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2. Mathematical background

Let (X, ∥.∥) be a Banach space and (X∗, ∥.∥∗) its topological dual. By ⟨., .⟩ we

denote the duality brackets for the pair (X∗, X) . Also
w−→ denotes weak convergence

in X.
Let φ ∈ C1 (X) . A real number c is said to be a critical value of φ if there exists

x∗ ∈ X such that φ′ (x∗) = 0 and φ (x∗) = c.
We say that φ ∈ C1 (X) satisfies the Palais-Smale condition (PS-condition, for

short) if the following holds true:

“every sequence {xn}n≥1 ⊆ X such that {φ (xn)}n≥1 is bounded in
R and

φ′ (xn) → 0 in X∗ as n→ ∞
admits a strongly convergent subsequence.”

Using this compactness-type condition on φ, one can prove the following minimax
theorem, known as the “mountain pass theorem”.

Theorem 2.1. If X is a Banach space, φ ∈ C1 (X) satisfies the PS-condition, x0,
x1 ∈ X, ρ > 0, ∥x1 − x0∥ > ρ, max {φ (x0) , φ (x1)} < inf {φ (x) : ∥x− x0∥ = ρ} =
ηρ, and c = infγ∈Γmaxt∈[0,1] φ (γ (t)) where

Γ = {γ ∈ C ([0, 1] , X) : γ (0) = x0, γ (1) = x1} ,

then c ≥ ηρ and c is a critical value of φ.

In our analysis of problem (1.1) , we will use the following two spaces Sobolev
space

W :=W 1,p
per (0, b) =

{
u ∈W 1,p (0, b) : u (0) = u (b)

}
,

with 1 < p <∞, and

Ĉ1 (T ) := C1 (T ) ∩W.
Since the spaceW 1,p

per (0, b) is embedded continuously (in fact compactly) into C (T ),

the evaluations at t = 0 and t = b make sense. The Banach space Ĉ1 (T ) is an
ordered Banach space with positive cone

Ĉ+ =
{
u ∈ Ĉ1 (T ) : u (t) ≥ 0 for all t ∈ T

}
.

This cone has a nonempty interior, given by

int Ĉ+ =
{
u ∈ Ĉ+ : u (t) > 0 for all t ∈ T

}
.

Throughout this paper, we denote by ∥.∥ the norm of the Sobolev space W :=

W 1,p
per (0, b) . Recall that

W ↪→ Ĉ (T ) := {u ∈ C (T ) : u (0) = u (b)}

compactly. The norm of Lr (T ) (1 ≤ r ≤ ∞) is denoted by ∥.∥r .
If x ∈ R, we set x+ = max {x, 0} , x− = max {−x, 0} . For u ∈W, we set

u+ (.) := u (.)+ and u− (.) := u (.)− .
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Then u+, u− ∈W and

u = u+ − u−, |u| = u+ + u−.

By |.|1 we denote the Lebesgue measure on R. If k, j ∈ Z+, we will use δk,j to
indicate the Kronecker delta. Finally, if h : T × R → R is a measurable function,
then we set

Nh (u) (.) = h (., u (.)) for all u ∈W

(the Nemytskii or superposition map corresponding to h).
Consider the following nonlinear eigenvalue problem

(2.1)

{
−
(
|u′ (t)|p−2 u′ (t)

)′
= λ |u (t)|p−2 u (t) a.e. on T = [0, b]

u (0) = u (b) , u′ (0) = u′ (b) .

A number λ ∈ R is said to be an eigenvalue of the negative periodic scalar
p−Laplacian, if problem (2.1) has a nontrivial solution u, known as an eigenfunction
corresponding to the eigenvalue λ.

Clearly, a necessary condition for λ ∈ R to be an eigenvalue is that λ ≥ 0. Let

πp =
2π (p− 1)

1
p

p sin π
p

and λ̂n :=

(
2nπp
b

)p
, n ≥ 0.

Then
{
λ̂n

}
n≥0

is the set of eigenvalues of (2.1) . In particular, λ̂0 = 0 is a simple

eigenvalue and the corresponding eigenfunctions are the constant functions.
When p = 2 (linear eigenvalue problem), then π2 = π and the eigenvalues are

λ̂n =

{(
2nπ

b

)2
}
n≥0

.

Every eigenfunction u ∈ C1 (T ) satisfies u (t) ̸= 0 a.e. on T, and in fact it has a

finite number of zeros. Moreover, every eigenvalue λ > λ̂0 = 0 has eigenfunctions
which are nodal (sign changing).

In the sequel, we denote by û0 the L
p− normalized (i.e., ∥û0∥p = 1) eigenfunction

associated with λ̂0 = 0 (recall that λ̂0 is simple). We have

û0 (t) =
1

b
1
p

for all t ∈ T

(hence û0 ∈ int Ĉ+). In the linear case (p = 2), we denote by E
(
λ̂n

)
the eigenspace

corresponding to the eigenvalue λ̂n.We know that E
(
λ̂0

)
= R and dim E

(
λ̂n

)
= 2

for all n ≥ 1. Also

W 1,2
per (0, b) =

⊕
k≥1

E
(
λ̂k

)
.

Next, we recall some basic facts about critical groups. So, let (Y1, Y2) be a
topological pair such that Y2 ⊆ Y1 ⊆ X. For every integer k ≥ 0, we denote
by Hk (Y1, Y2) the kth- relative singular homology group for the pair (Y1, Y2) with
integer coefficients. For k ∈ Z, k < 0, Hk (Y1, Y2) = {0} .
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Given φ ∈ C1 (X) and c ∈ R, we introduce the following sets:

φc = {x ∈ X : φ (x) ≤ c} , Kφ =
{
x ∈ X : φ′ (x) = 0

}
, Kc

φ = {x ∈ Kφ : φ (x) = c} .

Let x ∈ X be an isolated critical point of φ, with c = φ (x) (i.e., x ∈ Kc
φ). The

critical groups of φ at x are defined by

Ck (φ, x) = Hk (φ
c ∩ U, (φc ∩ U) \ {x}) for all k ≥ 0,

where U is a neighborhood of x such thatKφ∩φc∩U = {x} . The excision property of
singular homology implies that the above definition of critical groups is independent
of the particular choice of the neighborhood U .

Suppose that φ ∈ C1 (X) satisfies the PS-condition and inf φ (Kφ) > −∞. Let
c < φ (Kφ) . The critical groups of φ at infinity are defined by

Ck (φ,∞) = Hk (X,φ
c) for all integers k ≥ 0.

The second deformation theorem (see, for example, Gasinski-Papageorgiou [14],
p.628) implies that this definition is independent of the choice of the level c <
inf φ (Kφ) .

Assume that Kφ is finite. We set

M (t, x) =
∑
k≥0

rank Ck (φ, x) t
k for all t ∈ R, all x ∈ Kφ,

and

P (t,∞) =
∑
k≥0

rank Ck (φ,∞) tk for all t ∈ R.

The Morse relation says that

(2.2)
∑
x∈Kφ

M (t, x) = P (t,∞) + (1 + t)Q (t) , t ∈ R,

where Q (t) =
∑
k≥0

βkt
k is a formal series with nonnegative integer coefficients.

Let A :W →W ∗ be the nonlinear map defined by

(2.3) ⟨A (u) , v⟩ =
∫
Ω

∣∣u′∣∣p−2
u′v′dt for all u, v ∈W.

