WEAK HARDY SPACES $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ ASSOCIATED TO OPERATORS SATISFYING k-DAVIES-GAFFNEY ESTIMATES

JUN CAO, DER-CHEN CHANG, HUOXIONG WU, AND DACHUN YANG*

Abstract

Let L be a one-to-one operator of type ω having a bounded H_{∞} functional calculus and satisfying the k-Davies-Gaffney estimates with $k \in \mathbb{N}$. In this article, the authors introduce the weak Hardy space $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ associated to L for $p \in(0,1]$ via the non-tangential square function S_{L} and establish a weak molecular characterization of $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$. A typical example of such operators is the $2 k$-order divergence form homogeneous elliptic operator $L:=(-1)^{k} \sum_{|\alpha|=k=|\beta|} \partial^{\beta}\left(a_{\alpha, \beta} \partial^{\alpha}\right)$, where $\left\{a_{\alpha, \beta}\right\}_{|\alpha|=k=|\beta|}$ are complex bounded measurable functions. As applications, for $p \in\left(\frac{n}{n+k}, 1\right]$, the authors prove that the associated Riesz transform $\nabla^{k} L^{-1 / 2}$ is bounded from $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ to the classical weak Hardy space $W H^{p}\left(\mathbb{R}^{n}\right)$ and, for all $0<p<r \leq 1$ and $\alpha=n\left(\frac{1}{p}-\frac{1}{r}\right)$, the fractional power $L^{-\frac{\alpha}{2 k}}$ is bounded from $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ to $W H_{L}^{r}\left(\mathbb{R}^{n}\right)$. Also, the authors establish an interpolation theorem of $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ by showing that $L^{2}\left(\mathbb{R}^{n}\right) \cap W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ for all $p \in(0,1]$ are the intermediate spaces in the real method of interpolation between the spaces $L^{2}\left(\mathbb{R}^{n}\right) \cap H_{L}^{p}\left(\mathbb{R}^{n}\right)$ for different $p \in$ $(0,1]$. In particular, if L is a nonnegative self-adjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$ satisfying the Davies-Gaffney estimates, the authors further establish the weak atomic characterization of $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$. Furthermore, the authors find the dual space of $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ for $p \in(0,1]$, which can be defined via mean oscillations based on some subtle coverings of bounded open sets and, even when $L:=-\Delta$, are also previously unknown.

1. Introduction

It is well known that Stein and Weiss [60] originally inaugurated the study of real Hardy spaces $H^{p}\left(\mathbb{R}^{n}\right)$ with $p \in(0,1]$ on the Euclidean space \mathbb{R}^{n}. Later, a real-variable theory of $H^{p}\left(\mathbb{R}^{n}\right)$ for $p \in(0,1]$ was systematically developed by Fefferman and Stein in [30]. Since then, the real-variable theory of Hardy spaces $H^{p}\left(\mathbb{R}^{n}\right)$ has found many important applications in various fields of analysis and partial differential equations; see, for example, $[17,18,20,34,48,55,57,58,61]$.

[^0]It is now known that $H^{p}\left(\mathbb{R}^{n}\right)$ is a good substitute of the Lebesgue space $L^{p}\left(\mathbb{R}^{n}\right)$ with $p \in(0,1]$ when studying the boundedness of operators; for example, when $p \in(0,1]$, the Riesz transform $\nabla(-\Delta)^{-1 / 2}$ is not bounded on $L^{p}\left(\mathbb{R}^{n}\right)$, but bounded on $H^{p}\left(\mathbb{R}^{n}\right)$, where Δ is the Laplace operator $\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$ and ∇ is the gradient operator $\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)$ on \mathbb{R}^{n}. Moreover, when considering some weak type inequalities for some of the most important operators from harmonic analysis and partial differential equations, we are led to the more general weak Hardy space $W H^{p}\left(\mathbb{R}^{n}\right)$ (see, for example, $[31,51,33,2,35,56,1,54])$. It is well known that the weak Hardy space $W H^{p}\left(\mathbb{R}^{n}\right)$ is a suitable substitute of both the weak Lebesgue space $W L^{p}\left(\mathbb{R}^{n}\right)$ and the Hardy space $H^{p}\left(\mathbb{R}^{n}\right)$ when studying the boundedness of operators in the critical case. For example, let $\delta \in(0,1], T$ be a δ-Calderón-Zygmund operator and $T^{*}(1)=0$, where T^{*} denotes the adjoint operator of T. It is known that T is bounded on $H^{p}\left(\mathbb{R}^{n}\right)$ for all $p \in\left(\frac{n}{n+\delta}, 1\right]$ and not bounded on $H^{\frac{n}{n+\delta}}\left(\mathbb{R}^{n}\right)$, but, instead of this, T is bounded from $H^{\frac{n}{n+\delta}}\left(\mathbb{R}^{n}\right)$ to $W H^{\frac{n}{n+\delta}}\left(\mathbb{R}^{n}\right)$ (see [51, 2]). Recall that the Riesz transform $\nabla(-\Delta)^{-1 / 2}$ is a 1-Calderón-Zygmund operator with convolution kernel, which is smooth on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ except on the diagonal points

$$
\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: x=y\right\} .
$$

For more related history and properties about $W H^{p}\left(\mathbb{R}^{n}\right)$, we refer to $[29,31,51$, $2,52,56,1]$ and the references cited therein. We should point out that Fefferman, Rivière and Sagher [29] proved that the weak Hardy space $W H^{p}\left(\mathbb{R}^{n}\right)$ naturally occurs as the intermediate spaces in the real method of interpolation between the Hardy spaces $H^{p}\left(\mathbb{R}^{n}\right)$. It is easy to see that the classical Hardy spaces $H^{p}\left(\mathbb{R}^{n}\right)$ and the weak Hardy spaces $W H^{p}\left(\mathbb{R}^{n}\right)$ are essentially related to the Laplace operator Δ.

In recent years, the study of Hardy spaces and their generalizations associated to differential operators attracts a lot of attentions; see, for example, $[3,4,6,11$, $12,14,15,16,24,25,26,27,28,38,39,40,41,42,44,64]$ and their references. In particular, Auscher et al. [4] first introduced the Hardy space $H_{L}^{1}\left(\mathbb{R}^{n}\right)$ associated to L, where the heat kernel generated by L satisfies a pointwise Poisson type upper bound. Later, Duong and Yan $[25,26]$ introduced the dual space $\mathrm{BMO}_{L}\left(\mathbb{R}^{n}\right)$ and showed that the dual space of $H_{L}^{1}\left(\mathbb{R}^{n}\right)$ is $\mathrm{BMO}_{L^{*}}\left(\mathbb{R}^{n}\right)$, where L^{*} denotes the adjoint operator of L in $L^{2}\left(\mathbb{R}^{n}\right)$. Yan [63] further introduced the Hardy space $H_{L}^{p}\left(\mathbb{R}^{n}\right)$ for some $p \in(0,1]$ but near to 1 and generalized these results to $H_{L}^{p}\left(\mathbb{R}^{n}\right)$ and their dual spaces. A real-variable theory of Orlicz-Hardy spaces and their dual spaces associated to L was also developed in [45, 43].

Recently, the (Orlicz-)Hardy space associated to a one-to-one operator of type ω satisfying the k-Davies-Gaffney estimates and having a bounded H_{∞} functional calculus was introduced in $[12,23,10,22]$. A typical example of such operators is the following $2 k$-order divergence form homogeneous elliptic operator

$$
\begin{equation*}
L:=(-1)^{k} \sum_{|\alpha|=k=|\beta|} \partial^{\beta}\left(a_{\alpha, \beta} \partial^{\alpha}\right), \tag{1.1}
\end{equation*}
$$

interpreted in the usual weak sense via a sesquilinear form, with complex bounded measurable coefficients $\left\{a_{\alpha, \beta}\right\}_{|\alpha|=k=|\beta|}$ satisfying the elliptic condition, namely, there exist constants $0<\lambda \leq \Lambda<\infty$ such that, for all α, β with $|\alpha|=k=|\beta|$,
$\left\|a_{\alpha, \beta}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq \Lambda$ and, for all $f \in W^{k, 2}\left(\mathbb{R}^{n}\right), \Re\left(L_{1} f, f\right) \geq \lambda\left\|\nabla^{k} f\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}$. Here and hereafter, $\Re z$ denotes the real part of z for all $z \in \mathbb{C}$.

Notice that, when $k=1, H_{L}^{p}\left(\mathbb{R}^{n}\right)$ is the Hardy space associated to the secondorder divergence form elliptic operator on \mathbb{R}^{n} with complex bounded measurable coefficients, which was introduced by Hofmann and Mayboroda [39, 40], Hofmann et al. [41], and Jiang and Yang [44]. It is known that the associated Riesz transform $\nabla^{k} L^{-1 / 2}$ is bounded from $H_{L}^{p}\left(\mathbb{R}^{n}\right)$ to the classical Hardy space $H^{p}\left(\mathbb{R}^{n}\right)$ for all $p \in$ $\left(\frac{n}{n+k}, 1\right]$ (see [12]). Unlike the classical case, in this case, $\nabla^{k} L^{-1 / 2}$ may even not have a smooth convolution kernel. Thus, the boundedness of $\nabla^{k} L^{-1 / 2}$ can not be extended to the full range of $p \in(0, \infty)$ as before. However, when considering the endpoint boundedness of the associated Riesz transforms, it is found that the weak Hardy space is useful. For example, it was proved in [50] that $\nabla^{k} L^{-1 / 2}$ is bounded from $H_{L}^{n /(n+k)}\left(\mathbb{R}^{n}\right)$ to the weak Hardy space $W H^{n /(n+k)}\left(\mathbb{R}^{n}\right)$, which may not be bounded on $H_{L}^{n /(n+k)}\left(\mathbb{R}^{n}\right)$.

Motivated by the above results, in this article, we wish to develop a real-variable theory of weak Hardy spaces associated to a class of differential operators and study their applications. More precisely, we always assume that L is a one-toone operator of type ω having a bounded H_{∞} functional calculus and satisfying the k-Davies-Gaffney estimates. For $p \in(0,1]$, we introduce the weak Hardy space $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ associated to L via the non-tangential square function S_{L} and establish its weak molecular characterization. In particular, if L is a nonnegative self-adjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$ satisfying the Davies-Gaffney estimates, we further establish the weak atomic decomposition of $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$. By their atomic characterizations, we easily see that $W H_{-\Delta}^{p}\left(\mathbb{R}^{n}\right)$ and the closure of $W H^{p}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)$ on the quasinorm $\|\cdot\|_{W H^{p}\left(\mathbb{R}^{n}\right)}$ coincide with equivalent quasi-norms. Let L be the $2 k$-order divergence form homogeneous elliptic operator as in (1.1). As applications, we prove that, for all $p \in(n /(n+k), 1]$, the associated Riesz transform $\nabla^{k} L^{-1 / 2}$ is bounded from $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ to the classical weak Hardy space $W H^{p}\left(\mathbb{R}^{n}\right)$; furthermore, for all $0<p<r \leq 1$ and $\alpha=n(1 / p-1 / r)$, the fractional power $L^{-\alpha /(2 k)}$ is bounded from $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ to $W H_{L}^{r}\left(\mathbb{R}^{n}\right)$. We also establish a real interpolation theorem on $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ by showing that $L^{2}\left(\mathbb{R}^{n}\right) \cap W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ for all $p \in(0,1]$ are the the intermediate spaces in the real method of interpolation between the spaces $L^{2}\left(\mathbb{R}^{n}\right) \cap H_{L}^{p}\left(\mathbb{R}^{n}\right)$ for different $p \in(0,1]$. Moreover, if L is nonnegative self-adjoint and satisfies the Davies-Gaffney estimates, then, for $p \in(0,1]$, we give out the dual space of $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$, which is defined via mean oscillations of distributions based on some subtle coverings of bounded open sets, and prove that the elements in $W \Lambda_{L}^{\alpha}\left(\mathbb{R}^{n}\right)$ can be viewed as a weak type Carleson measure of order α. We point out that, even when $L:=-\Delta$, the dual spaces of $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ are also previously unknown, since the seminal article [31] of Fefferman and Soria on $W H^{1}\left(\mathbb{R}^{n}\right)$ was published in 1986. Our aforementioned result on dual spaces of $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ may give some light on this problem. In short, the results of this article round out the picture on weak Hardy spaces associated to operators satisfying k-Davies-Gaffney estimates. As in the aforementioned articles on the theory of Hardy spaces associated with operators, the achievement of all results in this article stems from subtle atomic decompositions of weak tent spaces introduced in this article. To the best
of our knowledge, all results obtained in this article are new even when L is the Laplace operator.

This article is organized as follows.
In Section 2, we first present some assumptions on the operator L used throughout the whole article (see Assumptions $(\mathcal{L})_{1},(\mathcal{L})_{2},(\mathcal{L})_{3}$ and $(\mathcal{L})_{4}$ below) and recall some basic facts concerning the k-Davies-Gaffney estimates (see Lemmas 2.3, 2.4 and 2.5 below) in Subsection 2.1. In Subsection 2.2, we introduce the weak tent space and establish its weak atomic decomposition (see Theorem 2.6 below). Later, via the Whitney decomposition lemma, we obtain another weak atomic decomposition of $W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$ (see Theorem 2.11 below), which plays an important role in the dual theory of our weak Hardy spaces.

