


1196 N. ALTWAIJRY, S. CHEBBI, AND H. K. XU

(2Jλ
A − I)(2Jλ

B − I) is only nonexpansive (possibly a reflection in the plane) which
is insufficient to guarantee convergence.

The second method, the Douglas-Rachford method, generates a sequence {vn}
via the recursion

(1.3) vn+1 = Jλ
A(2J

λ
B − I)vn + (I − Jλ

B)v
n.

The advantage of the Douglas-Rachford method (1.3) over the the Peaceman-
Rachford method (1.2) is that the former is always convergent. It has been paid
much attention [2, 4, 5].

The third method, known as the double backward method and introduced by
Passty [8], generates a sequence {xn} by the iteration process:

(1.4) xn+1 = (J
λn+1

B ◦ Jλn+1

A )xn, n ≥ 0,

where {λn} is a sequence of positive numbers, and the initial guess x0 ∈ H is
arbitrarily chosen.

Similar to the Peaceman-Rachford method (1.2), the double backward method
(1.4) fails to be convergent, in general. So ergodic convergence is considered instead.
This means that we use the sequence of averages, {zn}, defined by:

(1.5) zn =

∑n
k=1 λkx

k∑n
k=1 λk

, n ≥ 1.

Passty [8] proved the weak convergence of {zn} to a solution of the inclusion (1.1)
under the condition that {λn} ∈ ℓ2 \ ℓ1.

In the double backward method (1.4), we notice that at each iteration an equal
index applies to both operators A and B. However, the orders of A and B are
different and this suggests that A and B may play different role in this algorithm,
and therefore, one may consider that different indices should apply to A and B.
This is indeed the problem that we will address in the current paper. The double
backward method that we consider in this paper generates a sequence {xn} through
the following iteration process:

(1.6) xn+1 = (J
µn+1

B ◦ Jλn+1

A )xn, n ≥ 0,

where {λn} and {µn} are sequences of positive numbers. We will study the conver-
gence of the sequence of the averages {zn} where {xn} is defined by (1.6). We find
that in order to ensure convergence of {zn}, the role played by {µn} is that it is
sufficiently close to {λn} in the sense that the sequence of differences, {λn −µn}, is
summable, that is, {λn − µn} ∈ ℓ1.
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2. Preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥. Let A be a
(possibly multivalued) operator with domain dom(A) and range ran(A) in H. That
is, dom(A) = {x ∈ H : Ax ̸= ∅} and ran(A) = {y ∈ H : y ∈ Ax, x ∈ dom(A)}. The
graph of A, gph(A), is the set

gph(A) = {(x, y) : x ∈ dom(A), y ∈ Ax}.

Definition 2.1. The operator A is said to be monotone if, for all x1, x2 ∈ dom(A)
and y1 ∈ Ax1 and y2 ∈ Ax2,

⟨x1 − x2, y1 − y2⟩ ≥ 0.

A monotone operator A is said to be maximal monotone if a point (x′, y′) satisfies
the property

⟨x− x′, y − y′⟩ ≥ 0 ∀x ∈ dom(A), y ∈ Ax,

then (x′, y′) ∈ gph(A); i.e., x′ ∈ dom(A) and y′ ∈ Ax′. It is known that a monotone
operator A is maximal monotone if and only if for any λ > 0, ran(I + λA) = H.

A typical example of a maximal monotone operator is the subdifferential ∂φ of
a proper lower semicontinuous convex function φ : H → R.

It can easily be shown that if A is monotone, then for any positive number λ, the
resolvent

Jλ
A := (I + λA)−1

is single-valued and nonexpansive:

∥Jλ
Ax− Jλ

Ay∥ ≤ ∥x− y∥
for all x, y ∈ dom(Jλ

A) = ran(I + λA). Actually, Jλ
A is firmly nonexpansive:

∥Jλ
Ax− Jλ

Ay∥2 ≤ ⟨x− y, Jλ
Ax− Jλ

Ay⟩
for all x, y ∈ dom(Jλ

A) = ran(I + λA).
Moreover, it is well-known that A is maximal monotone if and only if for any

λ > 0, the resolvent Jλ
A is single-valued and nonexpansive, from the entire space H

into H. More properties of monotone operators can be found in [1].