From [7]), we have:

Proposition 2.2. The map A : W → W ∗ defined by (2.3) is continuous, bounded
(that is, it maps bounded sets to bounded sets), maximal monotone and of type (S)+ ,

i.e., if {un}n≥1 ⊆W is such that un
w−→ u in W and

lim sup
n→∞

⟨A (un) , un − u⟩ ≤ 0,

then un → u in W as n→ ∞.
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3. p−Laplacian equations

First we produce nontrivial constant sign solutions. To do this, we impose the
following conditions on the reaction f (t, x) :

H (f)1 : The function f : T ×R →R is a Carathéodory function such that f (t, 0) = 0
for a.a. t ∈ T and
(i) for every ρ > 0, there exists aρ ∈ L1 (T )+ such that

|f (t, x)| ≤ aρ (t) for a.a. t ∈ T , all |x| ≤ ρ;

(ii) there exist functions w+, w− ∈W and constants c−, c+ such that

w− (t) ≤ c− < 0 < c+ ≤ w+ (t) for all t ∈ T,
f (t, w+ (t)) ≤ 0 ≤ f (t, w− (t)) for a.a. t ∈ T,

A (w−) ≤ 0 ≤ A (w+) in W ∗;

(iii) there exists δ0 ∈ (0,min {−c−, c+, 1}) such that

λ̂1 |x|p ≤ f (t, x)x for a.a. t ∈ T , all |x| ≤ δ0;

Remarks. We see that the above hypotheses do not impose any global growth
restriction on f (t, .) (see H (f)1 (i)). Instead we require that f (t, .) exhibits an os-
cillatory behavior near zero (seeH (f)1 (ii) , (iii)). HypothesisH (f)1 (ii) is satisfied
if we can find ξ− < 0 < ξ+ such that

f (t, ξ+) ≤ 0 ≤ f (t, ξ−) a.e. on T.

Hypothesis H (f)1 (iii) allows resonance at zero with respect to any nonprincipal
eigenvalue. In fact, hypothesis H (f)1 (iii) also permits the presence of concave
terms near zero.

Note that hypotheses H (f)1 (i) , (iii) imply that if ρ0 := max {∥w+∥∞ , ∥w−∥∞} ,
then we can find ξ0 > 0 such that

(3.1) f (t, x)x+ ξ0 |x|p ≥ 0 for a.a. t ∈ T , all |x| ≤ ρ0.

Example. Consider the function f (x) (for simplicity we drop the t−dependence)
defined by

f (x) =
ξ
(
|x|p−2 x− |x|r−2 x

)
if |x| ≤ 1

0 if |x| > 1

with ξ > λ̂1 and 1 < p < r <∞. This function satisfies hypotheses H (f)1 .

Proposition 3.1. If hypotheses H (f)1 hold, then problem (1.1) has at least two
nontrivial constant sign solutions

u0 ∈ int Ĉ+ and v0 ∈ −int Ĉ+.
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Proof. First we produce a nontrivial positive solution. For this purpose, we intro-
duce the following truncation-perturbation of the reaction f (t, .) :

(3.2) k+ (t, x) =


0 if x < 0
f (t, x) + xp−1 if 0 ≤ x ≤ w+ (t)

f (t, w+ (t)) + w+ (t)p−1 if w+ (t) < x

This is a Carathéodory function. We set

K+ (t, x) =

x∫
0

k+ (t, s) ds

and introduce the C1-functional φ+ :W → R defined by

φ+ (u) =
1

p

∥∥u′∥∥p
p
+

1

p
∥u∥pp −

b∫
0

K+ (t, u (t)) dt for all u ∈W.

From (3.2) it is clear that φ+ is coercive. Also, using the Sobolev embedding
theorem, we see that φ+ is sequentially weakly lower semicontinuous. So, by the
Weierstrass theorem, we can find u0 ∈W such that

(3.3) φ+ (u0) = inf {φ+ (u) : u ∈W} .

Let ξ ∈ (0, δ0] . Then from (3.2) we have

φ+ (ξ) = −
b∫

0

F (t, ξ) dt < 0,

hence

φ+ (u0) < 0 = φ+ (0) (see (3.3) ),

therefore

u0 ̸= 0.

From (3.3) we have

φ′
+ (u0) = 0,

and this implies

(3.4) A (u0) + |u0|p−2 u0 = Nk+ (u0) .

On (3.4) we act with −u−0 ∈W and obtain∥∥u−0 ∥∥p = 0,

hence

u0 ≥ 0, u0 ̸= 0.

Also, on (3.4) we act with (u0 − w+)
+ ∈W and obtain

⟨
A (u0) , (u0 − w+)

+⟩+ b∫
0

up−1
0 (u0 − w+)

+ dt



PERIODIC PROBLEMS WITH A REACTION OF ARBITRARY GROWTH 991

=

b∫
0

[
f (t, w+) + wp−1

+

]
(u0 − w+)

+ dt (see (3.2) )

≤
⟨
A (w+) , (u0 − w+)

+⟩+ b∫
0

wp−1
+ (u0 − w+)

+ dt (see H (f)1 (ii) ),

hence

⟨
A (u0)−A (w+) , (u0 − w+)

+⟩+ b∫
0

(
up−1
0 − wp−1

+

)
(u0 − w+)

+ dt ≤ 0,

therefore

|{u0 > w+}|1 = 0,

and we conclude that

u0 ≤ w+.

So, we have proved that

u0 ∈ [0, w+] := {u ∈W : 0 ≤ u (t) ≤ w+ (t) for all t ∈ T} .

By virtue of (3.2) , equation (3.4) becomes

A (u0) = Nf (u0) .

hence

−
(∣∣u′0 (t)∣∣p−1

u′0 (t)
)′

= f (t, u0 (t)) a.e. on T, u (0) = u (b) , u′ (0) = u′ (b)

therefore u0 ∈ Ĉ+\ {0} is a nontrivial positive solution of (1.1) ; see, e.g., [1].
Let ξ0 > 0 be as postulated in (3.1). We have

−
(∣∣u′0 (t)∣∣p−1

u′0 (t)
)′

+ ξ0u0 (t)
p−1 = f (t, u0 (t)) + ξ0u0 (t)

p−1

≥ 0 a.e. on T

(see (3.1)), hence (∣∣u′0 (t)∣∣p−1
u′0 (t)

)′
≤ ξ0u0 (t)

p−1 a.e. on T,

therefore u0 ∈ int Ĉ+ (see Vazquez [19]).
To produce a nontrivial negative solution, we introduce the Carathéodory func-

tion

k− (t, x) =

 f (t, w− (t)) + |w− (t)|p−2w− (t) if x < w− (t)

f (t, x) + |x|p−2 x if w− (t) ≤ x ≤ 0
0 if 0 < x.

We set

K− (t, x) =

x∫
0

k− (t, s) ds
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and introduce the C1-functional φ− :W → R defined by

φ− (u) =
1

p

∥∥u′∥∥p
p
+

1

p
∥u∥pp −

b∫
0

K− (t, u (t)) dt for all u ∈W.

Working as above, via the direct method, we produce a nontrivial negative solution

v0 ∈ [w−, 0] ∩
(
−int Ĉ+

)
of problem (1.1). □

In fact, we can produce extremal nontrivial constant sign solutions, i.e., we show
that there exists a smallest nontrivial positive solution and a biggest nontrivial
negative solution.