Finally, in Section 2.3, after recalling some necessary results on the Hardy space $H_{L}^{p}\left(\mathbb{R}^{n}\right)$ associated to L, we introduce the weak Hardy space $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ associated to L (see Definition 2.12 below) and establish its weak molecular characterization (see Theorem 2.21 below). As applications, if L is the $2 k$-order divergence form homogeneous elliptic operator as in (1.1), we prove the boundedness of the associated Riesz transform $\nabla^{k} L^{-1 / 2}$ and fractional power $L^{-\alpha /(2 k)}$ on $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ (see Theorems 2.24 and 2.25 below). Moreover, when L is a nonnegative self-adjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$ satisfying the Davies-Gaffney estimates, we obtain its weak atomic characterization (see Theorem 2.15 below). Recall that, in $[31,51]$, for all $p \in(0,1]$, a weak atomic decomposition of the classical weak Hardy space $W H^{p}\left(\mathbb{R}^{n}\right)$ is obtained. However, the "atoms" appeared in the weak atomic characterization of $W H^{p}\left(\mathbb{R}^{n}\right)$ in $[31,51]$ are essentially closer, in spirit, to the classical " $L^{\infty}\left(\mathbb{R}^{n}\right)$-atoms", while the "atoms" appeared in our weak atomic characterization of $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ are just $H_{L}^{p}\left(\mathbb{R}^{n}\right)$-atoms associated to L from $[38]$ when $p=1$ and from [42] when $p \in(0,1]$ (see Theorem 2.15 below).

In order to establish the weak atomic decomposition of weak tent spaces in Theorem 2.6 below, we want to point out that we borrow some ideas from the proof of [19, Proposition 2], with some necessary adjustments by changing the formation of the norm from the original strong version to the present weak version. We also remark that this weak atomic characterization still holds true under some small modifications of the level set of the \mathcal{A}-functional (see (2.1) and Remark 2.10 below) An innovation of Theorem 2.6 is to establish an explicit relation between the supports of $T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$-atoms and the corresponding coefficients, which plays a key role in establishing the weak atomic/molecular characterizations of weak Hardy spaces associated to L (see Theorems 2.6(ii), 2.15 and 2.21 below). Indeed, the proof of Theorem 2.15 strongly depends on Theorem 2.6 and a superposition principle on weak type estimates from Stein et al. [59] (see also Lemma 2.17 below). We point out that, without Theorem 2.6(ii), Theorem 2.15 seems impossible (see (2.19) and (2.20) below). The proof of Theorem 2.21 is similar to that of Theorem 2.15, but needs finer off-diagonal estimates because of the lack of the support condition of molecules.

In Section 3, we establish an interpolation theorem of $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ by showing that $L^{2}\left(\mathbb{R}^{n}\right) \cap W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ for all $p \in(0,1]$ are the intermediate spaces in the real method of interpolation between the Hardy spaces $L^{2}\left(\mathbb{R}^{n}\right) \cap H_{L}^{p}\left(\mathbb{R}^{n}\right)$ for different $p \in(0,1]$ (see Theorem 3.5 below). Unlike in the classical case in [29], we prove Theorem 3.5
by using a real interpolation result on the tent space $T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$ from [9] and a result on the interpolation of intersections from Krugljak et al. [47].

Section 4 is devoted to the dual theory of $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$. Let L be nonnegative selfadjoint and satisfy the Davies-Gaffney estimates. We first introduce the notion of the weak Lipschitz space $W \Lambda_{L, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right)$ via the mean oscillation over bounded open sets, then we prove that the elements in $W \Lambda_{L, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right)$ can be viewed as some weak Carleson measures of order α (see Proposition 4.9 below) and prove that the dual space of $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ is $W \Lambda_{L, \mathcal{N}}^{n(1 / p-1)}\left(\mathbb{R}^{n}\right)$ (see Theorem 4.6 below).

Recall that the dual space of the classical weak Hardy space $W H^{1}\left(\mathbb{R}^{n}\right)$ was first considered by Fefferman and Soria [31]. More precisely, for any bounded open set $\Omega \subset \mathbb{R}^{n}$ and function φ on \mathbb{R}^{n}, the mean oscillation $\mathcal{O}(\varphi, \Omega)$ of φ over Ω was defined by Fefferman and Soria in [31] as

$$
\mathcal{O}(\varphi, \Omega):=\sup \frac{1}{|\Omega|} \sum_{k} \int_{Q_{k}}\left|\varphi(x)-\varphi_{Q_{k}}\right| d x
$$

where $\varphi_{Q}:=\frac{1}{|Q|} \int_{Q} \varphi(x) d x$ for any cube Q and the supremum is taken over all collections $\left\{Q_{k}\right\}_{k}$ of subcubes of Ω with bounded $C(n)$-overlap (which means that there exists a positive constant $C(n)$ such that $\left.\sum_{k} \chi_{Q_{k}} \leq C(n)\right)$. Let $\omega(\delta):=$ $\sup _{|\Omega|=\delta} \mathcal{O}(\varphi, \Omega)$,

$$
L_{0}^{1}\left(\mathbb{R}^{n}\right):=\left\{f \in L^{1}\left(\mathbb{R}^{n}\right): \int_{\mathbb{R}^{n}} f(x) d x=0\right\}
$$

and $\overline{L_{0}^{1}\left(\mathbb{R}^{n}\right)}$ be the closure of $L_{0}^{1}\left(\mathbb{R}^{n}\right)$ in the norm of the weak Hardy space $W H^{1}\left(\mathbb{R}^{n}\right)$. In [31], Fefferman and Soria proved that the dual of $\overline{L_{0}^{1}\left(\mathbb{R}^{n}\right)}$ is the set of all the functions φ satisfying

$$
\|\varphi\|_{*}:=\int_{0}^{\infty} \frac{\omega(\delta)}{\delta} d \delta<\infty
$$

In the present article, we show, in Theorem 4.6 below, that the dual space of $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ for all $p \in(0,1]$ is $W \Lambda_{L, \mathcal{N}}^{n(1 / p-1)}\left(\mathbb{R}^{n}\right)$, which is defined by means of a similar integral of the mean oscillation based on some smart coverings of bounded open sets (see Definitions 4.1 and 4.2 below). Here the integral mean φ_{Q} is replaced by some approximation of identity, and the collections of subcubes of an open set with bounded $C(n)$-overlap by another new class of sets (see Definition 4.1). In particular, when $L=-\Delta, W \Lambda_{-\Delta, \overrightarrow{\mathcal{N}}}^{n(1 / p-1)}\left(\mathbb{R}^{n}\right)$ is the dual space of the space

 quasi-norm $\|\cdot\|_{W H^{p}\left(\mathbb{R}^{n}\right)}$.

The proof of Theorem 4.6 strongly depends on a Carderón reproducing formula obtained in [39], a subtle weak atomic decomposition of the weak tent space (see Theorem 2.11), and a resolvent characterization of $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ (see Proposition 4.5 below) and Proposition 4.9 below.

Recall that a key ingredient to prove the duality between Hardy spaces and Lipschitz spaces is to represent the Lipschitz norm by means of a dual norm expression
of some Hilbert spaces. It is known that, in the case of the classical "strong" Lipschitz space $\Lambda_{L}^{\alpha}\left(\mathbb{R}^{n}\right)$, this Hilbert space can be chosen to be $L^{2}(B)$, where B is some ball (see the proof of [41, Theorem 3.51]). Observe also that the mean oscillation appearing in the norm of the "strong" Lipschitz space $\Lambda_{L}^{\alpha}\left(\mathbb{R}^{n}\right)$ has the form

$$
\left\{\frac{1}{|B|} \int_{B}\left|\left(I-e^{-r_{B}^{2} L}\right)^{M} f(x)\right|^{2} d x\right\}^{1 / 2},
$$

which involves only one ball and hence the off-diagonal estimates can be applied directly. However, in the weak case, the mean oscillation involves a general bounded open set (see (4.3) below). Therefore, we can not apply off-diagonal estimates directly. To overcome this difficulty, we first introduce, in Definition 4.1, subtle coverings of bounded open sets, which stem from the proof of the weak atomic decomposition for weak tent spaces in Theorem 2.11, obtained via the Whitneytype decompositions on level sets for \mathcal{A}-functionals in (2.1). More precisely, we first find a sequence of balls which cover the considered open set via the Whitney-type decomposition. Then we construct the annuli sets based on a sequence of balls and consider the off-diagonal estimates on these annuli. Since the radius of the balls in the sequence are different, the off-diagonal estimates on these annuli are more complicated than those on a single ball.

As usual, we make some conventions on the notation. Throughout the whole article, we always let $\mathbb{N}:=\{1,2, \ldots\}, \mathbb{Z}_{+}:=\mathbb{N} \cup\{0\}$ and

$$
\mathbb{R}_{+}^{n+1}:=\left\{(x, t): x \in \mathbb{R}^{n}, t \in(0, \infty)\right\}
$$

. We use C to denote a positive constant, independent of the main parameters involved, but whose value may differ from line to line. Constants with subscripts, such as C_{0}, M_{0} and α_{0}, do not change in different occurrences. If $f \leq C g$, we write $f \lesssim g$ and, if $f \lesssim g \lesssim f$, we then write $f \sim g$. For all $x \in \mathbb{R}^{n}, r \in(0, \infty)$ and $\alpha \in(0, \infty)$, let $B(x, r):=\left\{y \in \mathbb{R}^{n}:|x-y|<r\right\}, \alpha B(x, r):=B(x, \alpha r), S_{0}(B):=B$, $S_{i}(B):=2^{i} B \backslash\left(2^{i-1} B\right)$ and $\widetilde{S}_{i}(B):=2^{i+1} B \backslash\left(2^{i-2} B\right)$ for all $i \in \mathbb{Z}_{+}$, where, when $i<0,2^{i} B:=\emptyset$. Also, for any set $E \subset \mathbb{R}^{n}$, we use E^{\complement} to denote the set $\mathbb{R}^{n} \backslash E$ and χ_{E} its characteristic function. For any index $q \in[1, \infty]$, we denote by q^{\prime} its conjugate index, namely, $1 / q+1 / q^{\prime}=1$. Let $\mathcal{S}\left(\mathbb{R}^{n}\right)$ be the space of Schwartz functions on \mathbb{R}^{n} and $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ its dual space.

2. The weak Hardy space $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$

The main purpose of this section is to introduce the weak Hardy space $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ and establish its weak atomic and molecular characterizations. As applications of this weak molecular characterization, we obtain the boundedness of the associated Riesz transform and fractional power on $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$. In order to achieve this goal, we need to describe our hypotheses on the operator L throughout the whole article.
2.1. Assumptions on L. In this subsection, we first survey some known results on the bounded H_{∞} functional calculus. Then, after stating our assumptions on the operator L throughout the whole article, we recall some useful technical lemmas on the k-Davies-Gaffney estimates.

For $\theta \in[0, \pi)$, the open and closed sectors, S_{θ}^{0} and S_{θ}, of angle θ in the complex plane \mathbb{C} are defined, respectively, by setting $S_{\theta}^{0}:=\{z \in \mathbb{C} \backslash\{0\}:|\arg z|<\theta\}$ and $S_{\theta}:=\{z \in \mathbb{C}:|\arg z| \leq \theta\}$. Let $\omega \in[0, \pi)$. A closed operator T on $L^{2}\left(\mathbb{R}^{n}\right)$ is said to be of type ω, if
(i) the spectrum of $T, \sigma(T)$, is contained in S_{ω};
(ii) for each $\theta \in(\omega, \pi)$, there exists a nonnegative constant C such that, for all $z \in \mathbb{C} \backslash S_{\theta}$,

$$
\left\|(T-z I)^{-1}\right\|_{\mathcal{L}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)} \leq C|z|^{-1}
$$

here and hereafter, for any normed linear space $\mathcal{H},\|S\|_{\mathcal{L}(\mathcal{H})}$ denotes the operator norm of the linear operator $S: \mathcal{H} \rightarrow \mathcal{H}$.

For $\mu \in[0, \pi)$ and $\sigma, \tau \in(0, \infty)$, let

$$
\begin{aligned}
& H\left(S_{\mu}^{0}\right): \\
& H_{\infty}\left(S_{\mu}^{0}\right):=\left\{f: f \text { is a holomorphic function on } S_{\mu}^{0}\right\} \\
&
\end{aligned}
$$

and

$$
\begin{aligned}
\Psi_{\sigma, \tau}\left(S_{\mu}^{0}\right):=\left\{f \in H\left(S_{\mu}^{0}\right):\right. & \text { there exists a positive constant } C \text { such that, } \\
& \text { for all } \left.\xi \in S_{\mu}^{0},|f(\xi)| \leq C \inf \left\{|\xi|^{\sigma},|\xi|^{-\tau}\right\}\right\}
\end{aligned}
$$

It is known that every one-to-one operator T of type ω in $L^{2}\left(\mathbb{R}^{n}\right)$ has a unique holomorphic functional calculus; see, for example, [53]. More precisely, let T be a one-to-one operator of type ω, with $\omega \in[0, \pi), \mu \in(\omega, \pi), \sigma, \tau \in(0, \infty)$ and $f \in \Psi_{\sigma, \tau}\left(S_{\mu}^{0}\right)$. The function of the operator $T, f(T)$, can be defined by the H_{∞} functional calculus in the following way,

$$
f(T)=\frac{1}{2 \pi i} \int_{\Gamma}(\xi I-T)^{-1} f(\xi) d \xi
$$

where $\Gamma:=\left\{r e^{i \nu}: \infty>r>0\right\} \cup\left\{r e^{-i \nu}: 0<r<\infty\right\}, \nu \in(\omega, \mu)$, is a curve consisting of two rays parameterized anti-clockwise. It is known that $f(T)$ is independent of the choice of $\nu \in(\omega, \mu)$ and the integral is absolutely convergent in $\|\cdot\|_{\mathcal{L}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)}($ see $[53,36])$.