3. The Double Backward Method

The double backward method of Passty [8] generates a sequence {xn} via the
recursive manner:

(3.1) xn+1 = (J
λn+1

B ◦ Jλn+1

A )xn, n ≥ 0,

where {λn} is a sequence of positive numbers, and the initial guess x0 ∈ H is
arbitrarily chosen.

The double backward algorithm (3.1) may fail to converge even in the weak
topology [6]. Therefore one turns to consider the averages:

(3.2) zn :=

∑n
i=1 λix

i∑n
i=1 λi

, n = 1, 2, · · · .
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Passty [8] proved the following result.

Theorem 3.1. Assume the solution set S of the inclusion (1.1) is nonempty. As-
sume {λn} ∈ ℓ2\ℓ1. Then the sequence {zn} defined by the averages (3.2) converges
weakly to a point in S.

In the double backward method (3.1) it is required that the resolvents of A and
B have the same index at each iteration. We next extend (3.1) to the case where we
allow the resolvents of A and B to have distinct indexes at each iteration. In other
words, we introduce the following double backward method with distinct indexes:

(3.3) xn+1 = (J
µn+1

B ◦ Jλn+1

A )xn, n ≥ 0,

where {λn} and {µn} are sequences of positive numbers, and the initial guess x0 ∈ H
is arbitrarily chosen. We still use the same notation zn to denote the average of the
sequence {xn} given by (3.3).

To prove our main result, Theorem 3.4, we need the following two lemmas.

Lemma 3.2. Suppose {xn} is a bounded sequence and define a sequence {zn} by
(3.2). Suppose in addition there exists a nonempty subset F such that

(a) limn→∞ ∥xn − z∥ exists for every z ∈ F , and
(b) ωw(zn) ⊂ F , where ωw(zn) denotes the set of weak accumulation points of

{zn}.
Then {zn} converges weakly to a point of F .

Proof. The boundedness of {xn} implies that of {zn}. For z′, z′′ ∈ F , we have the
identity

⟨xn − z′, z′ − z′′⟩ = 1

2
(∥xn − z′′∥2 − ∥xn − z′∥2 − ∥z′ − z′′∥2)

Now since limn→∞ ∥xn − z∥ exists for all z ∈ F , it turns out that

(3.4) limn→∞⟨zn − z′, z′ − z′′⟩ exists for all z′, z′′ ∈ F.

Now if zni ⇀ w′ and zmj ⇀ w′′, then w′, w′′ ∈ F by assumption (b). So from (3.4)
it follows that

(3.5) ⟨w′ − w′′, z′ − z′′⟩ = 0, ∀w′, w′′ ∈ ωw(z
n), ∀z′, z′′ ∈ F.

However, ωw(z
n) ⊂ F by assumption (b); thus we can replace z′, z′′ in (3.5) by

w′, w′′, respectively to get ∥w′ − w′′∥2 = 0 and w′ = w′′. □
The proof to the next lemma can be found in [10].

Lemma 3.3. Assume {γn} is a sequence of nonnegative real numbers such that

(3.6) γn+1 ≤ (1 + αn)γn + σn, n ≥ 0,

where {αn} and {σn} are sequences of positive numbers such that
∞∑
n=1

αn < ∞,

∞∑
n=1

σn < ∞.
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Then {γn} is bounded and limn→∞ γn exists.

Now we are ready to prove the main result of this paper.