We introduce the following two sets of solutions for problem (1.1):

S+ := {u ∈W : u ̸= 0, u ∈ [0, w+] , u is a solution of (1.1)} ,
S− := {v ∈W : v ̸= 0, v ∈ [w−, 0] , v is a solution of (1.1)} .

From Proposition 3.1 and its proof, we have

∅ ̸= S+ ⊆ int Ĉ+ and ∅ ̸= S− ⊆ −int Ĉ+.

Moreover, from Aizicovici-Papageorgiou-Staicu [7] (see also [4]), we know that the
set of nontrivial positive solutions of (1.1) is downward directed (i.e., if u1, u2 are
nontrivial positive solutions of (1.1) , then we can find another nontrivial positive
solution u of (1.1) such that u ≤ u1, u ≤ u2), while the set of nontrivial negative
solutions of (1.1) is upward directed (i.e., if v1, v2 are nontrivial negative solutions
of (1.1) , then we can find another nontrivial negative solution v of (1.1) such that
v1 ≤ v, v2 ≤ v).

In what follows we use the Carathéodory function k (t, x) defined by

(3.5) k (t, x) =


f (t, w− (t)) + |w− (t)|p−2w− (t) if x < w− (t)

f (t, x) + |x|p−2 x if w− (t) ≤ x ≤ w+ (t)

f (t, w+ (t)) + w+ (t)p−1 if w+ (t) < x.

Note that

k (t, x) |T×[0,∞)= k+ (t, x) |T×[0,∞)

and

k (t, x) |T×(−∞,0]= k− (t, x) |T×[0,∞) .

Hypotheses H (f)1 (i) , (iii) imply that

(3.6) k (t, x)x ≥
(
λ̂1 + 1

)
|x|p − c1 |x|r for a.a. t ∈ T, all x ∈ R,

with r > p and c1 = c1 (r) > 0. This growth estimate leads to the following auxiliary
problem

(3.7)

 −
(
|u′ (t)|p−1 u′ (t)

)′
= λ̂1 |u (t)|p−2 u (t)− c1 |u (t)|r−2 u (t) a.e. on T

u (0) = u (b) , u′ (0) = u′ (b) , 1 < p <∞.
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Proposition 3.2. Problem (3.7) admits a unique nontrivial positive solution u ∈ int

Ĉ+, and a unique nontrivial negative solution since (3.7) is odd v := −u ∈ −int
Ĉ+.

Proof. First, we establish the existence of a nontrivial positive solution of (3.7) . So,
we introduce the Carathéodory function

γ+ (t, x) =

{
0 if x ≤ 0(
λ̂1 + 1

)
xp−1 − c1x

r−1 if 0 < x.

We set

Γ+ (t, x) =

x∫
0

γ+ (t, s) ds

and introduce the C1-functional ξ+ :W → R defined by

ξ+ (u) =
1

p

∥∥u′∥∥p
p
+

1

p
∥u∥pp −

b∫
0

Γ+ (t, u (t)) dt for all u ∈W.

Since r > p, it is easily seen that ξ+ is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find u ∈W such that

(3.8) ξ+ (u) = inf {ξ+ (u) : u ∈W} .
Let θ ∈ (0, 1) . Then

ξ+ (θ) = − λ̂1
p
θpb+

c1
r
θrb.

Since r > p, by choosing θ ∈ (0, 1) small, we have

ξ+ (θ) < 0,

hence
ξ+ (u) < 0 = ξ+ (0) .

(see (3.8)), hence
u ̸= 0.

From (3.8) we have
ξ′+ (u) = 0,

and this implies

(3.9) A (u) + |u|p−2 u = Nγ+ (u) .

On (3.9) we act with −u− ∈W and obtain

u ≥ 0, u ̸= 0.

So (3.9) becomes

A (u) = λ̂1u
p−1 − c1u

r−1,

therefore  −
(
|u′ (t)|p−2 u′ (t)

)′
= λ̂1u (t)

p−1 − c1u (t)
r−1 a.e. on T

u (0) = u (b) , u′ (0) = u′ (b) ,
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and we conclude that u ∈ Ĉ+\ {0} is a solution of (3.7) .
Moreover, we have(∣∣u′ (t)∣∣p−1

u′ (t)
)′

≤ c1u (t)
r−1 a.e. on T

hence

u ∈ int Ĉ+

(see Vazquez [19]). Next we show the uniqueness of u. For this purpose, we introduce
the integral functional β+ : L1 (T ) → R = R∪{+∞} defined by

β+ (u) =

 1
p

b∫
0

[(
u

1
p

)′
]p
dt if u ≥ 0, u

1
p ∈W

+∞ otherwise.

From Diaz-Saa [12] (Lemma 1), we know that β+ is proper, convex and lower
semicontinuous.

If u ∈W is a nontrivial positive solution of (3.7) , then from the first part of the

proof, we have that u ∈ int Ĉ+. Hence up ∈ dom β+ and for all h ∈ C1 (T ) and all
λ ∈ (−1, 1) with |λ| small, we have up + λh ∈ dom β+. So, the Gâteaux derivative
of β+ at up in the direction h exists and via the chain rule, we have

β′+ (up) (h) = −1

p

b∫
0

(
|u′ (t)|p−2 u′ (t)

)′

up−1
hdt for all h ∈ Ĉ1 (T ) .

Similarly, if y is another nontrivial positive solution of (3.7) , then again we have

y ∈ int Ĉ+ and

β′+ (yp) (h) = −1

p

b∫
0

(
|y′ (t)|p−2 y′ (t)

)′

yp−1
hdt for all h ∈ Ĉ1 (T ) .

The convexity of β+ implies the monotonicity of β′+. Hence

0 ≤
b∫

0

−
(
|u′ (t)|p−2 u′ (t)

)′

up−1
+

(
|y′ (t)|p−2 y′ (t)

)′

yp−1

 (up − yp) dt

= c1

b∫
0

(
yr−p − ur−p

)
(up − yp) dt,

therefore u = y. This proves the uniqueness of u ∈ int Ĉ+.

Since (3.7) is odd, v = −u ∈ −int Ĉ+ is the unique nontrivial negative solution
of (3.7) . □

Proposition 3.3. If hypotheses H (f)1 hold, then u ≤ u for all u ∈ S+ and v ≤ v
for all v ∈ S−.
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Proof. Let u ∈ S+ and introduce the following Carathéodory function

(3.10) j+ (t, x) =


0 if x < 0(
λ̂1 + 1

)
xp−1 − c1x

r−1 if 0 ≤ x ≤ u (t)(
λ̂1 + 1

)
u (t)p−1 − c1u (t)

r−1 if u (t) < x.

We set

J+ (t, x) =

x∫
0

j+ (t, s) ds

and introduce the C1-functional µ+ :W → R defined by

µ+ (w) =
1

p

∥∥w′∥∥p
p
+

1

p
∥w∥pp −

b∫
0

J+ (t, w (t)) dt for all w ∈W.

It is clear from (3.10) that µ+ is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find u∗ ∈W such that

(3.11) µ+ (u∗) = inf {µ+ (w) : w ∈W} .

For ξ ∈
(
0,min

T
u

)
(recall that u ∈ int Ĉ+), we have

µ+ (ξ) = − λ̂1
p
ξpb+

c1
r
ξrb.

