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variational inequalities in the setting of Hilbert spaces. They gave a finite conver-
gence result for a class of algorithms for solving variational inequalities. By using
the dual gap function, Zhang et al. [27] characterized the directional derivative and
subdifferential of the dual gap function. Based on these, they proposed a better
understanding of the concepts of a global error bound, weak sharpness, and mini-
mum principle sufficiency property for variational inequalities, where the operator
involved is pseudo-monotone. Hu and Song [18] extended the concept of weak sharp
solutions for variational inequalities from finite dimensional spaces / Hilbert spaces
to reflexive, strictly convex and smooth Banach spaces. They presented its equiva-
lent characterizations and established finite convergence of proximal point algorithm
for variational inequalities in terms of the weak sharpness of the solution set.

The main objective of this paper is to study the weak sharp solutions for equi-
librium problems which include several problems, namely, variational inequalities,
optimization problems, saddle point problems, Nash equilibrium problems, etc, as
special cases. For further details on equilibrium problems and their applications, we
refer [1, 2, 4, 5, 6, 7, 8, 15, 16, 19, 21, 22] and the references therein. We use an ex-
tended form of Takahashi’s minimization theorem and a gap function [21] to study
weak sharp solutions for equilibrium problems in the setting of metric spaces. As
a special case, we derive a characterization for weak sharp solutions for nonsmooth
variational inequalities.

2. Formulations and Preliminaries

Let (X, d) be a metric space, K be a nonempty closed subset of X and F :
K × K → R be a bifunction. The equilibrium problem (in short, EP) is to find
x̄ ∈ K such that

(2.1) F (x̄, y) ≥ 0, for all y ∈ K.

The set of solutions of EP (2.1) is denoted by S. It includes as special cases sev-
eral fundamental mathematical problems, namely, variational inequality problems,
optimization problems, Nash equilibrium problem, fixed point problem, minimax
inequalities, complementarity problems, etc. During the last two decades, a large
number of papers on different aspects of equilibrium problems has appeared in the
literature, see, for example, [1, 2, 4, 5, 6, 7, 8, 15, 16, 19, 21, 22] and the references
therein.

Let h : K × X → R be a bifunction. The nonsmooth variational inequality
problem (in short, NVIP) is to find x̄ ∈ K such that

(2.2) h(x̄; y − x̄) ≥ 0, for all y ∈ K.

The set of solutions of NVIP (2.2) is denoted by Ŝ. A comprehensive study of
nonsmooth variational inequalities is given in [3].

Of course, when F (x, y) = h(x; y − x) for all x, y ∈ K, then EP (2.1) coincides
with NVIP (2.2).

Definition 2.1. A function g : X → R is said to be a gap function for EP (2.1) if

(a) g(x) ≥ 0 for all x ∈ K;
(b) g(x̄) = 0 and x̄ ∈ K if and only if x̄ ∈ K is a solution of EP (2.1).
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Mastroeni [21] studied the gap function for EP (2.1). He observed that the
function

(2.3) g(x) := sup
y∈K

[−F (x, y)]

is a gap function for EP (2.1).
A gap function [3] for NVIP (2.2) is defined by

(2.4) ϕ(x) := sup
y∈K

[−h(x; y − x)].

Blum and Oettli [8] extended Takahashi’s minimization theorem [25] for bifunc-
tion and derived the following result which provides the existence of a solution of
EP (2.1).

Theorem 2.2. Let K be a nonempty closed subset of a complete metric space (X, d),
F : K × K → R be lower semicontinuous in the second argument and satisfy the
following conditions:

(i) F (x, x) = 0 for all x ∈ K;
(ii) F (x, y) ≤ F (x, z) + F (z, y) for all x, y, z ∈ K;
(iii) There exists x̂ ∈ K such that inf

y∈K
F (x̂, y) > −∞.

Further, assume that the following extended Takahashi’s condition holds:

(2.5)

{
Assume that for every x ∈ K with inf

y∈K
F (x, y) < 0,

there exists y ∈ K, y ̸= x such that F (x, y) + d(x, y) ≤ 0.

Then, there exists x̄ ∈ K such that F (x̄, y) ≥ 0 for all y ∈ K.

Theorem 2.2 is known as extended Takahashi’s minimization theorem, see, for
example, [2].