Theorem 3.4. Assume that the solution set S of the inclusion (1.1) is nonempty.
Assume that the sequences of positive parameters, {λn} and {µn} satisfy the condi-
tions:

(i) {λn}, {µn} ∈ ℓ2 \ ℓ1, that is,
∑∞

n=1 |λn| =
∑∞

n=1 |µn| = ∞,∑∞
n=1 λ

2
n < ∞,

∑∞
n=1 µ

2
n < ∞.

(ii) {λn − µn} ∈ ℓ1, that is,
∑∞

n=1 |λn − µn| < ∞.

Then the sequence {zn} defined by the averages (1.5) converges weakly to a point in
S.

Proof. Take F = S = (A+B)−1(0). It suffices to verify the conditions (a) and (b)
in Lemma 3.2.

Putting, for each k,

yk = J
λk+1

A xk,

we can, by definition, rewrite xk+1 as

xk+1 = J
µk+1

B yk.

Consequently,

1

λk+1
(xk − yk) ∈ Ayk,

1

µk+1
(yk − xk+1) ∈ Bxk+1.

Now let u ∈ dom(A + B) and take v1 ∈ Au and v2 ∈ Bu. It follows from the
monotonicity of A and B that

(3.7)

⟨
1

λk+1
(xk − yk)− v1, yk − u

⟩
≥ 0,

(3.8)

⟨
1

µk+1
(yk − xk+1)− v2, xk+1 − u

⟩
≥ 0.

Multiplying both sides of (3.7) and (3.8) by λk+1 and µk+1, respectively, yields

⟨xk − yk − λk+1v
1, yk − u⟩ ≥ 0,

⟨yk − xk+1 − µk+1v
2, xk+1 − u⟩ ≥ 0.

In other words we get

(3.9) ⟨xk − yk, yk − u⟩ ≥ λk+1⟨v1, yk − u⟩,

(3.10) ⟨yk − xk+1, xk+1 − u⟩ ≥ µk+1⟨v2, xk+1 − u⟩.
It turns out that

∥xk − u∥2 − ∥yk − u∥2 = ∥xk − yk∥2 + 2⟨xk − yk, yk − u⟩

≥ ∥xk − yk∥2 + 2λk+1⟨v1, yk − u⟩(3.11)
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and

∥yk − u∥2 − ∥xk+1 − u∥2 = ∥yk − xk+1∥2 + 2⟨yk − xk+1, xk+1 − u⟩

≥ ∥yk − xk+1∥2 + 2µk+1⟨v2, xk+1 − u⟩.(3.12)

Adding up (3.11) and (3.12) yields, for each k ≥ 0,

∥xk − u∥2 − ∥xk+1 − u∥2 ≥ ∥xk − yk∥2 + ∥yk − xk+1∥2

+ 2λk+1⟨v1, yk − u⟩+ 2µk+1⟨v2, xk+1 − u⟩

= ∥xk − yk∥2 + ∥yk − xk+1∥2 + 2λk+1⟨v1, yk − xk+1⟩

+ 2⟨λk+1v
1 + µk+1v

2, xk+1 − u⟩.(3.13)

Since

2λk+1⟨v1, yk − xk+1⟩ ≥ −λ2
k+1∥v1∥2 − ∥yk − xk+1∥2.

Substituting it into (3.13), we get

∥xk − u∥2 − ∥xk+1 − u∥2 ≥ ∥xk − yk∥2 − λ2
k+1∥v1∥2 + 2⟨λk+1v

1 + µk+1v
2, xk+1 − u⟩

≥ 2⟨λk+1v
1 + µk+1v

2, xk+1 − u⟩ − λ2
k+1∥v1∥2

= 2λk+1⟨v1 + v2, xk+1 − u⟩

+ 2(µk+1 − λk+1)⟨v2, xk+1 − u⟩ − λ2
k+1∥v1∥2.(3.14)