Since r > p, choosing ξ ∈ (0, 1) small, we see that

µ+ (ξ) < 0,

hence
µ+ (u∗) < 0 = µ+ (0) (see (3.11) )

therefore
u∗ ̸= 0.

From (3.11) we have
µ′+ (u∗) = 0

and this implies that

(3.12) A (u∗) + |u∗|p−2 u∗ = Nj+ (u∗) .

On (3.12) , first we act with −u−∗ ∈W and obtain

u∗ ≥ 0, u∗ ̸= 0

(see (3.11)). Then we act with (u∗ − u)+ ∈W . We have

⟨
A (u∗) , (u∗ − u)+

⟩
+

b∫
0

up−1
∗ (u∗ − u)+ dt

=

b∫
0

[(
λ̂1 + 1

)
up−1 − c1u

r−1
]
(u∗ − u)+ dt (see (3.10) )
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≤
b∫

0

k (t, u) (u∗ − u)+ dt (see (3.6) )

=

b∫
0

[
f (t, u) + up−1

]
(u∗ − u)+ dt (since 0 ≤ u ≤ w+)

=
⟨
A (u) , (u∗ − u)+

⟩
+

b∫
0

up−1 (u∗ − u)+ dt (since u ∈ S+),

hence ⟨
A (u∗)−Au, (u∗ − u)+

⟩
+

b∫
0

(
up−1
∗ − up−1

)
(u∗ − u)+ dt ≤ 0,

therefore

|{u∗ > u}|1 = 0,

and we conclude that

u∗ ≤ u.

So, we have proved that

u∗ ∈ [0, u] \ {0} .
Hence (3.12) becomes

A (u∗) = λ̂1u
p−1
∗ − c1u

r−1
∗ ,

and this implies that

u∗ = u.

(see Proposition 3.2). Therefore

u ≤ u for all u ∈ S+.

Similarly, we show that

v ≤ v for all v ∈ S−.

□

Now we are ready to produce extremal nontrivial constant sign solutions for
problem (1.1) .

Proposition 3.4. If hypotheses H (f)1 hold, then problem (1.1) admits a smallest

nontrivial positive solution u∗ ∈ int Ĉ+ and a biggest nontrivial negative solution

v∗ ∈ −int Ĉ+.

Proof. Let C ⊆ S+ be a chain (i.e., a totally ordered subset of S+). We can find
{un}n≥1 ⊆ C such that

inf C = inf
n≥1

un.

We have

(3.13) A (un) = Nf (un) and u ≤ un for all n ≥ 1
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(see Proposition 3.3). Evidently {un}n≥1 ⊆ W is bounded and so, we may assume
that

un
w→ u in W and un → u in C (T ) .

On (3.13) we act with un − u ∈W and pass to the limit as n→ ∞. Then

lim
n→∞

⟨A (un) , un − u⟩ = 0,

hence
un → u in W

(see Proposition 2.2). So, if in (3.13) we pass to the limit as n→ ∞, then

A (u) = Nf (u) and u ≤ u,

therefore u ∈ S+ and u = inf C. Since C is an arbitrary chain, from the Kuratowski-
Zorn lemma we infer that S+ admits a minimal element u∗ ∈ S+.

Let u be a nontrivial positive solution of (1.1) . Since the set of nontrivial positive
solutions of (1.1) is downward directed, we can find ũ∗ ∈ S+ such that ũ∗ ≤ u∗,
ũ∗ ≤ u. The minimality of u∗ implies that ũ∗ = u∗ and so, u∗ ≤ u for any nontrivial
positive solution u of (1.1) .

Similarly, working with the set S− and using the Kuratowski-Zorn lemma, we

can find v∗ ∈ −int Ĉ+, the biggest nontrivial negative solution of (1.1) . □

Using the extremal nontrivial constant sign solutions and tools from Morse the-
ory we can produce a nodal (sign changing) solution, provided we strengthen our
hypotheses on the reaction f (t, .) near zero.

The new stronger conditions on f (t, x) are the following:

H (f)2: f : T × R →R is a Carathéodory function such that f (t, 0) = 0 for
a.a. t ∈ T and
(i) for every ρ > 0, there exists aρ ∈ L1 (T )+ such that

|f (t, x)| ≤ aρ (t) for a.a. t ∈ T , all |x| ≤ ρ;

(ii) there exist functions w+, w− ∈W and constants c−, c+ such that

w− (t) ≤ c− < 0 < c+ ≤ w+ (t) for all t ∈ T,
f (t, w+ (t)) ≤ 0 ≤ f (t, w− (t)) for a.a. t ∈ T,

A (w−) ≤ 0 ≤ A (w+) in W ∗;

(iii) there exist an integer m ≥ 1, functions η, η̂ ∈ L1 (T )+ and δ0 > 0 such
that

λ̂m ≤ η (t) ≤ η̂ (t) ≤ λ̂m+1a.e. on T , λ̂m ̸= η, λ̂m+1 ̸= η,

η (t) ≤ lim inf
x→0

f (t, x)

|x|p−2 x
≤ lim sup

x→0

f (t, x)

|x|p−2 x
≤ η̂ (t)

uniformly for a.a. t ∈ T,

λ̂1x
2 ≤ f (t, x)x for a.a. t ∈ T , all |x| ≤ δ0;
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Remark. Evidently, hypothesis H (f)2 (iii) is stronger than H (f)1 (iii) since now

we require that asymptotically at zero, the quotient f(t,x)

|x|p−2x
stays in the spectral

interval
[
λ̂m, λ̂m+1

]
with nonuniform nonresonance at the two end points.

The example given for the hypotheses H (f)1 also works here with p = 2 < r.

We will again use the function k (t, x) defined by (3.5) .We set

K (t, x) =

x∫
0

k (t, s) ds

and consider the C1-functional φ :W → R defined by

φ (u) =
1

p

∥∥u′∥∥p
p
+

1

p
∥u∥pp −

b∫
0

K (t, u (t)) dt for all u ∈W.

As we already mentioned, to produce a nodal solution, we will employ tools from
Morse theory. For this reason we will compute the critical groups of φ at the origin.

To this end, let λ ∈
(
λ̂m, λ̂m+1

)
and consider the C1-functional σ :W → R defined

by

σ (u) =
1

p

∥∥u′∥∥p
p
− λ

p
∥u∥pp for all u ∈W.

The next result improves Proposition 7 of Aizicovici-Papageorgiou-Staicu [5], where
p ≥ 2 and the proof is different.

Proposition 3.5. C0 (σ, 0) = C1 (σ, 0) = 0.

Proof. Let U :=
{
u ∈W : ∥u′∥pp < λ ∥u∥pp

}
. Evidently, û0 ∈ U and we show that U

is path-connected. To this end, let u ∈ U and let Vu be the path-component of U
containing u. Let

θu = inf

{
∥u′∥pp
∥u∥pp

: u ∈ Vu

}
.

We can find {un}n≥1 ⊆ Vu such that

(3.14) ∥un∥p = 1 for all n ≥ 1 and
∥∥u′n∥∥pp → θu as n→ ∞.

Evidently {un}n≥1 ⊆W is bounded and so, we may assume that

un
w→ v in W and un → v in C (T ) .