Let S := {x ∈ K : F (x, y) ≥ 0 for all y ∈ K}, that is, S is the set of solutions of
EP (2.1). Then, the extended Takahashi’s condition (2.5) reads as

for all x ∈ K \ S, there exists y ∈ K, y ̸= x such that F (x, y) + d(x, y) ≤ 0.

The extended Ekeland’s variational principle (see [1, Theorem 2.1]) states for the
same class of functions as

there exists x ∈ K such that F (x, y) + d(x, y) > 0, for all y ∈ K, y ̸= x.

We note that Theorem 2.2 is equivalent to the Ekeland’s variational principle for
bifunctions, known as extended Ekeland’s variational principle, see, for example,
[2, 22].

If we define
S(x) = {y ∈ K : F (x, y) + d(x, y) ≤ 0},

then the extended Takahashi’s condition (2.5) can be reformulated as

for all x ∈ K \ S : S(x) ̸= {x}.

Remark 2.3. Since extended Ekeland’s variational principle and extended Taka-
hashi’s minimization theorem are equivalent (see [2, 22]), we can say that the only
points which satisfy the assertions of extended Ekeland’s variational principle are
the solutions of EP (2.1).
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We mention the converse of above theorem.

Theorem 2.4. Let K be a nonempty closed subset of a complete metric space
(X, d), F : K×K → R be lower semicontinuous in the second argument and satisfy
conditions (i)–(iii) in Theorem 2.2. If there exists a solution x̄ ∈ K of EP (2.1)
such that F (y, x̄) + d(y, x̄) ≤ 0 for all y ∈ K, then F satisfies extended Takahashi’s
condition (2.5).

Proof. Assume that every x ∈ K satisfies

(2.6) inf
y∈K

F (x, y) < 0.

By hypothesis, there exists x̄ ∈ K such that

F (x̄, y) ≥ 0, for all y ∈ K,(2.7)

and F (y, x̄) + d(y, x̄) ≤ 0, for all y ∈ K.(2.8)

In view of (2.6), the inequality (2.8) hold only for all y ∈ K, y ̸= x̄. Hence, we get
the conclusion. □

We need the following lemma to give an alternative proof of the main result of
this paper, that is, Theorem 3.1.

Lemma 2.5. Let K be a nonempty closed subset of a complete metric space (X, d),
F : K ×K → R be lower semicontinuous in the second argument and satisfy con-
ditions (i)–(iii) of Theorem 2.2. Assume that (alternative form of extended Taka-
hashi’s condition) S(x) = {y ∈ K : F (x, y) + d(x, y) ≤ 0} ̸= {x} for all x ∈ K \ S.
Then, S(x) ∩ S ̸= ∅ whenever x /∈ S.

Proof. For each x ∈ K, consider the restriction Fx of F on S(x)× S(x). Then, Fx

is lower semicontinuous in the second argument and inf
y∈S(x)

F (x, y) > −∞ for some

x ∈ S(x) because S(x) is nonempty and closed for each x ∈ K. Thus, Fx satisfies
all the conditions of extended Ekeland’s variational principle (EEVP). By applying
EEVP for Fx, there exists x̄ ∈ S(x) such that

(2.9) Fx(x̄, y) + d(x̄, y) > 0, for all y ∈ S(x), y ̸= x̄.

We need to prove that

(2.10) F (x̄, y) + d(x̄, y) > 0, for all y ∈ K, y ̸= x̄.

Assume that (2.10) does not hold. Then, there exists u ∈ K such that

(2.11) F (x̄, u) + d(x̄, u) ≤ 0.

Since x̄ ∈ S(x), we have

(2.12) F (x, x̄) + d(x, x̄) ≤ 0.

Combining (2.11) and (2.12), we get

F (x̄, u) + d(x̄, u) + F (x, x̄) + d(x, x̄) ≤ 0.

By utilizing the triangle inequality and condition (iii), we have d(x, u)+F (x, u) ≤ 0,
and hence, u ∈ S(x). This is a contradiction because the inequality (2.9) for y = u
and the inequality (2.11) cannot hold simultaneously. Therefore, inequality (2.10)
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holds and with the help of Remark 2.3, x̄ is a solution of EP (2.1). This is true for
all x ∈ K \ S, which completes the proof. □

3. Weak Sharp Solutions for Equilibrium Problems

We say that the equilibrium problem has weak sharp solutions if

(3.1) d(x, S) ≤ g(x), for all x ∈ K,

where S is the set of solutions of EP (2.1) and d(x, S) = inf
x̄∈S

d(x, x̄).