In what follows, we always assume $\omega \in[0, \pi / 2)$. Then, it follows, from [36, Proposition 7.1.1], that, for every operator T of type ω in $L^{2}\left(\mathbb{R}^{n}\right),-T$ generates a holomorphic C_{0}-semigroup $\left\{e^{-z T}\right\}_{z \in S_{\pi / 2-\omega}^{0}}$ on the open sector $S_{\pi / 2-\omega}^{0}$ such that, for all $z \in S_{\pi / 2-\omega}^{0},\left\|e^{-z T}\right\|_{\mathcal{L}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)} \leq 1$ and, moreover, every nonnegative self-adjoint operator is of type 0 .

Let $\Psi\left(S_{\mu}^{0}\right):=\cup_{\sigma, \tau>0} \Psi_{\sigma, \tau}\left(S_{\mu}^{0}\right)$. It is well known that the above holomorphic functional calculus defined on $\Psi\left(S_{\mu}^{0}\right)$ can be extended to $H_{\infty}\left(S_{\mu}^{0}\right)$ via a limit process (see [53]). Recall that, for $\mu \in(0, \pi)$, the operator T is said to have a bounded $H_{\infty}\left(S_{\mu}^{0}\right)$ functional calculus in the Hilbert space \mathcal{H} if there exists a positive constant C such that, for all $\psi \in H_{\infty}\left(S_{\mu}^{0}\right),\|\psi(T)\|_{\mathcal{L}(\mathcal{H})} \leq C\|\psi\|_{L^{\infty}\left(S_{\mu}^{0}\right)}$, and T is said to have
a bounded H_{∞} functional calculus in the Hilbert space \mathcal{H} if there exists $\mu \in(0, \pi)$ such that T has a bounded $H_{\infty}\left(S_{\mu}^{0}\right)$ functional calculus.

Throughout the whole article, we always assume that L satisfies the following three assumptions:
Assumption $(\mathcal{L})_{1}$. The operator L is a one-to-one operator of type ω in $L^{2}\left(\mathbb{R}^{n}\right)$ with $\omega \in[0, \pi / 2)$.
Assumption $(\mathcal{L})_{2}$. The operator L has a bounded H_{∞} functional calculus in $L^{2}\left(\mathbb{R}^{n}\right)$.
Assumption $(\mathcal{L})_{3}$. Let $k \in \mathbb{N}$. The operator L generates a holomorphic semigroup $\left\{e^{-t L}\right\}_{t>0}$ which satisfies the k-Davies-Gaffney estimates, namely, there exist positive constants C and C_{1} such that, for all closed sets E and F in $\mathbb{R}^{n}, t \in(0, \infty)$ and $f \in L^{2}\left(\mathbb{R}^{n}\right)$ supported in E,

$$
\left\|e^{-t L} f\right\|_{L^{2}(F)} \leq C \exp \left\{-C_{1} \frac{[\operatorname{dist}(E, F)]^{2 k /(2 k-1)}}{t^{1 /(2 k-1)}}\right\}\|f\|_{L^{2}(E)}
$$

here and hereafter, for any $p \in(0, \infty),\|f\|_{L^{p}(E)}:=\left\{\int_{E}|f(x)|^{p} d x\right\}^{1 / p}$ and

$$
\operatorname{dist}(E, F):=\inf _{x \in E, y \in F}|x-y|
$$

denotes the distance between E and F.
In many cases, we also need the following assumption, which is stronger than Assumption $(\mathcal{L})_{3}$.
Assumption $(\mathcal{L})_{4}$. Let $k \in \mathbb{Z}_{+}$and $\left(p_{-}(L), p_{+}(L)\right)$ be the range of exponents $p \in[1, \infty]$ for which the holomorphic semigroup $\left\{e^{-t L}\right\}_{t>0}$ is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$. Then, for all $p_{-}(L)<p \leq q<p_{+}(L),\left\{e^{-t L}\right\}_{t>0}$ satisfies the $L^{p}-L^{q} k$-off-diagonal estimates, namely, there exist positive constants C_{2} and C_{3} such that, for all closed sets $E, F \subset \mathbb{R}^{n}$ and $f \in L^{p}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)$ supported in E,

$$
\left\|e^{-t L} f\right\|_{L^{q}(F)} \leq C_{2} t^{\frac{n}{2 k}\left(\frac{1}{q}-\frac{1}{p}\right)} \exp \left\{-\frac{[\operatorname{dist}(E, F)]^{2 k /(2 k-1)}}{C_{3} t^{1 /(2 k-1)}}\right\}\|f\|_{L^{p}(E)}
$$

Remark 2.1. The notion of the off-diagonal estimates (or the so called DaviesGaffney estimates) of the semigroup $\left\{e^{-t L}\right\}_{t>0}$ are first introduced by Gaffney [32] and Davies [21], which serves as good substitutes of the Gaussian upper bound of the associated heat kernel; see also $[8,5]$ and related references. We point out that, when $k=1$, the k-Davies-Gaffney estimates are the usual Davies-Gaffney estimates (or the L^{2} off-diagonal estimates or just the Gaffney estimates) (see, for example, [38, 39, 40, 42, 41]).

Proposition 2.2 ([12]). Let L be the $2 k$-order divergence form homogeneous elliptic operator as in (1.1). Then L satisfy Assumptions $(\mathcal{L})_{1},(\mathcal{L})_{2},(\mathcal{L})_{3}$ and $(\mathcal{L})_{4}$.

In order to make this article self-contained, we list the following three technical lemmas which are needed in the proofs of our main results.

Lemma 2.3 ([12]). Assume that the operator L defined on $L^{2}\left(\mathbb{R}^{n}\right)$ satisfies Assumptions $(\mathcal{L})_{1},(\mathcal{L})_{2}$ and $(\mathcal{L})_{3}$. Then, for all $m \in \mathbb{N}$, the family of operators, $\left\{(t L)^{m} e^{-t L}\right\}_{t>0}$, also satisfy the k-Davies-Gaffney estimates.

Lemma 2.4 ([12]). Let $\left\{A_{t}\right\}_{t>0}$ and $\left\{B_{t}\right\}_{t>0}$ be two families of linear operators satisfying the k-Davies-Gaffney estimates. Then the families of linear operators $\left\{A_{t} B_{t}\right\}_{t>0}$ also satisfy the k-Davies-Gaffney estimates.

Lemma 2.5 ([12]). Let $M \in \mathbb{N}$ and L be as in (1.1). Then there exists a positive constant C such that, for all closed sets E, F in \mathbb{R}^{n} with $\operatorname{dist}(E, F)>0, f \in L^{2}\left(\mathbb{R}^{n}\right)$ supported in E and $t \in(0, \infty)$,

$$
\left\|\nabla^{k} L^{-1 / 2}\left(I-e^{-t L}\right)^{M} f\right\|_{L^{2}(F)} \leq C\left(\frac{t}{[\operatorname{dist}(E, F)]^{2 k}}\right)^{M}\|f\|_{L^{2}(E)}
$$

and

$$
\left\|\nabla^{k} L^{-1 / 2}\left(t L e^{-t L}\right)^{M} f\right\|_{L^{2}(F)} \leq C\left(\frac{t}{[\operatorname{dist}(E, F)]^{2 k}}\right)^{M}\|f\|_{L^{2}(E)}
$$

2.2. The weak tent spaces $W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$. In this subsection, we introduce the weak tent space and establish its weak atomic characterization. This construction constitutes a crucial component to obtain the weak atomic or molecular characterizations of the weak Hardy space.

We first recall the notion of the tent space. Let F be a function on $\mathbb{R}_{+}^{n+1}:=$ $\mathbb{R}^{n} \times(0, \infty)$. For all $x \in \mathbb{R}^{n}$, the \mathcal{A}-functional $\mathcal{A}(F)(x)$ of F is defined by setting

$$
\begin{equation*}
\mathcal{A}(F)(x):=\left\{\iint_{\Gamma(x)}|F(y, t)|^{2} \frac{d y d t}{t^{n+1}}\right\}^{\frac{1}{2}} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma(x):=\left\{(y, t) \in \mathbb{R}_{+}^{n+1}:|y-x|<t\right\} \tag{2.2}
\end{equation*}
$$

is a cone with vertex x. For all $p \in(0, \infty)$, the tent space $T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$ is defined by

$$
\begin{equation*}
T^{p}\left(\mathbb{R}_{+}^{n+1}\right):=\left\{F: \mathbb{R}_{+}^{n+1} \rightarrow \mathbb{C}:\|F\|_{T^{p}\left(\mathbb{R}_{+}^{n+1}\right)}:=\|\mathcal{A}(F)\|_{L^{p}\left(\mathbb{R}^{n}\right)}<\infty\right\} \tag{2.3}
\end{equation*}
$$

For all open sets Ω, let $\widehat{\Omega}:=\mathbb{R}_{+}^{n+1} \backslash \cup_{x \in \mathbb{R}^{n} \backslash \Omega} \Gamma(x)$ be the tent over Ω. For all $x_{B} \in \mathbb{R}^{n}$ and $r_{B} \in(0, \infty)$, let $B:=B\left(x_{B}, r_{B}\right)$ be the ball in \mathbb{R}^{n}. It is easy to see that $\widehat{B}=\left\{(y, t) \in \mathbb{R}_{+}^{n+1}:\left|y-x_{B}\right| \leq r_{B}-t\right\}$. For any $p \in(0, \infty)$ and ball B, a function A defined on \mathbb{R}_{+}^{n+1} is called a $T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$-atom associated to B if $\operatorname{supp} A \subset \widehat{B}$ and

$$
\left\{\iint_{\widehat{B}}|A(x, t)|^{2} \frac{d x d t}{t}\right\}^{\frac{1}{2}} \leq|B|^{\frac{1}{2}-\frac{1}{p}}
$$

For $p \in(0, \infty)$, let $W L^{p}\left(\mathbb{R}^{n}\right)$ be the weak Lebesgue space with the quasi-norm

$$
\|f\|_{W L^{p}\left(\mathbb{R}^{n}\right)}:=\left[\sup _{\alpha \in(0, \infty)} \alpha^{p}\left|\left\{x \in \mathbb{R}^{n}:|f(x)|>\alpha\right\}\right|\right]^{1 / p}
$$

The weak tent space $W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$ is defined to be the collection of all functions F on \mathbb{R}_{+}^{n+1} such that its \mathcal{A}-functional $\mathcal{A}(F) \in W L^{p}\left(\mathbb{R}^{n}\right)$. For any $F \in W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$, define its quasi-norm by $\|F\|_{W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)}:=\|\mathcal{A}(F)\|_{W L^{p}\left(\mathbb{R}^{n}\right)}$.

For the weak tent space, we have the following weak atomic decomposition.
Theorem 2.6. Let $p \in(0,1]$ and $F \in W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$. Then there exists a sequence of $T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$-atoms, $\left\{A_{i, j}\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}}$, associated, respectively, to the balls $\left\{B_{i, j}\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}}$ such that
(i) $F=\sum_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}} \lambda_{i, j} A_{i, j}$ pointwisely almost everywhere in \mathbb{R}_{+}^{n+1}, where $\lambda_{i, j}:=$ $\widetilde{C} 2^{i}\left|B_{i, j}\right|^{1 / p}$ and \widetilde{C} is a positive constant independent of F;
(ii) there exists a positive constant C, independent of F, such that

$$
\sup _{i \in \mathbb{Z}}\left(\sum_{j \in \mathbb{Z}_{+}}\left|\lambda_{i, j}\right|^{p}\right)^{\frac{1}{p}} \leq C\|F\|_{W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)}
$$

(iii) for all $i \in \mathbb{Z}$ and $j \in \mathbb{Z}_{+}$, let $\widetilde{B}_{i, j}:=\frac{1}{10 \sqrt{n}} B_{i, j}$. Then, for all $i \in \mathbb{Z},\left\{\widetilde{B}_{i, j}\right\}_{j \in \mathbb{Z}_{+}}$ are mutually disjoint.

In order to prove this theorem, we need the following Whitney decomposition theorem (see, for example, [34, p.463]).

Lemma 2.7. Let Ω be an open nonempty proper subset of \mathbb{R}^{n}. Then there exists a family of closed cubes $\left\{Q_{j}\right\}_{j \in \mathbb{Z}_{+}}$such that
(i) $\cup_{j \in \mathbb{Z}_{+}} Q_{j}=\Omega$ and $\left\{Q_{j}\right\}_{j \in \mathbb{Z}_{+}}$have disjoint interiors;
(ii) for all $j \in \mathbb{Z}_{+}, \sqrt{n} l_{Q_{j}} \leq \operatorname{dist}\left(Q_{j}, \Omega^{\complement}\right) \leq 4 \sqrt{n} l_{Q_{j}}$, where $l_{Q_{j}}$ denotes the length of the cube Q_{j};
(iii) for any $j, k \in \mathbb{Z}_{+}$, if the boundaries of two cubes Q_{j} and Q_{k} touch, then $\frac{1}{4} \leq \frac{l_{Q_{j}}}{l_{Q_{k}}} \leq 4 ;$
(iv) for a given $j \in \mathbb{Z}_{+}$, there exist at most $12 n$ different cubes Q_{k} that touch Q_{j}.