Using the Ekeland variational principle and the Lagrange multiplier rule as in
Cuesta-de Figueiredo-Gossez [11] (see the proof of Lemma 2.8, p. 217), we can
find {µn}n≥1 ⊆ R\ {0} such that∣∣∣∣∣∣⟨A (un) , h⟩ − µn

b∫
0

|un|p−2 unh dt

∣∣∣∣∣∣ ≤ εn ∥h∥(3.15)

for all h ∈W, with εn → 0+.
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In (3.15) we choose h = un ∈ W and we see that {µn}n≥1 ⊆ R\ {0} is bounded. It

follows (at least for a subsequence) that

µn → θu.

Next, in (3.15) we choose h = un − v ∈W and pass to the limit as n→ ∞. Then

lim
n→∞

⟨A (un) , un − v⟩ = 0,

therefore

(3.16) un → v in W.

We have

v ∈ Vu ∩ ∂BLp

1

(recall that ∂BLp

1 =
{
u ∈ Lp (T ) : ∥u∥p = 1

}
). The set U ∩ ∂BLp

1 is open in ∂BLp

1

and Vu ∩ ∂BLp

1 is a component of U ∩ ∂BLp

1 . If v ∈ ∂
(
Vu ∩ ∂BLp

1

)
, then by virtue

of Lemma 3.5 of Cuesta-de Figueiredo-Gossez [11], we have v /∈ U ∩ ∂BLp

1 . On the
other hand from (3.14) and (3.16) , we have

∥v∥p = 1 and
∥∥v′∥∥p

p
= θu < λ,

hence

v ∈ U ∩ ∂BLp

1 ,

which is a contradiction. This proves that v ∈ Vu∩∂BLp

1 . So, the path-connectedness
of U will be proved, if we can join û0 and v with a path in U (see Dugundji [13], p.
115).

If v ≤ 0, then v = −û0 (recall that λ̂0 is the only eigenvalue with eigenfunctions
of constant sign). So, the desired path joining û0 and v = −û0 follows from the

minimax characterization of λ̂1 > 0 due to Aizicovici-Papageorgiou-Staicu [5](see
Proposition 1). Next, we assume that v+ ̸= 0. We set

v (s) =
v+ − (1− s) v−

∥v+ − (1− s) v−∥p
for all s ∈ [0, 1] .

From (3.15) and (3.16) , we have

⟨A (v) , h⟩ = θu

b∫
0

|v|p−2 vh dt for all h ∈W.

Choosing h = v+ and h = −v−, we obtain∥∥∥(v+)′∥∥∥p
p
= θu

∥∥v+∥∥p
p
and

∥∥∥(v−)′∥∥∥p
p
= θu

∥∥v−∥∥p
p
,

hence ∥∥(v (s))′∥∥p
p
= θu ∥v (s)∥pp = θu for all s ∈ [0, 1]

(recall that the supports of v+ and v− have disjoint interiors). Therefore v (s) ∈ U
for all s ∈ [0, 1] and

v (1) =
v+

∥v+∥p
= û0
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(as before). Thus s→ v (s) is a continuous path joining v and û0 and remaining in
the set U. This proves the path connectedness of U.

The path connectedness of U implies that

(3.17) H0 (U, z) = 0 with z ∈ U.

Let z ∈ U. Since the functional σ is p-homogeneous, the sublevel set σ0 is con-
tractible in itself. Hence from Granas-Dugundji [15] (p. 389), we have

(3.18) Hk

(
σ0, z

)
= 0 for all k ≥ 0.

The second deformation theorem (see, for example Gasinski-Papageorgiou [14], p.
628), implies that σ0\ {0} and σ−ε (for ε > 0 small) are homotopy equivalent. The
same is true for U = int σ0 and σ−ε (see Granas-Dugundji [15] (p. 407)). So, it
follows that σ0\ {0} and U are homotopy equivalent, hence

(3.19) Hk

(
σ0\ {0} , z

)
= Hk (U, z) for all k ≥ 0.

From (3.17) and (3.19) , it follows that

(3.20) H0

(
σ0\ {0} , z

)
= 0.

We consider the reduced exact homology sequence (see Granas-Dugundji [15] (p.
388))
(3.21)

· · · → Hk

(
σ0\ {0} , z

)
→ Hk

(
σ0, z

) i∗→ Hk

(
σ0, σ0\ {0}

) ∂∗→ Hk−1

(
σ0\ {0} , z

)
→ · · ·

where i∗ is the group homomorphism arising from the corresponding inclusion map
and ∂∗ is the boundary homomorphism. From (3.18) and the exactness of (3.21) , we
have im i∗ = ker ∂∗ = {0} and so we infer that ∂∗ is a group isomorphism between
Hk

(
σ0, σ0\ {0}

)
and a subgroup of Hk−1

(
σ0\ {0} , z

)
. Therefore, by virtue of (3.20)

we have

C1 (σ, 0) = H1

(
σ0, σ0\ {0}

)
= 0.

Finally, from (3.21) it follows that

C0 (σ, 0) = H0

(
σ0, σ0\ {0}

)
= 0.

□

Using this proposition we can compute some critical groups of the functional φ.

Proposition 3.6. If hypotheses H (f)2 hold, then

C0 (φ, 0) = C1 (φ, 0) = 0.

Proof. We consider the homotopy h defined by

h (s, u) = (1− s)φ (u) + sσ (u) for all s ∈ [0, 1] , all u ∈W.

Suppose that we can find {sn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆W such that

(3.22) sn → s ∈ [0, 1] , un → 0 in W and h′u (sn, un) = 0 for all n ≥ 1.

Then we have

A (un) + (1− sn) |un|p−2 un = (1− sn)Nk (un) + snλ |un|p−2 un for all n ≥ 1,
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hence
−
(
|u′n (t)|

p−2 u′n (t)
)′

+ (1− sn) |un (t)|p−2 un (t)

= (1− sn) k (t, un (t)) + snλ |un (t)|p−2 un (t) a.e. on T
un (0) = un (b) , u

′
n (0) = u′n (b) .

As in Aizicovici-Papageorgiou-Staicu [7] (see the proof of Proposition 2) we conclude

that {un}n≥1 ⊆ Ĉ1 (T ) is compact and so, by (3.22) , we have

(3.23) un → 0 in Ĉ1 (T ) .

So, we can find n0 ≥ 1 such that

un (t) ∈ [c−, c+] for all t ∈ T, all n ≥ n0.

Then we have

(3.24) A (un) = (1− sn)Nf (un) + snλ |un|p−2 un for all n ≥ n0 (see (3.5) ).

Let

yn =
un

∥un∥
, n ≥ 1.

Then ∥yn∥ = 1 for all n ≥ 1 and so, we may assume that

(3.25) yn
w→ y in W and yn → y in C (T ) .

From (3.24) it follows

(3.26) A (yn) = (1− sn)
Nf (un)

∥un∥p−1 + snλ |yn|p−2 yn for all n ≥ n0.

On (3.26) we act with yn−y ∈ W, pass to the limit as n→ ∞ and use (3.25) . Then

lim
n→∞

⟨A (yn) , yn − y⟩ = 0,

which implies that

(3.27) yn
w→ y in W, hence ∥y∥ = 1.