Putting

v = v1 + v2 ∈ (A+B)u, sn =

n∑
i=1

λi

and summing up (3.14) from k = 0 to n− 1, we obtain

1

sn
(∥x0 − u∥2 − ∥xn − u∥2) ≥ 2⟨v, zn − u⟩ − 1

sn

(
n∑

i=1

λ2
i

)
∥v1∥2

+
1

sn

n∑
k=1

(µk − λk)⟨v2, xk+1 − u⟩.(3.15)

If we take u ∈ S = (A + B)−10, then we may take v1 ∈ Au and v2 ∈ Bu such
that v = v1 + v2 = 0. Consequently, (3.14) is reduced to

(3.16) ∥xk+1 − u∥2 ≤ ∥xk − u∥2 + 2(λk+1 − µk+1)⟨v2, xk+1 − u⟩+ λ2
k+1∥v1∥2

for all u ∈ S. Since

2|(λk+1 − µk+1)⟨v2, xk+1 − u⟩| ≤ |λk+1 − µk+1|(∥v2∥2 + ∥xk+1 − u∥2),

we get from (3.16) that

(1− |λk+1 − µk+1|)∥xk+1 − u∥2 ≤ ∥xk − u∥2 + |λk+1 − µk+1|∥v2∥2 + λ2
k+1∥v1∥2.

This results is of the form:

(3.17) ∥xk+1 − u∥2 ≤ (1 + αk)∥xk − u∥2 + σk,
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where

αk =
|λk+1 − µk+1|

1− |λk+1 − µk+1|
, σk =

|λk+1 − µk+1|∥v2∥2 + λ2
k+1∥v1∥2

1− |λk+1 − µk+1|
.

By the assumptions (i) and (ii), we can easily see that
∞∑
k+1

αk < ∞,

∞∑
k+1

σk < ∞.

Therefore, Lemma 3.3 is applicable to (3.17) and we conclude that {xn} is bounded
and

(3.18) lim
n→∞

∥xn − u∥ exists for each u ∈ S.

Now since {xn} is bounded, we can return to (3.15) to get the estimate:

1

sn
(∥x0 − u∥2 − ∥xn − u∥2) ≥ 2⟨v, zn − u⟩ − c

sn

(
n∑

i=1

λ2
i +

n∑
k=1

|µk − λk|

)
,(3.19)

where c is a constant such that c ≥ max{∥v1∥2, ∥v2∥∥xk+1 − u∥} for all k.
Since {λn} ∈ ℓ2 and {λn − µn} ∈ ℓ1, we immediately get by virtue of (3.19) that

(3.20) lim sup
n→∞

⟨v, zn − u⟩ ≤ 0, (u, v) ∈ gph(A+B).

Relation (3.20) guarantees that if ẑ is a weak accumulation point of {zn}, then
⟨v, u− ẑ⟩ ≥ 0, ∀(u, v) ∈ gph(A+B).

Hence, the maximality of A + B implies that (ẑ, 0) ∈ gph(A + B); that is, 0 ∈
(A + B)ẑ, or ẑ ∈ S = F . This together with the fact (3.18) indicates that Lemma
3.2 is applicable and we conclude that {zn} converges weakly to a point in F . □

We can have strong convergence of {zn} under additional conditions on either
the solution set of (1.1) or the monotonicity of B.

Theorem 3.5. Let A and B be maximal monotone such that A+B is also maximal
monotone and (1.1) has a solution. Assume {λn} and {µn} satisfy the conditions
(i) and (ii) of Theorem 3.4. Then the sequence {zn} converges in norm if one of
the following two conditions is satisfied:

(i) B is strongly monotone; i.e., there is β > 0 such that

⟨Bx−By, x− y⟩ ≥ β∥x− y∥2 ∀x, y ∈ dom(B);

(ii) the solution set S = (A+B)−1(0) has a nonempty interior.