For any fixed $\gamma \in(0,1)$ and bounded open set Ω in \mathbb{R}^{n} with the complementary set F, let $\Omega_{\gamma}^{*}:=\left\{x \in \mathbb{R}^{n}: \mathcal{M}\left(\chi_{\Omega}\right)(x)>1-\gamma\right\}$ and $F_{\gamma}^{*}:=\mathbb{R}^{n} \backslash \Omega_{\gamma}^{*}$, where \mathcal{M} denotes the usual Hardy-Littlewood maximal function, namely, for all $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ and $x \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\mathcal{M} f(x):=\sup _{B \ni x} \frac{1}{|B|} \int_{B}|f(y)| d y \tag{2.4}
\end{equation*}
$$

where the supremum is taken over all balls containing x. We also need the following auxiliary lemma.

Lemma 2.8 ([19]). Let $\alpha \in(0, \infty)$. Then there exist constant $\gamma \in(0,1)$, sufficiently close to 1 , and positive constant C such that, for any closed set F, whose complement (denoted by Ω) has finite measure, and for any non-negative function Φ on \mathbb{R}_{+}^{n+1},

$$
\int_{\mathcal{R}\left(F_{\gamma}^{*}\right)} \Phi(y, t) t^{n} d y d t \leq C \int_{F}\left\{\int_{\Gamma(x)} \Phi(y, t) d y d t\right\} d x
$$

where $\mathcal{R}\left(F_{\gamma}^{*}\right):=\cup_{x \in F_{\gamma}^{*}} \Gamma(x)$ and $\Gamma(x)$ for $x \in \mathbb{R}^{n}$ is as in (2.2).

Proof of Theorem 2.6. We show this theorem in the order of (ii), (i) and (iii).
To show (ii), let $F \in W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$. For all $i \in \mathbb{Z}$, let

$$
O_{i}:=\left\{x \in \mathbb{R}^{n}: \mathcal{A}(F)(x)>2^{i}\right\} .
$$

It is easy to see that $O_{i+1} \subset O_{i}$. Moreover, since $F \in W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$, we readily see that $\left|O_{i}\right|<\infty$. For fixed $\gamma \in(0,1)$ satisfying the same restriction as in Lemma 2.8, let

$$
\left(O_{i}\right)_{\gamma}^{*}:=\left\{x \in \mathbb{R}^{n}: \mathcal{M}\left(\chi_{O_{i}}\right)(x)>1-\gamma\right\} .
$$

By abuse of notation, we simply write O_{i}^{*} instead of $\left(O_{i}\right)_{\gamma}^{*}$. Since O_{i} is open, we easily see that $O_{i} \subset O_{i}^{*}$ and, by the weak $(1,1)$ boundedness of \mathcal{M}, we further know that there exists a positive constant $C(\gamma)$, depending on γ, such that $\left|O_{i}^{*}\right| \leq C(\gamma)\left|O_{i}\right|$. For each O_{i}^{*}, using Lemma 2.7, we obtain a Whitney decomposition $\left\{Q_{i, j}\right\}_{j \in \mathbb{Z}_{+}}$of O_{i}^{*}. Let $B_{i, j}$ be the ball having the same center as $Q_{i, j}$ with the radius $5 \sqrt{n} l_{Q_{i, j}}$, where $l_{Q_{i, j}}$ denotes the length of $Q_{i, j}$. By Lemma 2.7(ii), we immediately see that $B_{i, j} \cap\left(O_{i}^{*}\right)^{\complement} \neq \emptyset$.

Now, for all $i \in \mathbb{Z}$ and $j \in \mathbb{Z}_{+}$, let $\Delta_{i, j}:=\widehat{B}_{i, j} \cap\left(Q_{i, j} \times(0, \infty)\right) \cap\left(\widehat{O}_{i}^{*} \backslash \widehat{O}_{i+1}^{*}\right)$, $\lambda_{i, j}:=\widetilde{C} 2^{i}\left|B_{i, j}\right|^{\frac{1}{p}}$ and $A_{i, j}:=F \chi_{\Delta_{i, j}} / \lambda_{i, j}$, where $\widehat{B}_{i, j}$ and \widehat{O}_{i}^{*} denote, respectively, the tents over $B_{i, j}$ and O_{i}^{*}, and \widetilde{C} is a positive constant independent of F, which will be determined later. From the fact that $\operatorname{supp} F \subset \cup_{i \in \mathbb{Z}} \cup_{j \in \mathbb{Z}_{+}} \Delta_{i, j}$, it follows that

$$
\begin{equation*}
F(x, t)=\sum_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}} F(x, t) \chi_{\Delta_{i, j}}(x, t)=\sum_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}} \lambda_{i, j} A_{i, j}(x, t) \tag{2.5}
\end{equation*}
$$

pointwisely almost every $(x, t) \in \mathbb{R}_{+}^{n+1}$.
Moreover, for all $i \in \mathbb{Z}$, by the definition of $\lambda_{i, j}$, Lemma $2.7(\mathrm{i})$, the fact that $\left|O_{i}^{*}\right| \leq C(\gamma)\left|O_{i}\right|$ and the definition of O_{i}, we conclude that

$$
\sum_{j \in \mathbb{Z}_{+}}\left|\lambda_{i, j}\right|^{p} \sim 2^{i p} \sum_{j \in \mathbb{Z}_{+}}\left|B_{i, j}\right| \sim 2^{i p} \sum_{j \in \mathbb{Z}_{+}}\left|Q_{i, j}\right| \lesssim 2^{i p}\left|O_{i}\right| \sim 2^{i p}\left|\left\{x \in \mathbb{R}^{n}: \mathcal{A}(F)(x)>2^{i}\right\}\right|
$$

$$
\begin{equation*}
\lesssim\|\mathcal{A}(F)\|_{W L^{p}\left(\mathbb{R}^{n}\right)}^{p} \sim\|F\|_{W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)}^{p} \tag{2.6}
\end{equation*}
$$

which immediately implies (ii).
On the other hand, for any closed set F, let $\mathcal{R}(F):=\cup_{x \in F} \Gamma(x)$. For all $(y, t) \in$ $\Delta_{i, j}$, it follows, from the fact that $\widehat{O}_{i}^{*}=\left\{(y, t): \operatorname{dist}\left(y, \mathbb{R}^{n} \backslash O_{i}^{*}\right) \geq t\right\}$ and Lemma 2.7 (ii), that $t \leq \operatorname{dist}\left(y, \mathbb{R}^{n} \backslash O_{i}^{*}\right)<r_{B_{i, j}}$. Thus, for all $H \in T^{2}\left(\mathbb{R}_{+}^{n+1}\right)$ satisfying $\|H\|_{T^{2}\left(\mathbb{R}_{+}^{n+1}\right)} \leq 1$, by the fact that $\mathbb{R}_{+}^{n+1} \backslash \widehat{O}_{i+1}^{*}=\mathcal{R}\left(\mathbb{R}^{n} \backslash O_{i+1}^{*}\right)$, the support condition of $A_{i, j}\left(\operatorname{supp} A_{i, j} \subset \widehat{B}_{i, j}\right)$, Lemma 2.8, Hölder's inequality and the definitions of $A_{i, j}$ and O_{i+1}, we see that

$$
\begin{align*}
& \left|\left\langle A_{i, j}, H\right\rangle_{T^{2}\left(\mathbb{R}_{+}^{n+1}\right)}\right| \tag{2.7}\\
& \quad \leq \int_{\mathcal{R}\left(\mathbb{R}^{n} \backslash O_{i+1}^{*}\right)}\left|A_{i, j}(y, t) H(y, t)\right| \chi_{\Delta_{i, j}}(y, t) \frac{d y d t}{t} \\
& \quad \lesssim \int_{\mathbb{R}^{n} \backslash O_{i+1}}\left\{\int_{0}^{r_{B_{i, j}}} \int_{|y-x|<t}\left|A_{i, j}(y, t) H(y, t)\right| \chi_{\Delta_{i, j}}(y, t) \frac{d y d t}{t^{n+1}}\right\} d x
\end{align*}
$$

$$
\begin{aligned}
& \lesssim \int_{2 B_{i, j} \backslash O_{i+1}}\left\{\int_{0}^{r_{B_{i, j}}} \int_{|y-x|<t}\left|A_{i, j}(y, t) H(y, t)\right| \chi_{\Delta_{i, j}}(y, t) \frac{d y d t}{t^{n+1}}\right\} d x \\
& \lesssim\left\{\int_{2 B_{i, j} \backslash O_{i+1}}\left|\mathcal{A}\left(A_{i, j}\right)(x)\right|^{2} d x\right\}^{\frac{1}{2}}\|\mathcal{A}(H)\|_{L^{2}\left(\mathbb{R}^{n}\right)} \\
& \lesssim \frac{1}{\widetilde{C}} 2^{-i}\left|B_{i, j}\right|^{-\frac{1}{p}}\left\{\int_{2 B_{i, j} \backslash O_{i+1}}|\mathcal{A}(F)(x)|^{2} d x\right\}^{\frac{1}{2}} \\
& \lesssim \frac{1}{\widetilde{C}} 2^{-i}\left|B_{i, j}\right|^{-\frac{1}{p}}\left[2^{2 i}\left|B_{i, j}\right|\right]^{\frac{1}{2}} \sim \frac{1}{\widetilde{C}}\left|B_{i, j}\right|^{\frac{1}{2}-\frac{1}{p}}
\end{aligned}
$$

which, together with $\left(T^{2}\left(\mathbb{R}_{+}^{n+1}\right)\right)^{*}=T^{2}\left(\mathbb{R}_{+}^{n+1}\right)$, further implies that $\left\|A_{i, j}\right\|_{T^{2}\left(\mathbb{R}_{+}^{n+1}\right)} \lesssim$ $\frac{1}{\widetilde{C}}\left|B_{i, j}\right|^{\frac{1}{2}-\frac{1}{p}}$. Moreover, from the definitions of $\Delta_{i, j}$ and \widehat{O}_{i}^{*}, and Lemma 2.7(ii), we deduce that $\Delta_{i, j} \subset \widehat{B_{i, j}}$. Thus, by choosing \widetilde{C} large enough such that

$$
\left\|A_{i, j}\right\|_{T^{2}\left(\mathbb{R}_{+}^{n+1}\right)} \leq\left|B_{i, j}\right|^{\frac{1}{2}-\frac{1}{p}}
$$

then $A_{i, j}$ is a $T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$-atom associated to the ball $B_{i, j}$, which, combined with (2.5), implies (i).

Observe that (iii) follows readily from Lemma 2.7(vi), which completes the proof of Theorem 2.6.

If a function $F \in W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$ also belongs to $T^{2}\left(\mathbb{R}_{+}^{n+1}\right)$, then the weak atomic decomposition obtained in Theorem 2.6 also converges in $T^{2}\left(\mathbb{R}_{+}^{n+1}\right)$, which is the conclusion of the following corollary.

Corollary 2.9. Let $p \in(0,1]$. For all $F \in W T^{p}\left(\mathbb{R}_{+}^{n+1}\right) \cap T^{2}\left(\mathbb{R}_{+}^{n+1}\right)$, the weak atomic decomposition $F=\sum_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}} \lambda_{i, j} A_{i, j}$ obtained in Theorem 2.6 also holds true in $T^{2}\left(\mathbb{R}_{+}^{n+1}\right)$.

Proof. Let $F \in W T^{p}\left(\mathbb{R}_{+}^{n+1}\right) \cap T^{2}\left(\mathbb{R}_{+}^{n+1}\right)$. We use the same notation as in Theorem 2.6 and its proof. By Theorem 2.6, we see that the weak atomic decomposition $F=\sum_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}} \lambda_{i, j} A_{i, j}$ holds true pointwisely almost everywhere in \mathbb{R}_{+}^{n+1}. Thus, for all $N_{1}, N_{2} \in \mathbb{N}$, from Fubini's theorem, the definitions of $A_{i, j}$ and $\lambda_{i, j}$ and the bound overlap property of $\left\{\Delta_{i, j}\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}}$, we deduce that

$$
\begin{aligned}
\left\|\sum_{|i| \geq N_{1} \text { or } j \geq N_{2}} \lambda_{i, j} A_{i, j}\right\|_{T^{2}\left(\mathbb{R}_{+}^{n+1}\right)}^{2} & \sim \int_{0}^{\infty} \int_{\mathbb{R}^{n}}\left|\sum_{|i| \geq N_{1} \text { or } j \geq N_{2}} \lambda_{i, j} A_{i, j}(y, t)\right|^{2} \frac{d y d t}{t} \\
& \lesssim \int_{0}^{\infty} \int_{\mathbb{R}^{n}}\left|F(y, t) \chi_{\cup i \mid \geq N_{1} \text { or } j \geq N_{2}} \Delta_{i, j}(y, t)\right|^{2} \frac{d y d t}{t}
\end{aligned}
$$

By letting $N_{1}, N_{2} \rightarrow \infty$ and using the condition that $F \in T^{2}\left(\mathbb{R}_{+}^{n+1}\right)$, we know that $F=\sum_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}} \lambda_{i, j} A_{i, j}$ holds true in $T^{2}\left(\mathbb{R}_{+}^{n+1}\right)$, which completes the proof of Corollary 2.9.
Remark 2.10. Let $k \in \mathbb{Z}, F \in W T^{p}\left(\mathbb{R}_{+}^{n+1}\right), F \neq 0$ and

$$
O_{k}:=\left\{x \in \mathbb{R}^{n}: \mathcal{A}(F)(x)>2^{k}\right\} .
$$

Since $F \in W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$, it is easy to see that, for all $k \in \mathbb{Z},\left|O_{k}\right|<\infty$ and $\left|O_{k+1}\right| \leq$ $\left|O_{k}\right|$. Observe that, for some $k \in \mathbb{Z},\left|O_{k+1}\right|$ may equal to $\left|O_{k}\right|$.