Theorem 3.1. Let K be a nonempty closed subset of a complete metric space (X, d),
F : K × K → R be lower semicontinuous in the second argument and satisfy the
following conditions:

(i) F (x, x) = 0 for all x ∈ K;
(ii) F (x, y) ≤ F (x, z) + F (z, y) for all x, y, z ∈ K;
(iii) There exists x̂ ∈ K such that inf

y∈K
F (x̂, y) > −∞.

Assume that for every x ∈ K with inf
y∈K

F (x, y) < 0, there exists y ∈ K, y ̸= x such

that F (x, y) + d(x, y) ≤ 0. Then, the EP (2.1) has weak sharp solutions.

Proof. For all x ∈ K, define

S(x) = {y ∈ K : F (x, y) + d(x, y) ≤ 0}.

Then, by lower semicontinuity of F in the second argument, S(x) is closed for all
x ∈ K. By Theorem 2.2, S is nonempty. Clearly, S(x) ̸= ∅ as x ∈ S(x).

For all y ∈ S(x), F (x, y) ≤ 0. Indeed, for all y ∈ S(x), we have

F (x, y) + d(x, y) ≤ 0 ⇔ 0 ≤ d(x, y) ≤ −F (x, y) ⇔ F (x, y) ≤ 0.

Suppose to the contrary that there exists x0 ∈ K such that

(3.2) d(x0, S) > g(x0).

Then, x0 /∈ S. Indeed, if x0 ∈ S, then d(x0, S) = inf
y∈S

d(x0, y) = 0, and so, g(x0) < 0

which contradicts the fact that g(x) ≥ 0 for all x ∈ K because g is a gap function.
For all y ∈ S(x0), d(y, S) > g(y). Indeed, take y ∈ S(x0) and z ∈ S, then

d(x0, y) ≤ −F (x0, y). Therefore,

d(x0, z) ≤ d(x0, y) + d(y, z) ≤ −F (x0, y) + d(y, z),

that is, d(x0, z) ≤ d(y, z)− F (x0, y). Taking inf over S both the sides, we obtain

inf
z∈S

d(x0, z) ≤ inf
z∈S

d(y, z)− F (x0, y),

that is, d(x0, S) ≤ d(y, S)− F (x0, y). By (3.2), we have

(3.3) g(x0) < d(y, S)− F (x0, y).

By condition (ii), for all v ∈ K, we have

F (x0, v) ≤ F (x0, y) + F (y, v) ⇔ −F (y, v) ≤ −F (x0, v) + F (x0, y).
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Taking sup over K both the sides, we get

sup
v∈K

[−F (y, v)] ≤ sup
v∈K

[−F (x0, v)] + F (x0, y).

This implies that

(3.4) g(y) ≤ g(x0) + F (x0, y).

Combining (3.3) and (3.4), we obtain g(y) < d(y, S) for all y ∈ S(x0).
Since x0 /∈ S, there exists y ∈ K such that F (x0, y) < 0, and so, inf

y∈K
F (x0, y) < 0.

By hypothesis, there exists x1 ∈ K such that x1 ̸= x0 and F (x0, x1)+d(x0, x1) ≤ 0,
that is, x1 ∈ S(x0) with x1 ̸= x0. Since g(x1) < d(x1, S), then clearly x1 /∈ S and
F (x0, x1) < 0 because −F (x0, x1) ≥ d(x0, x1) > 0 since x0 ̸= x1. We can again
show as above that g(y) < d(y, S) for all y ∈ S(x1) and S(x1)∩S = ∅. In addition,
we choose x1 such that

F (x0, x1) = inf{F (x0, x) : x ∈ S(x0)},
where inf exists since K is a closed subset of a complete metric space X, S(x0) is
closed and F is lower semicontinuous in the second argument. Continuing in this
way, we generate a sequence {xn} with the following properties:

• there exists xi ̸= xi−1 for all i = 1, 2, . . . , n.
• xi ∈ S(xi−1) for all i = 1, 2, . . . , n.
• F (xi−1, xi) < 0 for all i = 1, 2, . . . , n. Indeed, since xi ∈ S(xi−1), we have
d(xi−1, xi)+F (xi−1, xi) ≤ 0. This implies that −F (xi−1, xi) ≥ d(xi−1, xi) >
0 as xi−1 ̸= xi. Thus, F (xi−1, xi) < 0.