Proof. (i) Since now A + B is strongly monotone, the inclusion (1.1) has a unique
solution u. Let v1 ∈ Au and v2 ∈ Bu satisfy v1 + v2 = 0. Also, the proof for
Theorem 3 can be refined. For instance, (3.8) can be refined as

(3.21)

⟨
1

µn+1
(yn − xn+1)− v2, xn+1 − u

⟩
≥ β∥xn+1 − u∥2
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and (3.14) is refined to

∥xk − u∥2 − ∥xk+1 − u∥2 ≤ 2(µk+1 − λk+1)⟨v2, xk+1 − u⟩

− λ2
k+1∥v1∥2 + 2βµk+1∥xk+1 − u∥2,(3.22)

were v1 + v2 = 0.
Since {xk} is bounded, we can reduce (3.22) to the following relation

2βµk+1∥xk+1 − u∥2 ≤ ∥xk − u∥2 − ∥xk+1 − u∥2

+ α(|µk+1 − λk+1|+ λ2
k+1),(3.23)

where α > 0 is a constant.
By the conditions (i) and (ii) of Theorem 3.4 together with the fact that

limn→∞ ∥xn − u∥ exists, we can immediately conclude from (3.23) that
∞∑
n=1

µn∥xn − u∥2 < ∞.

Since {µn} ̸∈ ℓ1, we must have

lim
n→∞

∥xn − u∥2 = lim inf
n→∞

∥xn − u∥2 = 0.

(ii) Assume int(S) ̸= ∅, where S = (A+B)−1(0) is the solution set of (1.1). Take
z0 ∈ int(S). Then we have a δ > 0 such that

• z ∈ S whenever ∥z − z0∥ ≤ δ;
• ∥v∥ ≤ M whenever ∥z − z0∥ ≤ δ and v ∈ (A + B)z, where M > 0 is a
constant.

Now since the closed ball B(z0, δ) ⊂ S ⊂ dom(A) ∩ dom(B), the inequality (3.13)
in the proof of Theorem 3.4 becomes

∥xn − z∥2 − ∥xn+1 − z∥2 ≥ ∥xn − yn∥2 + ∥yn − xn+1∥2

+2λn+1⟨v1, yn − xn+1⟩
+2⟨λk+1v

1 + µk+1v
2, xn+1 − z⟩

≥ ∥xn − yn∥2 − λ2
n+1∥v1∥2

+2⟨λk+1v
1 + µk+1v

2, xn+1 − z⟩,(3.24)

where ∥z − z0∥ ≤ δ, v1 ∈ Az and v2 ∈ Bz (note that we may choose v1 ∈ Az and
v2 ∈ Bz such that v1 + v2 = 0 for z ∈ S).

Let z = z0 + δw, where ∥w∥ ≤ 1. Noticing

∥xn − z∥2 − ∥xn+1 − z∥2 = ∥(xn − z0)− δw∥2 − ∥(xn+1 − z0)− δw∥2

= ∥xn − z0∥2 − ∥xn+1 − z0∥2 − 2δ⟨xn − xn+1, w⟩,
we get from (3.24) that

∥xn − z0∥2 − ∥xn+1 − z0∥2 ≥ 2δ⟨xn − xn+1, w⟩ − λ2
n+1∥v1∥2

+ 2(µk+1 − λk+1)⟨v2, xk+1 − z⟩.(3.25)

It turns out that, as {xn} is bounded, we can find a constant γ > 0 such that

⟨xn − xn+1, w⟩ ≤ 1

2δ
[∥xn − z∥2 − ∥xn+1 − z∥2
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+ γ(|µk+1 − λk+1|+ λ2
k+1)]

for all ∥w∥ ≤ 1. Consequently, we get

∥xn − xn+1∥ ≤ 1

2δ
[∥xn − z∥2 − ∥xn+1 − z∥2

+ γ(|µk+1 − λk+1|+ λ2
k+1)](3.26)

By the conditions (i) and (ii) of Theorem 3.4, it follows from (3.26) that

∞∑
n=1

∥xn − xn+1∥ < ∞

and this suffices to guarantee that {xn} is a norm-Cauchy sequence, hence strongly
convergent. □
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