
T2−1∑
t=T1

αtgt(xt, xt+1)−
T2−1∑
t=T1

αtgt(yt, yt+1)

=

S−L∑
t=T1

αtgt(xt, xt+1)−
S−L∑
t=T1

αtgt(yt, yt+1)

≥
S−L−2∑
t=T1

αtgt(xt, xt+1)−
S−L−2∑
t=T1

αtgt(x̃t, x̃t+1)− (2αS−L−1 + 2αS−L)(d0 + 1)

≥
S−1∑
t=T1

αtgt(xt, xt+1)−
S−1∑
t=T1

αtgt(x̃t, x̃t+1)− 4(d0 + 1)
( S−1∑

t=S−L−1

αt

)

≥
S−1∑
t=T1

αtgt(xt, xt+1)−
S−1∑
t=T1

αtgt(x̃t, x̃t+1)

− 4(d0 + 1)((L+ 1)γ(8L+ 8)−1(d0 + 1)−1

and
S−1∑
t=T1

αtgt(xt, xt+1) ≤ U({αtgt}∞t=0, T1, S, xT1) + γ.

Lemma 4.1 is proved. □

Completion of the proof of Theorem 2.4
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Let an integer S ≥ 0 and z ∈ X be an ({fi}∞i=0, S,M)-good point. For each

integer T > S there is a program {x(z,S,T )
t }Tt=S such that

(4.11) x
(z,S,T )
S = z,

T−1∑
t=S

αtgt(x
(z,S,T )
t , x

(z,S,T )
t+1 ) = U({αtgt}∞t=0, S, T, z).

Clearly there exists a strictly increasing sequence of natural numbers {Tj}∞j=1 such
that T1 > S and that for any integer t ≥ S there exists

(4.12) x
(z,S)
t = lim

j→∞
x
(z,S,Tj)
t .

Clearly, {x(z,S)t }∞t=S is a program and

(4.13) x
(z,S)
S = z,

Let γ > 0. By Lemma 4.1 there is a natural number n0 such that the following
property holds:

(P7) For each pair integer S̃ ≥ 0, each integer T ≥ S̃ + n0, each integer Q ∈
[S̃ + n0, T − 1] and each program {xt}Tt=S̃

such that xS̃ is ({fi}∞i=0, S̃,M)-good and

that
T−1∑
t=S̃

αtgt(xt, xt+1) = U({αtgt}∞t=0, S̃, T, xS̃)

the following inequality holds:

Q−1∑
t=S̃

αtgt(xt, xt+1) ≤ U({αtgt}∞t=0, S̃, Q, xS̃) + γ.

Let T ≥ S + n0 be an integer and j be a natural number such that Tj > T . By

(P7) (with S̃ = S, T = Tj , Q = T ) and (4.11),

T−1∑
t=S

αtgt(x
(z,S,Tj)
t , x

(z,S,Tj)
t+1 ) ≤ U({αtgt}∞t=0, S, T, z) + γ.

Together with (4.12) this implies that

T−1∑
t=S

αtgt(x
(z,S)
t , x

(z,S)
t+1 ) ≤ U({αtgt}∞t=0, S, T, z) + γ.

Theorem 2.4 is proved. □
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