• F (xi−1, xi) = inf{F (xi−1, x) : x ∈ S(xi−1)} for all i = 1, 2, . . . , n.
• S(xi) ∩ S = ∅ for all i = 1, 2, . . . , n.
• g(y) < d(y, S) for all y ∈

∪n
i=1 S(xi).

Since xn /∈ S, we can choose xn+1 ∈ S(xn), xn+1 ̸= xn with F (xn, xn+1) =
inf{F (xn, x) : x ∈ S(xn)}. As above, we also have

xn+1 /∈ S, F (xn, xn+1) < 0, and(3.5)

g(y) < d(y, S), for all y ∈ S(xn+1).(3.6)

To see this, let y ∈ S(xn+1) and x̄ ∈ S. Then,

d(xn+1, x̄) ≤ d(xn+1, y) + d(y, x̄) ≤ −F (xn+1, y) + d(y, x̄).

Taking sup over S, we obtain

d(xn+1, S) ≤ −F (xn+1, y) + d(y, S).

Since −F (xn+1, y) < g(xn+1), we have d(y, S) − F (xn+1, y) > −F (xn+1, x), and
therefore,

d(y, S) > F (xn+1, y)− F (xn+1, x)

≥ F (xn+1, y)− F (xn+1, y)− F (y, x).

Thus, d(y, S) > g(y). Since as above

d(xn+1, S) > F (xn, xn+1)− F (xn, x)

≥ F (xn, xn+1)− F (xn, xn+1)− F (xn, x),
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we have d(xn+1, S) > supx∈K [−F (xn, x)] = g(xn+1), and hence, S(xn+1) ∩ S = ∅.
So, the sequence {xn} consisting different elements and F (xn, xn+1) < 0. Since

d(xn+k, xn) ≤
k∑

i=1

d(xn+i, xn+i−1) ≤
k∑

i=1

−F (xn+i, xn+i−1) ≤ F (xn, xn+k),

and F (xn, xn+k) monotonically decreasing to some point, {xn} is a Cauchy sequence
in a closed subset K of a complete metric space X, so we can assume that xn
converges to some point x ∈ K. We show that x ∈

∩∞
i=0 S(xi). To prove it, we

show that for every n, xn ∈
∩n−1

i=0 S(xi).
Since

d(xn−k, xn) ≤
k−1∑
j=0

d(xn−k+j , xn−k+j+1)

≤
k−1∑
j=0

−F (xn−k+j+1, xn−k+j)

= −F (xn−k, xn),

we have xn ∈ S(xn−k) for all k = 1, 2, . . . n (recall that xi /∈ S). Therefore, xn ∈∩n−1
i=0 S(xi), and hence, xk ∈

∩n−1
i=0 S(xi) for all k ≥ n. Since

∩n−1
i=0 S(xi) is a closed

set, x ∈
∩∞

i=0 S(xi). Thus, x ∈ S(xn), and x ̸= xn, and therefore, F (xn, x) <
−d(xn, x) < 0 which contradicts the fact that F (xn, y) ≥ 0 for all y ∈ S(xn). □

Inspired by Hamel [17], we give the alternative proof of Theorem 3.1.

Alternative Proof of Theorem 3.1. By Lemma 2.5, for each x ∈ K \ S, we find
z ∈ S(x)∩S (depending on x). Then, F (x, z)+d(x, z) ≤ 0. Since d(x, S) ≤ d(x, z),
we have

F (x, z) + d(x, S) ≤ F (x, z) + d(x, z) ≤ 0, for this z ∈ S(x) ∩ S.

Since for each x ∈ K \ S, we find z ∈ S(x) ∩ S, we have

F (x, z) + d(x, S) ≤ 0, for all x ∈ K and z ∈ S.

Therefore, d(x, S) ≤ sup
z∈S

[−F (x, z)] = g(x) for all x ∈ K. Hence, EP (2.1) has weak

sharp solutions. □

Remark 3.2. We would like to mention that the first proof of Theorem 3.1 is
constructive and does not dependent on Lemma 2.5. While the alternative proof of
Theorem 3.1 is analytical and based on Lemma 2.5.

We say that the nonsmooth variational inequality problem (NVIP) (2.2) has weak
sharp solutions if

d(x, Ŝ) ≤ ϕ(x), for all x ∈ K,

where Ŝ is the set of solutions of NVIP (2.2).
By considering F (x, y) = h(x; y − x), from Theorem 3.1, we can derive the exis-

tence result for weak sharp solutions of NVIP (2.2).
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