Note that
{
Nf (un)

∥un∥p−1

}
⊆ L1 (T ) is uniformly integrable (see hypotheses H (f)2 (i) ,

(ii)). So, using the Dunford-Pettis theorem and hypothesis H (f)2 (iii) (see (3.23)),
we infer that (at least for a subsequence)

(3.28)
Nf (un)

∥un∥p−1

w→ η0 |y|p−2 y in L1 (T ) , with η (t) ≤ η0 (t) ≤ η̂ (t) a.e. on T.

So, if in (3.26) we pass to the limit as n→ ∞ and use (3.27) and (3.28) , we obtain

A (y) = [(1− s) η0 + sλ] |y|p−2 y,

therefore

(3.29)

{
−
(
|y′ (t)|p−2 y′ (t)

)′
= ηs (t) |y (t)|p−2 y (t) a.e. on T

y (0) = y (b) , y′ (0) = y′ (b) .

where

ηs (t) = (1− s) η0 (t) + sλ.
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Note that

(3.30) λ̂m ≤ ηs (t) ≤ λ̂m+1 a.e. on T , λ̂m ̸= ηs, λ̂m+1 ̸= ηs.

Then from (3.29) , (3.30) and Aizicovici-Papageorgiou-Staicu [1] (see also [5],
Proposition 2), we deduce that y = 0, which contradicts (3.27) . This proves that
(3.22) cannot occur. Hence, by the homotopy invariance of critical groups (see for
example Chang [10], p. 334), we have

Ck (φ, 0) = Ck (σ, 0) for all k ≥ 0,

hence

C0 (φ, 0) = C1 (φ, 0) = 0

(see Proposition 3.5). □

Now we are ready to generate a nodal (sign changing) solution.

Proposition 3.7. If hypotheses H (f)2 hold, then problem (1.1) admits a nodal
solution

y0 ∈ [v∗, u∗] ∩ Ĉ1 (T ) .

Proof. Let u∗ ∈ int Ĉ+ and v∗ ∈ −int Ĉ+ be the two extremal nontrivial constant
sign solutions produced in Proposition 3.4. We introduce the following truncation-
perturbation of the reaction f (t, .) :

(3.31) β̃ (t, x) =


f (t, v∗ (t)) + |v∗ (t)|p−2 v∗ (t) if x < v∗ (t)

f (t, x) + |x|p−2 x if v∗ (t) ≤ x ≤ u∗ (t)

f (t, u∗ (t)) + u∗ (t)
p−1 if u∗ (t) < x.

Clearly this is a Carathéodory function. We set

B (t, x) =

x∫
0

β̃ (t, s) ds

and consider the C1-functional ψ :W → R defined by

ψ (u) =
1

p

∥∥u′∥∥p
p
+

1

p
∥u∥pp −

b∫
0

B (t, u (t)) dt for all u ∈W.

In addition, we introduce the positive and the negative truncations of β̃ (t, .) , namely
the Carathéodory functions

β̃± (t, x) = β̃
(
t,±x±

)
.

We set

B± (t, x) =

x∫
0

β̃± (t, s) ds
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and consider the C1-functionals ψ± :W → R defined by

ψ± (u) =
1

p

∥∥u′∥∥p
p
+

1

p
∥u∥pp −

b∫
0

B± (t, u (t)) dt for all u ∈W.

Reasoning as in the proof of Proposition 3.3, we can show that

(3.32) Kψ ⊆ [v∗, u∗] , Kψ+ = {0, u∗} , Kψ− = {v∗, 0} .

Claim. u∗ ∈ int Ĉ+ and v∗ ∈ −int Ĉ+ are both local minimizers of ψ.
From (3.31) it is clear that ψ+ is coercive. Also, it is sequentially weakly lower

semicontinuous. So,we can find ũ∗ ∈W such that

(3.33) ψ+ (ũ∗) = inf {ψ+ (u) : u ∈W} .
Hypothesis H (f)2 (iii) implies that

(3.34) F (t, x) > 0 for a.a. t ∈ T, all x ∈ (0, δ0] .

Therefore, if ξ ∈
(
0,min

{
δ0,min

T
u∗

})
(recall that u∗ ∈ int Ĉ+), then from (3.31)

and (3.34) we have

ψ+ (ξ) = −
b∫

0

F (t, ξ) dt < 0.

Then

ψ+ (ũ∗) < 0 = ψ+ (0) (see (3.33) ),

hence

ũ∗ ̸= 0.

From (3.33) , we have

ũ∗ ∈ Kψ+\ {0} ,
hence

ũ∗ = u∗ ∈ int Ĉ+ (see (3.32) ).

But note that ψ+ |
Ĉ+

= ψ |
Ĉ+

. Hence u∗ is a local Ĉ1 (T )−minimizer of ψ. From

Aizicovici-Papageorgiou-Staicu [7] (see Proposition 2) we infer that u∗ ∈ int Ĉ+ is
a local W−minimizer of ψ.

Similarly for v∗ ∈ −int Ĉ+, using this time ψ−. This proves the Claim.
We may assume that ψ (v∗) ≤ ψ (u∗) (the analysis is similar if the opposite

inequality holds).

Since u∗ ∈ int Ĉ+ is a local minimizer of ψ (see the Claim), we can find ρ ∈ (0, 1)
small such that

(3.35) ψ (v∗) ≤ ψ (u∗) < inf {ψ (u) : ∥u− u∗∥ = ρ} =: ηρ, ∥v∗ − u∗∥ > ρ

(see Aizicovici-Papageorgiou-Staicu [3], p.57). Note that ψ is coercive (see (3.31)),
hence it satisfies the PS-condition. This fact and (3.35) permit the use of Theorem
2.1 (the mountain-pass theorem). So, we can find y0 ∈W such that

(3.36) y0 ∈ Kψ and ηρ ≤ ψ (y0) .
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From (3.35) and (3.36) , it follows that y0 ̸= u∗, y0 ̸= v∗. Also, by (3.31) , (3.32) and

(3.36) we infer that y0 ∈ [v∗, u∗]∩ Ĉ1 (T ) is a solution of (1.1) . Since y0 is a critical
point of mountain pass type, we have

(3.37) C1 (ψ, y0) ̸= 0 (see Chang [10]).

On the other hand, note that φ |[v∗,u∗]= ψ |[v∗,u∗] (see (3.5) and (3.31)). Since

u∗ ∈ int Ĉ+ and v∗ ∈ −int Ĉ+, and Ĉ1 (T ) is dense in W, we have

Ck (φ, 0) = Ck (ψ, 0) for all k ≥ 0

(see Palais [17]), hence

(3.38) C1 (ψ, 0) = C1 (φ, 0) = 0

(see Proposition 3.6). Comparing (3.37) and (3.38) , we conclude that y0 ̸= 0.

The extremality of u∗ and v∗ implies that y0 ∈ [v∗, u∗]∩Ĉ1 (T ) is a nodal solution
of (3.37) . □

Therefore, we can state the following multiplicity theorem for problem (1.1) .

Theorem 3.8. If hypotheses H (f)2 hold, then problem (1.1) has at least three
nontrivial solutions

u∗ ∈ int Ĉ+, v∗ ∈ −int Ĉ+, and y0 ∈ [v∗, u∗] ∩ Ĉ1 (T ) nodal.

4. Semilinear equations

In this section, we deal with the semilinear case (i.e., p = 2). So, the problem
under consideration is now the following:

(4.1)

{
−u′′ (t) = f (t, u (t)) a.e. on T := [0, b]

u (0) = u (b) , u′ (0) = u′ (b) .