We now construct two index sets $\mathcal{I} \subset \mathbb{Z}$ and $\widetilde{\mathcal{I}} \subset \mathbb{Z}$, which both are needed in establishing the dual theory of the weak Hardy space $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ in Section 4 below and have the following properties:

Case 1) If, for all $k \in \mathbb{Z},\left|O_{k}\right| \in(0, \infty)$, in this case, we fix any $i_{0} \in \mathbb{Z}$ and $\widetilde{i}_{0}=0$ and then choose $\left\{i_{j}\right\}_{j \in \mathbb{Z} \backslash\{0\}} \subset \mathbb{Z}$ and $\left\{\widetilde{i}_{j}\right\}_{j \in \mathbb{Z} \backslash\{0\}} \subset \mathbb{Z}$ such that
(i) $\mathcal{I}:=\left\{i_{j}\right\}_{j \in \mathbb{Z}} \subset \mathbb{Z}$ and $\widetilde{\mathcal{I}}:=\left\{\tilde{i}_{j}\right\}_{j \in \mathbb{Z}} \subset \mathbb{Z}$ are strictly increase in $j ;$
(ii) for all $j \in \mathbb{Z}$ and $i_{j} \in \mathcal{I},\left|O_{i_{j+1}}\right|<\left|O_{i_{j}}\right|$;
(iii) for all $j \in \mathbb{N}, i_{j} \in \mathcal{I}$ and $\widetilde{i}_{j} \in \widetilde{\mathcal{I}}$,

$$
\left|O_{i_{j}}\right| \in\left[2^{-\widetilde{\imath}_{j}-1}\left|O_{i_{0}}\right|, 2^{-\tilde{i}_{j}}\left|O_{i_{0}}\right|\right)
$$

and

$$
\left|O_{i_{-j}}\right| \in\left(2^{-\tilde{i}_{-j}-1}\left|O_{i_{0}}\right|, 2^{-\tilde{i}_{-j}}\left|O_{i_{0}}\right|\right] .
$$

Case 2) If there exists $k \in \mathbb{Z}$ such that $\left|O_{k}\right|=0$, in this case, let

$$
i_{0}:=\min \left\{k-1 \in \mathbb{Z}:\left|O_{k}\right|=0\right\} .
$$

Then choose $\left\{i_{j}\right\}_{j \in \mathbb{Z} \backslash\{0\}} \subset \mathbb{Z}$ and $\left\{\widetilde{i}_{j}\right\}_{j \in \mathbb{Z} \backslash\{0\}} \subset \mathbb{Z}$ such that
(i) for all $j \in \mathbb{Z}_{+}, i_{j} \in \mathcal{I}$ and $\widetilde{i}_{j} \in \widetilde{\mathcal{I}}$, let $i_{\tilde{j}}=i_{0}$ and $\widetilde{i}_{j}=0$;
(ii) for all $j \in \mathbb{Z} \backslash \mathbb{Z}_{+}$, choose $i_{j} \in \mathcal{I}$ and $\tilde{i}_{j} \in \widetilde{\mathcal{I}}$ satisfy that $\left|O_{i_{j+1}}\right|<\left|O_{i_{j}}\right|$ and

$$
\left|O_{i_{j}}\right| \in\left(2^{-\tilde{i}_{j}-1}\left|O_{i_{0}}\right|, 2^{-\tilde{i}_{j}}\left|O_{i_{0}}\right|\right] .
$$

Indeed, to prove the above claim in Case 1), for any fixed $i_{0} \in \mathbb{Z}$ as in Case 1), we let

$$
i_{1}:=\min \left\{i \in \mathbb{Z}:\left|O_{i}\right|<\left|O_{i_{0}}\right|\right\}
$$

and

$$
i_{-1}:=\max \left\{i \in \mathbb{Z}:\left|O_{i}\right|>\left|O_{i_{0}}\right|\right\} .
$$

From the facts $\lim _{i \rightarrow \infty}\left|O_{i}\right|=0$ and $\lim _{i \rightarrow-\infty}\left|O_{i}\right|=\infty$, we deduce that such i_{1} and i_{-1} do exist.

Then choose $\widetilde{i}_{1}, \widetilde{i}_{-1} \in \mathbb{Z}$ satisfying

$$
\left|O_{i_{1}}\right| \in\left[2^{-\tilde{u}_{1}-1}\left|O_{i_{0}}\right|, 2^{-\tilde{i}_{1}}\left|O_{i_{0}}\right|\right)
$$

and

$$
\left|O_{i-1}\right| \in\left(2^{-\tilde{i}_{-1}-1}\left|O_{i_{0}}\right|, 2^{-\tilde{i}_{-1}}\left|O_{i_{0}}\right|\right] .
$$

By a simple calculation, it is easy to see that $i_{-1}<i_{0}<i_{1}, \widetilde{i}_{-1}<0 \leq \widetilde{i}_{1}$ and $\left|O_{i_{1}}\right|<\left|O_{i_{0}}\right|<\left|O_{i_{-1}}\right|$.

Now, let

$$
\begin{aligned}
& i_{2}:=\min \left\{i \in \mathbb{Z}:\left|O_{i}\right|<2^{-\tilde{i}_{1}-1}\left|O_{i_{0}}\right|\right\}, \\
& i_{-2}:=\max \left\{i \in \mathbb{Z}:\left|O_{i}\right|>2^{-\tilde{i}_{-1}}\left|O_{i_{0}}\right|\right\}
\end{aligned}
$$

and choose $\widetilde{i}_{2}, \widetilde{i}_{-2} \in \mathbb{Z}$ satisfying

$$
\left|O_{i_{2}}\right| \in\left[2^{-\tilde{i}_{2}-1}\left|O_{i_{0}}\right|, 2^{-\tilde{i}_{2}}\left|O_{i_{0}}\right|\right)
$$

and

$$
\left|O_{i_{-2}}\right| \in\left(2^{-\tilde{i}_{-2}-1}\left|O_{i_{0}}\right|, 2^{-\tilde{i}_{-2}}\left|O_{i_{0}}\right|\right] .
$$

It is easy to see that $i_{-2}<i_{-1}<i_{0}<i_{1}<i_{2}, \tilde{i}_{-2}<\tilde{i}_{-1}<0 \leq \widetilde{i}_{1}<\widetilde{i}_{2}$ and

$$
\left|O_{i_{2}}\right|<\left|O_{i_{1}}\right|<\left|O_{i_{0}}\right|<\left|O_{i_{-1}}\right|<\left|O_{i_{-2}}\right| .
$$

Continuing this process, we obtain a sequence $\left\{O_{i_{j}}\right\}_{j \in \mathbb{Z}}$ of strictly decreasing open sets, and sequences $\left\{i_{j}\right\}_{j \in \mathbb{Z}},\left\{\widetilde{i}_{j}\right\}_{j \in \mathbb{Z}}$ of increasing numbers. Denote the index sets $\left\{i_{j}\right\}_{j \in \mathbb{Z}}$ and $\left\{\widetilde{i}_{j}\right\}_{j \in \mathbb{N}}$, respectively, by \mathcal{I} and $\widetilde{\mathcal{I}}$, we conclude that \mathcal{I} and $\widetilde{\mathcal{I}}$ have the desired properties in Case 1).

We now turn to Case 2). In this case, we define the index sets $\mathcal{I}:=\left\{i_{j}\right\}_{j \in \mathbb{Z}}$ and $\widetilde{\mathcal{I}}:=\left\{\widetilde{i}_{j}\right\}_{j \in \mathbb{Z}}$ as follows. For all $j \in \mathbb{Z} \backslash \mathbb{Z}_{+}$, since $\left|O_{i_{0}}\right|>0$, we choose the indices i_{j} and \widetilde{i}_{j} as in Case 1). For all $j \in \mathbb{Z}_{+}$, let $i_{j}:=i_{0}$ and $\widetilde{i}_{j}:=0$. Observe that, for all $j \in \mathbb{N},\left|O_{i_{j}}\right|=0$. By some calculations similar to those used in Case 1), we know that \mathcal{I} and $\widetilde{\mathcal{I}}$ also have the desired properties. Thus, both claims in Cases 1) and 2) hold true.

Finally, we point out that, by following the same line of the proof of Theorem 2.6, but replacing $\left\{O_{i}\right\}_{i \in \mathbb{Z}}$ by $\left\{O_{i}\right\}_{i \in \mathcal{I}}$ defined here, we also obtain a weak atomic decomposition of $T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$ with the same properties. In this case, the achieved atomic decomposition is of the following form

$$
F=\sum_{i \in \mathcal{I}} \sum_{j \in \mathbb{Z}_{+}} \lambda_{i, j} A_{i, j},
$$

here and hereafter, for notional simplicity, we denote $i_{j} \in \mathcal{I}$ simply by $i \in \mathcal{I}$.
Now, we establish another weak atomic decomposition of $W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$ which plays an important role in establishing the dual theory of $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ in Section 4.

Theorem 2.11. Let $p \in(0,1]$. Then, for all $F \in W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$, there exist an index set $\mathcal{I} \subset \mathbb{Z}$ and $\left\{A_{i, j}\right\}_{i \in \mathcal{I}, j \in \Lambda_{i}}$ of $T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$-atoms associated to balls $\left\{B_{i, j}\right\}_{i \in \mathcal{I}, j \in \Lambda_{i}}$ such that
(i)

$$
F=\sum_{i \in \mathcal{I}} \sum_{j \in \Lambda_{i}} \lambda_{i, j} A_{i, j}
$$

pointwisely almost everywhere in \mathbb{R}_{+}^{n+1}, where, for all $i \in \mathcal{I}, \Lambda_{i} \subset \mathbb{Z}_{+}$is an index set depending on i and, for all $j \in \Lambda_{i}, \lambda_{i, j}:=\widetilde{C} 2^{i}\left|B_{i, j}\right|^{\frac{1}{p}}$ and \widetilde{C} is a positive constant independent of F;
(ii) for all $i \in \mathcal{I}$ and $j \in \Lambda_{i}$, let $r_{i}:=\inf _{j \in \Lambda_{i}}\left\{r_{B_{i, j}}\right\}$ and $\widetilde{B}_{i, j}:=\frac{1}{10 \sqrt{n}} B_{i, j}$. Then, for all $i \in \mathcal{I}, r_{i}>0$ and $\left\{\widetilde{B}_{i, j}\right\}_{j \in \Lambda_{i}}$ are mutually disjoint;
(iii) there exists a positive constant C, depending only on n and p, such that, for all $i \in \mathcal{I}$,

$$
\left\{\sum_{j \in \Lambda_{i}}\left|\lambda_{i, j}\right|^{p}\right\}^{\frac{1}{p}} \leq C\|F\|_{W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)}
$$

Proof. We first prove (i) and (ii) of Theorem 2.11. Let \mathcal{I} be as in Remark 2.10, $i \in \mathcal{I}$ and O_{i}^{*} be as in the proof of Theorem 2.6. Without loss of generality, we may assume that $\left|O_{i}^{*}\right|>0$; otherwise, we neglect the set O_{i}^{*}, since we only need the atomic decomposition to hold true almost everywhere in \mathbb{R}_{+}^{n+1}.

For all $i \in \mathcal{I}$, let $\epsilon \in(0, \infty)$ such that the open set

$$
\begin{equation*}
O_{i, \epsilon}^{*}:=O_{i}^{*} \cup\left\{x \in\left(O_{i}^{*}\right)^{\complement}: \operatorname{dist}\left(x, \partial O_{i}^{*}\right)<\epsilon\right\} \tag{2.8}
\end{equation*}
$$

satisfies $\left|O_{i, \epsilon}^{*}\right|<2\left|O_{i}^{*}\right|$. Let $\left\{Q_{i, j}\right\}_{j \in \mathbb{Z}_{+}}$be a Whitney decomposition of $O_{i, \epsilon}^{*}$ as in Lemma 2.7. Assume that $\left\{Q_{i, j}\right\}_{j \in \Lambda_{i}}$ is the maximal subsequence of $\left\{Q_{i, j}\right\}_{j \in \mathbb{Z}_{+}}$such that, for all $j \in \Lambda_{i}, Q_{i, j} \cap O_{i}^{*} \neq \emptyset$, where $\Lambda_{i} \subset \mathbb{Z}_{+}$. Let $l_{i}:=\inf \left\{l_{Q_{i, j}}, j \in \Lambda_{i}\right\}$, we now claim that, for all $i \in \mathcal{I}, l_{i}>0$.