By strengthening the regularity of f (t, .) , we can improve Theorem 3.8 and produce
a second nodal solution, for a total of four nontrivial solutions with a definite sign.

The new stronger conditions on f (t, x) are the following:

H (f)3: f : T × R →R is a measurable function such that for a.a. t ∈ T
f (t, 0) = 0, f (t, .) ∈ C1 (R) and
(i) for every ρ > 0, there exists aρ ∈ L1 (T )+ such that∣∣f ′x (t, x)∣∣ ≤ aρ (t) for a.a. t ∈ T , all |x| ≤ ρ;

(ii) there exist functions w+, w− ∈W and constants c−, c+ such that

w− (t) ≤ c− < 0 < c+ ≤ w+ (t) for all t ∈ T,
f (t, w+ (t)) ≤ 0 ≤ f (t, w− (t)) a.e. on T,

A (w−) ≤ 0 ≤ A (w+) in W ∗;

(iii) f ′x (t, 0) = lim
x→0

f(t,x)
x uniformly for a.a. t ∈ T and there exist an integer

m ≥ 1 and δ0 > 0 such that

λ̂m ≤ f ′x (t, 0) ≤ λ̂m+1a.e. on T , λ̂m ̸= f ′x (t, 0) , λ̂m+1 ̸= f ′x (t, 0) ,

λ̂1x
2 ≤ f (t, x)x for a.a. t ∈ T , all |x| ≤ δ0;
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(iv) if ρ0 := max {∥w+∥∞ , ∥w−∥∞} , then there exists ξ0 > 0 such that for
a.a. t ∈ T, the function x→ f (t, x)+ξ0x is nondecreasing on [−ρ0, ρ0].

In this case

φ (u) =
1

2

∥∥u′∥∥2
2
+

1

2
∥u∥22 −

b∫
0

K (t, u (t)) dt for all u ∈W (see (3.5) )

ψ (u) =
1

2

∥∥u′∥∥2
2
+

1

2
∥u∥22 −

b∫
0

B (t, u (t)) dt for all u ∈W (see (3.31) )

σ (u) =
1

2

∥∥u′∥∥2
2
− λ

2
∥u∥22 for all u ∈W (with λ ∈

(
λ̂m, λ̂m+1

)
).

Note that φ, ψ ∈ C2−0 (W ) and σ ∈ C2 (W ) . Moreover, since λ ∈
(
λ̂m, λ̂m+1

)
,

u = 0 is a nondegenerate critical point of σ of Morse index dm = dim
m⊕
i=0

E
(
λ̂i

)
.

Hence

(4.2) Ck (σ, 0) = δk,dmZ for all k ≥ 0.

Then, as in the proof of Proposition 3.6, using the homotopy invariance of critical
groups, we arrive at:

Proposition 4.1. If hypotheses H (f)3 hold, then

Ck (φ, 0) = δk,dmZ for all k ≥ 0.

Now, we can state and prove a multiplicity theorem for problem (4.1) .

Theorem 4.2. If hypotheses H (f)3 hold, then problem (4.1) has at least four non-
trivial solutions

u0 ∈ int Ĉ+, v0 ∈ −int Ĉ+, and y0, ŷ ∈ int
Ĉ1(T )

[v0, u0] nodal.

Proof. From Theorem 3.8 we already have three nontrivial solutions

u0 ∈ int Ĉ+, v0 ∈ −int Ĉ+, and y0 ∈ [v0, u0] ∩ Ĉ1 (T ) nodal.

Without any loss of generality, we may assume that u0 and v0 are extremal (i.e.,

u0 = u∗ ∈ int Ĉ+ and v0 = v∗ ∈ −int Ĉ+, see Proposition 3.4). Let ξ0 > 0 be as
postulated by hypothesis H (f)3 (iv) . Then

−u′′0 (t) + ξ0u0(t) = f (t, u0(t)) + ξ0u0(t)

≥ f (t, y0(t)) + ξ0y0(t) (see H (f)3 (iv) and recall that y0 ≤ u0)

= −y′′0 (t) + ξ0y0(t) a.e. on T,

hence

(u0 − y0)
′′ (t) ≤ ξ0 (u0 − y0) (t) a.e. on T,
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and this implies that

u0 − y0 ∈ int Ĉ+

(see Vazquez [19]). Similarly, we show that

y0 − v0 ∈ int Ĉ+,

therefore
y0 ∈ int

Ĉ1(T )
[v0, u0] .

Let h ∈ W. Since u0 − y0 ∈ int Ĉ+, we see that for t ∈ (−1, 1) with |t| small, we
have

(y0 + th) (t) < u0 (t) .

Hence ψ′′ (y0) exists in the direction h and we have

(4.3)
⟨
ψ′′ (y0) (h) , w

⟩
=

b∫
0

h′w′ dt+

b∫
0

hw dt−
b∫

0

β̃′x (t, y0)hw dt for all h,w ∈W

(recall that W is dense in Ĉ1 (T )). Note that since u0 − y0 ∈ int Ĉ+, we can find
ρ > 0 small such that for every

u ∈ BĈ(T )
ρ :=

{
w ∈ Ĉ (T ) : ∥w − y0∥Ĉ(T )

< ρ
}

we have u0 − u ∈ int Ĉ+. Since W ↪→ Ĉ (T ) continuously (in fact compactly), we
can find ρ1 ∈ (0, ρ) small such that

Bρ1 (y0) := {w ∈W : ∥w − y0∥ < ρ1} ⊆ BĈ(T )
ρ .

Then from (4.3) it follows that ψ ∈ C2 (Bρ1 (y0)) . Recall that

C1 (ψ, y0) ̸= 0 (see (3.37) )

hence

(4.4) Ck (ψ, y0) = δk,1Z for all k ≥ 0 (see Bartsch [8]).

From Proposition 4.1, we have

(4.5) Ck (ψ, 0) = δk,dmZ for all k ≥ 0.

Recall (see the Claim in the proof of Proposition 3.7) that u0 and v0 are local
minimizers of ψ. Hence

(4.6) Ck (ψ, u0) = Ck (ψ, v0) = δk,0Z for all k ≥ 0.

Finally, note that ψ is coercive (see (3.31)). Hence

(4.7) Ck (ψ,∞) = δk,0Z for all k ≥ 0.

Suppose that Kψ = {0, u0, v0, y0}. From Morse relation (see (2.2)) with t = −1,
we have

(−1)dm + 2 (−1)0 + (−1)1 = (−1)0

hence
(−1)dm = 0,

which is a contradiction. Therefore there exists ŷ ∈ Kψ, ŷ /∈ {0, u0, v0, y0} ,
ŷ ∈ [v0, u0] (see (3.33) and recall that u0, v0 are extremal solutions). Hence ŷ ∈
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[v0, u0]∩ Ĉ1 (T ) is a nodal solution of (1.1) . As we did for y0, using H (f)3 (iv) ,
we show that ŷ ∈ int

Ĉ1(T )
[v0, u0] . □

In Theorem 4.2, at zero, we assumed nonuniform nonresonance with respect to the

spectral interval
[
λ̂m, λ̂m+1

]
, m ≥ 1. It is natural to ask whether such a multiplicity

theorem (“four solutions theorem”) is still valid when resonance occurs at zero. The
answer to this question is affirmative provided we further strengthen the conditions
on f (t, .) near zero.