Indeed, if $Q_{i, j} \cap \partial O_{i}^{*} \neq \emptyset$, then we see that, for all $y \in \partial O_{i}^{*}$,

$$
\begin{equation*}
\operatorname{dist}\left(\left(O_{i, \epsilon}^{*}\right)^{\complement}, y\right) \geq \epsilon \tag{2.9}
\end{equation*}
$$

Otherwise, if $\operatorname{dist}\left(\left(O_{i, \epsilon}^{*}\right)^{\complement}, y\right)<\epsilon$, then there exists $x \in\left(O_{i, \epsilon}^{*}\right)^{\complement}$ such that $d(x, y)<\epsilon$. However, from the definition of $\left(O_{i, \epsilon}^{*}\right)^{\complement}$, we deduce that $d(x, y) \geq \operatorname{dist}\left(x, \partial O_{i}^{*}\right) \geq \epsilon$. This derives a contradiction. Thus, (2.9) holds true, which, together with Lemma 2.7(ii), implies that

$$
\begin{equation*}
l_{Q_{i, j}} \geq \frac{1}{4 \sqrt{n}} \operatorname{dist}\left(Q_{i, j},\left(O_{i, \epsilon}^{*}\right)^{\complement}\right) \geq \frac{\epsilon}{4 \sqrt{n}} \tag{2.10}
\end{equation*}
$$

If $Q_{i, j} \cap \partial O_{i}^{*}=\emptyset$ and $Q_{i, j} \cap O_{i}^{*} \neq \emptyset$, then $Q_{i, j} \subset\left(O_{i}^{*}\right)^{\circ}$, where $\left(O_{i}^{*}\right)^{\circ}$ denotes the interior of O_{i}^{*}. Moreover, for all $y \in Q_{i, j}$, take $z \in\left(O_{i, \epsilon}^{*}\right)^{\complement}$ such that

$$
\operatorname{dist}\left(y,\left(O_{i, \epsilon}^{*}\right)^{\complement}\right) \geq \frac{1}{2} d(y, z)
$$

which, together with Lemma 2.7(ii), implies that

$$
\begin{align*}
l_{Q_{i, j}} & \geq \frac{1}{4 \sqrt{n}} \operatorname{dist}\left(y,\left(O_{i, \epsilon}^{*}\right)^{\complement}\right) \geq \frac{1}{8 \sqrt{n}} d(y, z) \\
& \geq \frac{1}{8 \sqrt{n}} \operatorname{dist}\left(O_{i}^{*}, z\right) \geq \frac{1}{8 \sqrt{n}} \epsilon \tag{2.11}
\end{align*}
$$

Thus, combined (2.10) and (2.11), we see that, for all $j \in \Lambda_{i}$,

$$
l_{Q_{i, j}} \geq \frac{1}{8 \sqrt{n}} \epsilon \text { and hence, for } i \in \mathcal{I}, l_{i} \geq \frac{1}{8 \sqrt{n}} \epsilon
$$

which shows that the above claim is true.
Now, for all $i \in \mathcal{I}$ and $j \in \Lambda_{i}$, let $B_{i, j}$ be the ball having the same center as $Q_{i, j}$ with the radius $5 \sqrt{n} l_{Q_{i, j}}$. With the help of the above claim and Lemma 2.7, we conclude that, for all $i \in \mathcal{I}$, the sequence $\left\{B_{i, j}\right\}_{j \in \Lambda_{i}}$ of balls has the following properties:
(i) $O_{i}^{*} \subset \cup_{j \in \Lambda_{i}} B_{i, j}$;
(ii) $r_{i}:=\inf \left\{r_{B_{i, j}}, j \in \Lambda_{i}\right\}>0$;
(iii) let $\widetilde{B}_{i, j}:=\frac{1}{10 \sqrt{n}} B_{i, j}$. Then $\left\{\widetilde{B}_{i, j}\right\}_{j \in \Lambda_{i}}$ are mutually disjoint;
(iv) there exists $M \in(0, \infty)$, independent of $i \in \mathcal{I}$, such that $\sum_{j \in \Lambda_{i}}\left|B_{i, j}\right|<$ $M\left|O_{i}^{*}\right|$.

Now, for all $i \in \mathcal{I}$ and $j \in \Lambda_{i}$, let

$$
\Delta_{i, j}:=\widehat{B}_{i, j} \bigcap\left(Q_{i, j} \times(0, \infty)\right) \bigcap\left(\widehat{O}_{i}^{*} \backslash \widehat{O}_{i+1}^{*}\right)
$$

For all $F \in W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$, recall that

$$
\operatorname{supp} F \subset \bigcup_{i \in \mathcal{I}} \bigcup_{j \in \Lambda_{i}}\left[\widehat{B}_{i, j} \bigcap\left(Q_{i, j} \times(0, \infty)\right) \cap\left(\widehat{O}_{i}^{*} \backslash \widehat{O}_{i+1}^{*}\right)\right]=: \bigcup_{i \in \mathcal{I}} \bigcup_{j \in \Lambda_{i}} \Delta_{i, j} .
$$

Moreover, let $\lambda_{i, j}:=\widetilde{C} 2^{i}\left|B_{i, j}\right|^{\frac{1}{p}}$ and $A_{i, j}:=F \chi_{\Delta_{i, j}} / \lambda_{i, j}$, where \widehat{O}_{i}^{*} denotes the tent over O_{i}^{*} and \widetilde{C} a positive constant independent of F, which will be determined later. By following the same line of the proof of Theorem 2.6, if we choose \widetilde{C} large enough and independent of F, we then conclude that $A_{i, j}$ is a $T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$-atom and, for almost every $(x, t) \in \mathbb{R}_{+}^{n+1}$,

$$
F(x, t)=\sum_{i \in \mathcal{I}} \sum_{j \in \Lambda_{i}} \lambda_{i, j} A_{i, j}(x, t)
$$

pointwisely and, moreover,

$$
\sup _{i \in \mathbb{Z}}\left(\sum_{j \in \Lambda_{i}}\left|\lambda_{i, j}\right|^{p}\right)^{\frac{1}{p}} \leq C\|F\|_{W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)}
$$

which, together with the properties of $\left\{B_{i, j}\right\}_{j \in \Lambda_{i}}$, completes the proof of Theorem 2.11.
2.3. The weak Hardy spaces $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$. In this subsection, we study the weak Hardy space $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$. First, we recall the definition of the classical weak Hardy space from $[31,51,52,49]$. Let $p \in(0,1]$ and $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ support in the unit ball $B(0,1)$. The weak Hardy space $W H^{p}\left(\mathbb{R}^{n}\right)$ is defined to be the space

$$
\left\{f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right):\|f\|_{W H^{p}\left(\mathbb{R}^{n}\right)}:=\sup _{\alpha>0}\left(\alpha^{p}\left|\left\{x \in \mathbb{R}^{n}: \sup _{t>0}\left|\varphi_{t} * f(x)\right|>\alpha\right\}\right|\right)^{1 / p}<\infty\right\} .
$$

Now, let L satisfy Assumptions $(\mathcal{L})_{1},(\mathcal{L})_{2}$ and $(\mathcal{L})_{3}$. For all $f \in L^{2}\left(\mathbb{R}^{n}\right)$ and $x \in \mathbb{R}^{n}$, the L-adapted non-tangential square function $S_{L} f$ is defined by

$$
\begin{equation*}
S_{L} f(x):=\left\{\iint_{\Gamma(x)}\left|t^{2 k} L e^{-t^{2 k} L} f(y)\right|^{2} \frac{d y d t}{t^{n+1}}\right\}^{1 / 2} \tag{2.12}
\end{equation*}
$$

where $\Gamma(x)$ is as in (2.2).
Let $p \in(0,1]$. A function $f \in L^{2}\left(\mathbb{R}^{n}\right)$ is said to be in $\mathbb{H}_{L}^{p}\left(\mathbb{R}^{n}\right)$ if $S_{L} f \in L^{p}\left(\mathbb{R}^{n}\right)$; moreover, define $\|f\|_{H_{L}^{p}\left(\mathbb{R}^{n}\right)}:=\left\|S_{L} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}$. The Hardy space $H_{L}^{p}\left(\mathbb{R}^{n}\right)$ associated to L is then defined to be the completion of $\mathbb{H}_{L}^{p}\left(\mathbb{R}^{n}\right)$ with respect to the quasi-norm $\|\cdot\|_{H_{L}^{p}\left(\mathbb{R}^{n}\right)}($ see $[12])$.

Now, we introduce the notion of the weak Hardy space $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$.
Definition 2.12. Let $p \in(0,1]$ and L satisfy Assumptions $(\mathcal{L})_{1},(\mathcal{L})_{2}$ and $(\mathcal{L})_{3}$. A function $f \in L^{2}\left(\mathbb{R}^{n}\right)$ is said to be in $\mathbb{W} \mathbb{H}_{L}^{p}\left(\mathbb{R}^{n}\right)$ if $S_{L} f$ belongs to the weak Lebesgue space $W L^{p}\left(\mathbb{R}^{n}\right)$; moreover, define $\|f\|_{W H_{L}^{p}\left(\mathbb{R}^{n}\right)}:=\left\|S_{L} f\right\|_{W L^{p}\left(\mathbb{R}^{n}\right)}$. The weak Hardy space $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ associated to L is then defined to be the completion of $\mathbb{W} \mathbb{H}_{L}^{p}\left(\mathbb{R}^{n}\right)$ with respect to the quasi-norm $\|\cdot\|_{W H_{L}^{p}\left(\mathbb{R}^{n}\right)}$.

Remark 2.13. We point out that, unlike the Hardy space $H^{p}\left(\mathbb{R}^{n}\right)$, with $p \in(0,1]$, in which the Lebesgue space $L^{2}\left(\mathbb{R}^{n}\right)$ is dense (see, for example, [52, Proposition $3.2])$, the space $L^{2}\left(\mathbb{R}^{n}\right)$ is not dense in the weak Hardy space $W H^{p}\left(\mathbb{R}^{n}\right)$ in the sense of Fefferman and Soria [31] (see also a very recent work of He [37]). Thus, when $L=-\Delta$, the weak Hardy space $W H_{-\Delta}^{p}\left(\mathbb{R}^{n}\right)$ defined as in Definition 2.12 coincides with the space

$$
\overline{W H^{p}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)}\|\cdot\|_{W H^{p}\left(\mathbb{R}^{n}\right)},
$$

namely, the closure of $W H^{p}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)$ on the quasi-norm $\|\cdot\|_{W H^{p}\left(\mathbb{R}^{n}\right)}$, which is a proper subspace of $W H^{p}\left(\mathbb{R}^{n}\right)$.

Now, let T be a nonnegative self-adjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$ satisfying the DaviesGaffney estimates. It is known that T is a special case of operators L satisfying Assumptions $(\mathcal{L})_{1},(\mathcal{L})_{2}$ and $(\mathcal{L})_{3}$. We first establish the weak atomic decomposition of the weak Hardy space $W H_{T}^{p}\left(\mathbb{R}^{n}\right)$.
Definition 2.14 ([38, 42]). Let $p \in(0,1], M \in \mathbb{N}$ and $B:=B\left(x_{B}, r_{B}\right)$ be a ball with $x_{B} \in \mathbb{R}^{n}$ and $r_{B} \in(0, \infty)$. A function $a \in L^{2}\left(\mathbb{R}^{n}\right)$ is called a $(p, 2, M)_{T^{\text {-atom }}}$ associated to B if the following conditions are satisfied:
(i) there exists a function b belonging to the domain of $T^{M}, D\left(T^{M}\right)$, such that $a=T^{M} b ;$
(ii) for all $\ell \in\{0, \ldots, M\}, \operatorname{supp}\left(T^{\ell} b\right) \subset B$;
(iii) for all $\ell \in\{0, \ldots, M\},\left\|\left(r_{B}^{2} T\right)^{\ell} b\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leq r_{B}^{2 M}|B|^{\frac{1}{2}-\frac{1}{p}}$.

For all $p \in(0,1]$ and $M \in \mathbb{N}$, let $f \in L^{2}\left(\mathbb{R}^{n}\right)$ and $\left\{a_{i, j}\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}}$be a sequence of $(p, 2, M)_{T^{-}}$atoms associated to balls $\left\{B_{i, j}\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}}$. The equality $f=\sum_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}} \lambda_{i, j} a_{i, j}$ holding true in $L^{2}\left(\mathbb{R}^{n}\right)$ is called a weak atomic $(p, 2, M)_{T^{-}}$ representation of f if
(i) $\lambda_{i, j}:=\widetilde{C} 2^{i}\left|B_{i, j}\right|^{\frac{1}{p}}$, where \widetilde{C} is a positive constant independent of f;
(ii) there exists a positive constant C_{2}, depending only on f, n, p, M and \widetilde{C}, such that

$$
\sup _{i \in \mathbb{Z}}\left(\sum_{j \in \mathbb{Z}_{+}}\left|\lambda_{i, j}\right|^{p}\right)^{\frac{1}{p}} \leq C_{2}
$$

The weak atomic Hardy space $W H_{T, \mathrm{at}, M}^{p}\left(\mathbb{R}^{n}\right)$ is defined to be the completion of the space
$\mathbb{W} \mathbb{H}_{T, \text { at, } M}^{p}\left(\mathbb{R}^{n}\right):=\left\{f \in L^{2}\left(\mathbb{R}^{n}\right): f\right.$ has a weak atomic $(p, 2, M)_{T}$-representation $\}$ with respect to the quasi-norm

$$
\|f\|_{W H_{T, \text { at }, M}^{p}\left(\mathbb{R}^{n}\right)}:=\inf \left\{\sup _{i \in \mathbb{Z}}\left(\sum_{j \in \mathbb{Z}_{+}}\left|\lambda_{i, j}\right|^{p}\right)^{\frac{1}{p}}\right\}
$$

where the infimum is taken over all the weak atomic $(p, 2, M)_{T}$-representations of f as above.

We have the following weak atomic characterization of $W H_{T}^{p}\left(\mathbb{R}^{n}\right)$.

Theorem 2.15. Let $p \in(0,1]$ and T be a nonnegative self-adjoint operator on $L^{2}\left(\mathbb{R}^{n}\right)$ satisfying the Davies-Gaffney estimates. Assume that $M \in \mathbb{N}$ satisfies $M>$ $\frac{n}{2}\left(\frac{1}{p}-\frac{1}{2}\right)$. Then $W H_{T}^{p}\left(\mathbb{R}^{n}\right)=W H_{T, \mathrm{at}, M}^{p}\left(\mathbb{R}^{n}\right)$ with equivalent quasi-norms.