Now we assume that the reaction in the problem (4.1) has the form

(4.8) f (t, x) = λ̂mx+ f0 (t, x) , where m ≥ 1.

The hypotheses on the perturbation f0 (t, x) are the following:

H (f)4: f0 : T × R →R is a measurable function such that, for a.a. t ∈ T,
f0 (t, 0) = 0, f0 (t, .) ∈ C1 (R) and
(i) for every ρ > 0, there exists aρ ∈ L1 (T )+ such that∣∣(f0)′x (t, x)∣∣ ≤ aρ (t) for a.a. t ∈ T , all |x| ≤ ρ;

(ii) there exist functions w+, w− ∈W and constants c−, c+ such that

w− (t) ≤ c− < 0 < c+ ≤ w+ (t) for all t ∈ T,

λ̂mw+ (t) + f0 (t, w+ (t)) ≤ 0 ≤ λ̂mw− (t) + f0 (t, w− (t))

a.e. on T,

A (w−) ≤ 0 ≤ A (w+) in W ∗;

(iii) there exist r > 2, constants c2, c3 > 0 and δ0 ∈ (0,min {c+,−c−, 1})
such that

f0 (t, x)x ≥ 0, c2 |x|r−1 ≤ |f0 (t, x)| ≤ c3 |x|r−1

for a.a. t ∈ T , all |x| ≤ δ0;

(iv) if ρ0 := max {∥w+∥∞ , ∥w−∥∞} , then there exists ξ0 > 0 such that for
a.a. t ∈ T, the function x→ f0 (t, x)+ξ0x is nondecreasing on [−ρ0, ρ0].

Remark. Note that if in hypotheses H (f)3 (i) and H (f)4 (i) we assume aρ ∈
L∞ (T )+ , then conditions H (f)3 (iv) and H (f)4 (iv) automatically hold.

In what follows, we set

H0 = E
(
λ̂m

)
and H̃ =

(
H0

)⊥
.

We have the following orthogonal direct sum decomposition

W = H0 ⊕ H̃.

Proposition 4.3. If hypotheses H (f)4 hold, then there exist ρ > 0 and ξ ∈ (0, 1)
such that⟨

φ′ (u) , u0
⟩
≤ 0 for all u = u0 + ũ ∈ H0 ⊕ H̃, ∥u∥ ≤ ρ, ∥ũ∥ ≤ ξ ∥u∥ .



1008 S. AIZICOVICI, N. S. PAPAGEORGIOU, AND V. STAICU

Proof. We have

(4.9)
⟨φ′ (u) , h⟩ = ⟨A (u) , h⟩+

b∫
0

u (t)h (t) dt−
b∫
0

k (t, u (t))h (t) dt

for all u, h ∈W

For ρ > 0 and ξ ∈ (0, 1) (to be specified in the process of the proof), we introduce
the set

Dρ,ξ :=
{
u ∈W : u = u0 + ũ, ∥u∥ ≤ ρ, ∥ũ∥ ≤ ξ ∥u∥

}
.

Since W is embedded continuously (in fact compactly) in C (T ) , we can find c4 > 0
such that

∥u∥∞ ≤ c4 ∥u∥ for all u ∈W.

So, by choosing ρ ∈ (0, 1) small, we have

|u (t)| ≤ c4 ∥u∥ ≤ c4ρ ≤ δ0 for all u ∈W, all t ∈ T.

Then for all u ∈W with ∥u∥ ≤ ρ, because of (3.5) and (4.8) , equation (4.9) becomes

(4.10)
⟨
φ′ (u) , h

⟩
= −

b∫
0

f0 (t, u (t))h (t) dt for all h ∈ H0.

So, we choose such a small ρ ∈ (0, 1). Moreover, we can always choose ξ ∈ (0, 1)
small so that ∥∥u0∥∥ ≥ 1

2
∥u∥ for all u ∈ Dρ,ξ.

Also, from Motreanu-Motreanu-Papageorgiou [16], we know that given δ ∈ (0, b) ,
we can find µδ > 0 such that if I0 :=

{
t ∈ T :

∣∣u0 (t)∣∣ < µδ
∥∥u0∥∥} then |I0|1 ≤ δ, for

all u0 ∈ H0.
We have

(4.11)

b∫
0

f0 (t, u)u
0dt =

b∫
0

f0 (t, u)u dt−
b∫

0

f0 (t, u) ũ dt

(since u = u0 + ũ). For t ∈ T\I0 and u ∈ Dρ,ξ, we obtain

|u (t)| ≥
∣∣u0 (t)∣∣− |ũ (t)| ≥ µδ

∥∥u0∥∥− c4 ∥ũ∥ ≥
(µδ
2

− c4ξ
)
∥u∥ .

Choosing ξ ∈ (0, 1) even smaller if necessary, we have

(4.12) |u (t)| ≥ c5 ∥u∥ for some c5 > 0, all t ∈ T\I0, all u ∈ Dρ,ξ.

Therefore∫
T\I0

f0 (t, u)u dt =

∫
T\I0

|f0 (t, u)| |u| dt (see H (f)4 (iii) )

≥ c2

∫
T\I0

|u|r dt (see H (f)4 (iii) )

≥ c2c
r
5 |T\I0|1 ∥u∥

r (see (4.12) )(4.13)

≥ c6 (b− δ) ∥u∥r with c6 = c2c
r
5 > 0, for all u ∈ Dρ,ξ.
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So, by (4.13) and H (f)4 (iii) we get

b∫
0

f0 (t, u)u dt =

∫
T\I0

f0 (t, u)u dt+

∫
I0

f0 (t, u)u dt

≥
∫

T\I0

f0 (t, u)u dt(4.14)

≥ c7 ∥u∥r for all u ∈ Dρ,ξ

with
c7 = c6 (b− δ) > 0.

Also, we have

b∫
0

f0 (t, u) ũdt ≤
b∫

0

|f0 (t, u)| |ũ| dt

≤
b∫

0

c3 |u|r−1 |ũ| dt (see H (f)4 (iii) )

≤ c8 ∥u∥r−1 ∥ũ∥ for some c8 > 0(4.15)

≤ c8ξ ∥u∥r for all u ∈ Dρ,ξ.

Returning to (4.11) , using (4.14) , (4.15) and choosing ξ ∈ (0, 1) even smaller if
necessary, we arrive at

b∫
0

f0 (t, u)u
0dt ≥ c9 ∥u∥r for some c9 > 0, all u ∈ Dρ,ξ.

Then from (4.10) it follows that⟨
φ′ (u) , u0

⟩
≤ 0 for all u ∈ Dρ,ξ.

□

This proposition implies that the angle condition of Bartsch-Li [9] is satisfied.
So, invoking Proposition 2.5 of [9], we have:

Proposition 4.4. If hypotheses H (f)4 hold, then

Ck (ψ, 0) = δk,dmZ for all k ≥ 0, with dm = dim

m⊕
i=0

E
(
λ̂i

)
.

Then the proof of Theorem 4.2 remains valid, and we can state the following
multiplicity theorem:

Theorem 4.5. If hypotheses H (f)4 hold, then problem (4.1) has at least four non-
trivial solutions

u0 ∈ int Ĉ+, v0 ∈ −int Ĉ+, and y0, ŷ ∈ int
Ĉ1(T )

[v0, u0] nodal.
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