To prove this theorem, we need to recall some notions and known results from [38].

Let $C_{3} \in[1, \infty)$. Assume that $\varphi \in C_{\mathrm{c}}^{\infty}(\mathbb{R})$ is even, $\operatorname{supp} \varphi \subset\left(-C_{3}^{-1}, C_{3}\right)$, $\varphi \geq 0$ and there exists a positive constant C_{4} such that, for all $t \in\left(-\frac{1}{2 C_{3}}, \frac{1}{2 C_{3}}\right)$, $\varphi(t) \geq C_{4}$. Let $M \in \mathbb{N}, \Phi$ be the Fourier transform of φ and $\Psi(t):=t^{2(M+1)} \Phi(t)$ for all $t \in[0, \infty)$. For T as in Theorem 2.15, all $F \in T^{2}\left(\mathbb{R}_{+}^{n+1}\right)$ and $x \in \mathbb{R}^{n}$, define the operator $\Pi_{\Psi, T}(F)(x)$ by setting

$$
\begin{equation*}
\Pi_{\Psi, T}(F)(x):=\int_{0}^{\infty} \Psi(t \sqrt{T})(F(\cdot, t))(x) \frac{d t}{t} \tag{2.13}
\end{equation*}
$$

From Fubini's theorem and the quadratic estimates, it follows that $\Pi_{\Psi, T}$ is bounded from $T^{2}\left(\mathbb{R}_{+}^{n+1}\right)$ to $L^{2}\left(\mathbb{R}^{n}\right)$. By using the finite speed of the propagation of the wave equation and the Paley-Wiener theorem, Hofmann et al. [38] proved the following conclusion.

Lemma 2.16 ([38]). Let $p \in(0,1], M \in \mathbb{N}$ and T be a nonnegative self-adjoint operator on $L^{2}\left(\mathbb{R}^{n}\right)$ satisfying the Davies-Gaffney estimates. Assume that A is a $T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$-atom associated to the ball B and $\Pi_{\Psi, T}$ is as in (2.13). Then there exists a positive constant $C(M)$, independent of A, such that $[C(M)]^{-1} \Pi_{\Psi, T}(A)$ is $a(p, 2, M)_{T}$-atom associated to the ball $2 B$.

We also need the following superposition principle on the weak type estimate.
Lemma 2.17 ([59]). Let $p \in(0,1)$ and $\left\{f_{j}\right\}_{j \in \mathbb{Z}_{+}}$be a sequence of measurable functions. If $\sum_{j \in \mathbb{Z}_{+}}\left|\lambda_{j}\right|^{p}<\infty$ and there exists a positive constant C such that, for all $j \in \mathbb{Z}_{+}$and $\alpha \in(0, \infty)$, $\left|\left\{x \in \mathbb{R}^{n}:\left|f_{j}(x)\right|>\alpha\right\}\right| \leq C \alpha^{-p}$, then there exists a positive constant \widetilde{C}, independent of $\left\{\lambda_{j}\right\}_{j \in \mathbb{Z}_{+}}$and $\left\{f_{j}\right\}_{j \in \mathbb{Z}_{+}}$, such that, for all $\alpha \in(0, \infty)$,

$$
\left|\left\{x \in \mathbb{R}^{n}:\left|\sum_{j \in \mathbb{Z}_{+}} \lambda_{j} f_{j}(x)\right|>\alpha\right\}\right| \leq \widetilde{C} \frac{2-p}{1-p} \alpha^{-p} \sum_{j \in \mathbb{Z}_{+}}\left|\lambda_{j}\right|^{p}
$$

With these preparations, we now prove Theorem 2.15.
Proof of Theorem 2.15. In order to prove Theorem 2.15, it suffices to show that

$$
\left(W H_{T}^{p}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)\right)=\mathbb{W} \mathbb{H}_{T, \mathrm{at}, M}^{p}\left(\mathbb{R}^{n}\right)
$$

with equivalent quasi-norms. We first prove the inclusion that

$$
\left(W H_{T}^{p}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)\right) \subset \mathbb{W} \mathbb{H}_{T, \mathrm{at}, M}^{p}\left(\mathbb{R}^{n}\right)
$$

Let $f \in W H_{T}^{p}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)$. From its definition and the quadratic estimate, it follows that $t^{2} T e^{-t^{2} T} f \in W T^{p}\left(\mathbb{R}_{+}^{n+1}\right) \cap T^{2}\left(\mathbb{R}_{+}^{n+1}\right)$. By Theorem 2.6, there exist
sequences $\left\{\lambda_{i, j}\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}} \subset \mathbb{C}$ and $\left\{A_{i, j}\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}}$of $T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$-atoms associated to the balls $\left\{B_{i, j}\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}}$such that

$$
t^{2} T e^{-t^{2} T}(f)=\sum_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}} \lambda_{i, j} A_{i, j}
$$

pointwisely almost everywhere in $\mathbb{R}_{+}^{n+1}, \lambda_{i, j}=\widetilde{C} 2^{i}\left|B_{i, j}\right|^{1 / p}$ and

$$
\begin{equation*}
\sup _{i \in \mathbb{Z}}\left(\sum_{j \in \mathbb{Z}_{+}}\left|\lambda_{i, j}\right|^{p}\right)^{\frac{1}{p}} \lesssim\left\|t^{2} T e^{-t^{2} T}(f)\right\|_{W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)} \sim\|f\|_{W H^{p}\left(\mathbb{R}_{+}^{n+1}\right)} \tag{2.14}
\end{equation*}
$$

where \widetilde{C} is a positive constant independent of f. Moreover, by the bounded H_{∞} functional calculus in $L^{2}\left(\mathbb{R}^{n}\right)$, Corollary 2.9 and the fact that $\Pi_{\Psi, T}$ is bounded from $T^{2}\left(\mathbb{R}_{+}^{n+1}\right)$ to $L^{2}\left(\mathbb{R}^{n}\right)$, we conclude that there exists a constant $C(\Psi)$, depending on Ψ, such that

$$
\begin{align*}
f & =C(\Psi) \int_{0}^{\infty} \Psi(t \sqrt{T})\left(t^{2} T e^{-t^{2} T}\right) f \frac{d t}{t} \\
& =C(\Psi) \int_{0}^{\infty} \Psi(t \sqrt{T})\left(\sum_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}} \lambda_{i, j} A_{i, j}\right) \frac{d t}{t} \tag{2.15}\\
& =C(\Psi) \sum_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}} \lambda_{i, j} \int_{0}^{\infty} \Psi(t \sqrt{T})\left(A_{i, j}\right) \frac{d t}{t},
\end{align*}
$$

where the above equalities hold true in $L^{2}\left(\mathbb{R}^{n}\right)$. For all $i \in \mathbb{Z}$ and $j \in \mathbb{Z}_{+}$, let

$$
\begin{equation*}
a_{i, j}:=\int_{0}^{\infty} \Psi(t \sqrt{T})\left(A_{i, j}\right) \frac{d t}{t} . \tag{2.16}
\end{equation*}
$$

By Lemma 2.16, we see that $a_{i, j}$ is a $(p, 2, M)_{T}$-atom associated to $\left\{2 B_{i, j}\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}}$ up to a harmless positive constant multiple. Thus, we conclude that f has a weak atomic $(p, 2, M)_{T}$-representation $\sum_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}} \lambda_{i, j} a_{i, j}$ and $f \in \mathbb{W}_{T}{ }_{T, \text { at }, M}^{p}\left(\mathbb{R}^{n}\right)$. Moreover, from (2.14), we deduce that

$$
\|f\|_{W H_{T, a t, M}^{p}\left(\mathbb{R}^{n}\right)} \lesssim\left(\sup _{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}_{+}}\left|\lambda_{i, j}\right|^{p}\right)^{\frac{1}{p}} \lesssim\|f\|_{W H_{T}^{p}\left(\mathbb{R}^{n}\right)}
$$

which immediately implies that $\left(W H_{T}^{p}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)\right) \subset \mathbb{W}_{T, \mathrm{a}, M}^{p}\left(\mathbb{R}^{n}\right)$.
Now we prove the converse, namely,

$$
\mathbb{W} \mathbb{H}_{T, \mathrm{at}, M}^{p}\left(\mathbb{R}^{n}\right) \subset\left(W H_{T}^{p}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)\right) .
$$

Let $f \in \mathbb{W} \mathbb{H}_{T, \text { at, } M}^{p}\left(\mathbb{R}^{n}\right)$. From its definition, it follows that there exists a sequence $\left\{a_{i, j}\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}}$of $(p, 2, M)_{T}$-atoms associated to the balls $\left\{B_{i, j}\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}}$such that $f=\sum_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}} \lambda_{i, j} a_{i, j}$ in $L^{2}\left(\mathbb{R}^{n}\right)$ and, for all $i \in \mathbb{Z}$,

$$
\begin{equation*}
\sum_{j \in \mathbb{Z}_{+}}\left|\lambda_{i, j}\right|^{p} \lesssim\|f\|_{W H_{T, \mathrm{at}, \mathrm{M}}^{p}\left(\mathbb{R}^{n}\right)}^{p}, \tag{2.17}
\end{equation*}
$$

where $\left\{\lambda_{i, j}\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}}:=\left\{\widetilde{C} 2^{i}\left|B_{i, j}\right|^{1 / p}\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}}$and \widetilde{C} is a positive constant independent of f.

Given $\alpha \in(0, \infty)$, let $i_{0} \in \mathbb{Z}$ satisfy that $2^{i_{0}} \leq \alpha<2^{i_{0}+1}$. We then see that

$$
f=\sum_{i=-\infty}^{i_{0}} \sum_{j \in \mathbb{Z}_{+}} \lambda_{i, j} a_{i, j}+\sum_{i=i_{0}+1}^{\infty} \sum_{j \in \mathbb{Z}_{+}} \cdots=: f_{1}+f_{2}
$$

holds true in $L^{2}\left(\mathbb{R}^{n}\right)$.
We first estimate f_{2}. Let $\widetilde{B}_{i_{0}}:=\cup_{i=i_{0}+1}^{\infty} \cup_{j \in \mathbb{Z}_{+}} 8 B_{i, j}$. From the definition of $\lambda_{i, j}$ and (2.17), we deduce that

$$
\begin{align*}
\left|\widetilde{B}_{i_{0}}\right| & \lesssim \sum_{i=i_{0}+1}^{\infty} \sum_{j \in \mathbb{Z}_{+}}\left|B_{i, j}\right| \lesssim \sum_{i=i_{0}+1}^{\infty} 2^{-i p}\left(\sum_{j \in \mathbb{Z}_{+}}\left|\lambda_{i, j}\right|^{p}\right) \tag{2.18}\\
& \lesssim \sum_{i=i_{0}+1}^{\infty} 2^{-i p}\|f\|_{W H_{T, \text { at, M}}^{p}}^{p}\left(\mathbb{R}^{n}\right) \\
\lesssim & \frac{1}{\alpha^{p}}\|f\|_{W H_{T, a t, \mathrm{M}}^{p}\left(\mathbb{R}^{n}\right)}^{p} .
\end{align*}
$$

Now, for $q \in(0, p)$, we write

$$
\begin{equation*}
f_{2}=\sum_{i=i_{0}+1}^{\infty} \sum_{j \in \mathbb{Z}_{+}}\left(\widetilde{C} 2^{i}\left|B_{i, j}\right|^{\frac{1}{q}}\right)\left(\frac{1}{\widetilde{C}}\left|B_{i, j}\right|^{\frac{1}{p}-\frac{1}{q}} a_{i, j}\right)=: \sum_{i=i_{0}+1}^{\infty} \sum_{j \in \mathbb{Z}_{+}} \widetilde{\lambda}_{i, j} \widetilde{a}_{i, j} . \tag{2.19}
\end{equation*}
$$

By (2.17) and the fact that $q \in(0, p)$, we know that

$$
\begin{align*}
\sum_{i=i_{0}+1}^{\infty} \sum_{j \in \mathbb{Z}_{+}}\left|\widetilde{\lambda}_{i, j}\right|^{q} & \sim \sum_{i=i_{0}+1}^{\infty} 2^{i q} \sum_{j \in \mathbb{Z}_{+}}\left|B_{i, j}\right| \sim \sum_{i=i_{0}+1}^{\infty} 2^{i(q-p)}\left(\sum_{j \in \mathbb{Z}_{+}}\left|\lambda_{i, j}\right|^{p}\right) \\
20) & \lesssim\|f\|_{W H_{T, \mathrm{at}, \mathrm{M}}^{p}\left(\mathbb{R}^{n}\right)}^{p} \sum_{i=i_{0}+1}^{\infty} 2^{i(q-p)} \lesssim 2^{i_{0}(q-p)}\|f\|_{W H_{T, \mathrm{at}, \mathrm{M}}^{p}\left(\mathbb{R}^{n}\right)}^{p}, \tag{2.20}
\end{align*}
$$

which, combined with $(2.18),(2.19)$ and Lemma 2.17 , implies that, to show that $S_{T}\left(f_{2}\right) \in W L^{p}\left(\mathbb{R}^{n}\right)$, it suffices to prove that, for all $\alpha \in(0, \infty), i \in \mathbb{Z} \cap\left[i_{0}+1, \infty\right)$ and $j \in \mathbb{Z}_{+}$,

$$
\begin{equation*}
\left|\left\{x \in\left(8 B_{i, j}\right)^{\complement}: S_{T}\left(\widetilde{a}_{i, j}\right)(x)>\alpha\right\}\right| \lesssim \frac{1}{\alpha^{q}} . \tag{2.21}
\end{equation*}
$$

Indeed, if (2.21) is true, then, for $N_{1} \in \mathbb{Z} \cap\left[i_{0}+1, \infty\right)$ and $N_{2} \in \mathbb{Z}_{+}$, by Chebychev's inequality, the sub-linearity of S_{T}, Lemma 2.17 and the $L^{2}\left(\mathbb{R}^{n}\right)$ boundedness of S_{T}, we conclude that

$$
\begin{aligned}
\left|\left\{x \in \mathbb{R}^{n}: S_{T}\left(f_{2}\right)(x)>\alpha\right\}\right| \leq & \left|\left\{x \in \mathbb{R}^{n}: \sum_{i=i_{0}+1}^{N_{1}} \sum_{j=0}^{N_{2}} \widetilde{\lambda}_{i, j} S_{T}\left(\widetilde{a}_{i, j}\right)(x)>\frac{\alpha}{2}\right\}\right| \\
& +\left|\left\{x \in \mathbb{R}^{n}: S_{T}\left(\sum_{\substack{N_{1}+1 \leq i<\infty \\
\text { or } j \geq N_{2}+1}} \lambda_{i, j} a_{i, j}\right)(x)>\frac{\alpha}{2}\right\}\right| \\
& \lesssim \alpha^{-q} \sum_{i=i_{0}+1}^{N_{1}} \sum_{j=0}^{N_{2}}\left|\widetilde{\lambda}_{i, j}\right|^{q}+\alpha^{-2}\left\|\sum_{\substack{N_{1}+1 \leq i<\infty \\
\text { or } j \geq N_{2}+1}} \lambda_{i, j} a_{i, j}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2},
\end{aligned}
$$

where

$$
\sum_{\substack{N_{1}+1 \leq i<\infty \\ \text { or } j \geq N_{2}+1}}:=\sum_{i=N_{1}+1}^{\infty} \sum_{j \in \mathbb{Z}_{+}}+\sum_{i=i_{0}+1}^{\infty} \sum_{j=N_{2}+1}^{\infty}+\sum_{i=N_{1}+1}^{\infty} \sum_{j=N_{2}+1}^{\infty}
$$

By letting N_{1} and $N_{2} \rightarrow \infty$, the fact that $f_{2}=\sum_{i=i_{0}+1}^{\infty} \sum_{j \in \mathbb{Z}_{+}} \lambda_{i, j} a_{i, j}$ holds true in $L^{2}\left(\mathbb{R}^{n}\right)$ and (2.20), we see that

$$
\left|\left\{x \in \mathbb{R}^{n}: S_{T}\left(f_{2}\right)(x)>\alpha\right\}\right| \lesssim \alpha^{-q} \sum_{i=i_{0}+1}^{\infty} \sum_{j \in \mathbb{Z}_{+}}\left|\widetilde{\lambda}_{i, j}\right|^{q} \lesssim \frac{1}{\alpha^{p}}\|f\|_{W H_{T, \mathrm{at}, \mathrm{M}}^{p}\left(\mathbb{R}^{n}\right)}^{p}
$$

which is desired.
To prove (2.21), from Chebyshev's inequality and Hölder's inequality, we deduce that

$$
\begin{align*}
& \left|\left\{x \in\left(8 B_{i, j}\right)^{\complement}: S_{T}\left(\widetilde{a}_{i, j}\right)(x)>\alpha\right\}\right| \tag{2.22}\\
& \quad \lesssim \alpha^{-q} \int_{\left(8 B_{i, j}\right)^{\complement}}\left[S_{T}\left(\widetilde{a}_{i, j}\right)(x)\right]^{q} d x \\
& \quad \lesssim \alpha^{-q} \sum_{l=4}^{\infty}\left\{\int_{S_{l}\left(B_{i, j}\right)}\left|S_{T}\left(\widetilde{a}_{i, j}\right)(x)\right|^{2} d x\right\}^{\frac{q}{2}}\left|S_{l}\left(B_{i, j}\right)\right|^{1-\frac{q}{2}}
\end{align*}
$$

where $S_{l}\left(B_{i, j}\right):=2^{l} B_{i, j} \backslash\left(2^{l-1} B_{i, j}\right)$ for all $l \in \mathbb{N}$. For $l \geq 4$, let

$$
\mathrm{I}_{l, i, j}:=\left\{\int_{S_{l}\left(B_{i, j}\right)}\left|S_{T}\left(\widetilde{a}_{i, j}\right)(x)\right|^{2} d x\right\}^{\frac{q}{2}}
$$

$b_{i, j}:=T^{-M} a_{i, j}$ and $\widetilde{b}_{i, j}:=\left|B_{i, j}\right|^{\frac{1}{p}-\frac{1}{q}} b_{i, j}$.
By Minkowski's inequality, we write $\mathrm{I}_{l, i, j}$ into

$$
\begin{aligned}
\mathrm{I}_{l, i, j} \lesssim & \left\{\int_{S_{l}\left(B_{i, j}\right)} \int_{0}^{r_{B_{i, j}}} \int_{|y-x|<t}\left|t^{2} T e^{-t^{2} T} \widetilde{a}_{i, j}(y, t)\right|^{2} \frac{d y d t}{t^{n+1}} d x\right\}^{\frac{q}{2}} \\
& +\left\{\int_{S_{l}\left(B_{i, j}\right)} \int_{r_{B_{i, j}}}^{\frac{\operatorname{dist}\left(x, B_{i, j}\right)}{4}} \int_{|y-x|<t} \cdots \frac{d y d t}{t^{n+1}} d x\right\}^{\frac{q}{2}} \\
& +\left\{\int_{S_{l}\left(B_{i, j}\right)} \int_{\frac{\operatorname{dist}\left(x, B_{i, j}\right)}{\infty}}^{4} \int_{|y-x|<t} \cdots \frac{d y d t}{t^{n+1}} d x\right\}^{\frac{q}{2}}=: \mathrm{J}_{l, i, j}+\mathrm{K}_{l, i, j}+\mathrm{Q}_{l, i, j}
\end{aligned}
$$

To estimate $\mathrm{J}_{l, i, j}$, notice that $\operatorname{dist}\left(S_{l}\left(B_{i, j}\right), B_{i, j}\right)>2^{l-2} r_{B_{i, j}}$, when $l \geq 4$. Let

$$
\mathrm{E}_{l, i, j}:=\left\{x \in \mathbb{R}^{n}: \operatorname{dist}\left(x, S_{l}\left(B_{i, j}\right)\right)<r_{B_{i, j}}\right\}
$$

We easily see that $\operatorname{dist}\left(\mathrm{E}_{l, i, j}, B_{i, j}\right)>2^{l-3} r_{B_{i, j}}$, which, together with Fubini's theorem, Lemma 2.3 and Definition 2.14, implies that there exists a positive constant $\alpha_{0}>\frac{n}{q}\left(1-\frac{q}{2}\right)$ such that

$$
\mathrm{J}_{l, i, j} \lesssim\left\{\int_{0}^{r_{B_{i, j}}} \int_{\mathrm{E}_{l, i, j}}\left|t^{2} T e^{-t^{2} T} \widetilde{a}_{i, j}(y, t)\right|^{2} \frac{d y d t}{t}\right\}^{\frac{q}{2}}
$$

$$
\begin{align*}
& \lesssim\left\{\int_{0}^{r_{B_{i, j}}} \exp \left\{-C_{1} \frac{\left[\operatorname{dist}\left(\mathrm{E}_{l, i, j}, B_{i, j}\right)\right]^{2}}{t^{2}}\right\} \frac{d t}{t}\right\}^{\frac{q}{2}}\left\|\widetilde{a}_{i, j}\right\|_{L^{2}\left(B_{i, j}\right)}^{q} \tag{2.23}\\
& \lesssim 2^{-l q \alpha_{0}}\left|B_{i, j}\right|^{\frac{q}{2}-1} \sim 2^{-l\left[q \alpha_{0}-n\left(1-\frac{q}{2}\right)\right]}\left|S_{l}\left(B_{i, j}\right)\right|^{\frac{q}{2}-1}
\end{align*}
$$

To estimate $\mathrm{K}_{l, i, j}$, let $\mathrm{F}_{l, i, j}:=\left\{x \in \mathbb{R}^{n}: \operatorname{dist}\left(x, S_{l}\left(B_{i, j}\right)\right)<\frac{\operatorname{dist}\left(x, B_{i, j}\right)}{4}\right\}$. It is easy to see that $\operatorname{dist}\left(\mathrm{F}_{l, i, j}, B_{i, j}\right)>2^{l-3} r_{B_{i, j}}$. Moreover, by Fubini's theorem, Lemma 2.3 and Definition 2.14, we know that there exists a positive constant $\alpha_{1} \in$ $\left(\frac{n}{q}\left(1-\frac{q}{2}\right), 2 M\right)$ such that

$$
\begin{align*}
\mathrm{K}_{l, i, j} & \lesssim\left\{\int_{r_{B_{i, j}}}^{\infty} \int_{\mathrm{F}_{l, i, j}}\left|t^{2(M+1)} T^{M+1} e^{-t^{2} T} \widetilde{b}_{i, j}(y)\right|^{2} \frac{d y d t}{t^{4 M+1}}\right\}^{\frac{q}{2}} \\
& \lesssim\left\{\int_{r_{B_{i, j}}}^{\infty} \exp \left\{-C_{1} \frac{\left[\operatorname{dist}\left(\mathrm{~F}_{l, i, j}, B_{i, j}\right)\right]}{t^{2}}\right\} \frac{d y d t}{t^{4 M+1}}\right\}^{\frac{q}{2}}\left\|\widetilde{b}_{i, j}\right\|_{L^{2}\left(B_{i, j}\right)}^{q} \\
& \lesssim\left\{\int_{r_{B_{i, j}}}^{\infty}\left[\frac{t^{2}}{2^{2 l} r_{B_{i, j}}}\right]^{\alpha_{1}} \frac{d t}{t^{4 M+1}}\right\}^{\frac{q}{2}} r_{B_{i, j}}^{2 M q}\left|B_{i, j}\right|^{\frac{q}{2}-1} \tag{2.24}\\
& \left.\lesssim 2^{-l\left[q \alpha_{1}-n\left(1-\frac{q}{2}\right)\right]} \right\rvert\, S_{l}\left(B_{i, j}\right)^{\frac{q}{2}-1}
\end{align*}
$$

Similar to the estimates of (2.23) and (2.24), we obtain

$$
\begin{aligned}
\mathrm{Q}_{l, i, j} & \lesssim\left\{\int_{2^{l-2} r_{B_{i, j}}}^{\infty} \int_{\mathbb{R}^{n}}\left|\left(t^{2} T\right)^{M+1} e^{-t^{2} T} \widetilde{b}_{i, j}(y)\right|^{2} \frac{d y d t}{t^{4 M+1}}\right\}^{\frac{q}{2}} \\
& \lesssim\left\{\int_{2^{l-2} r_{B_{i, j}}}^{\infty} \frac{d t}{t^{4 M+1}}\right\}^{\frac{q}{2}}\left\|\left.\left|\widetilde{b}_{i, j} \|_{L^{2}\left(B_{i, j}\right)}^{2} \lesssim 2^{-l\left[2 q M-n\left(1-\frac{q}{2}\right)\right]}\right| S_{l}\left(B_{i, j}\right)\right|^{\frac{q}{2}-1}\right.
\end{aligned}
$$

which, together with (2.22), (2.23) and (2.24), implies that, for all $\alpha \in(0, \infty)$, $i \in \mathbb{Z} \cap\left[i_{0}+1, \infty\right)$ and $j \in \mathbb{Z}_{+}$,

$$
\begin{aligned}
\left|\left\{x \in\left(C_{0} B_{i, j}\right)^{\complement}: S_{T}\left(\widetilde{a}_{i, j}\right)(x)>\alpha\right\}\right| & \lesssim \alpha^{-q} \sum_{l=4}^{\infty}\left(\mathrm{J}_{l, i, j}+\mathrm{K}_{l, i, j}+\mathrm{Q}_{l, i, j}\right)\left|S_{l}\left(B_{i, j}\right)\right|^{1-\frac{q}{2}} \\
& \lesssim \frac{1}{\alpha^{q}}
\end{aligned}
$$

Thus, (2.21) is true.
We now turn to the estimates of f_{1}. For any $r \in(1,2)$, let $b \in(0,1)$ such that $b<1-\frac{p}{r}$. By Hölder's inequality, we know that

$$
S_{T}\left(f_{1}\right) \lesssim\left\{\sum_{i=-\infty}^{i_{0}} 2^{i b r^{\prime}}\right\}^{\frac{1}{r^{\prime}}}\left\{\sum_{i=-\infty}^{i_{0}}\left[S_{T}\left(2^{-i b} \sum_{j \in \mathbb{Z}_{+}} \lambda_{i, j} a_{i, j}\right)\right]^{r}\right\}^{\frac{1}{r}}
$$

which, together with $\alpha \sim 2^{i_{0}}$, Chebyshev's inequality and the $L^{r}\left(\mathbb{R}^{n}\right)$ boundedness of S_{T} (which can be deduced from the interpolation of $H_{T}^{p}\left(\mathbb{R}^{n}\right)$; see [38, Proposition $9.5]$), implies that there exists a positive constant C, independent of α, f and x,
such that

$$
\begin{align*}
& \left|\left\{x \in \mathbb{R}^{n}: S_{T}\left(f_{1}\right)(x)>\alpha\right\}\right| \\
& \quad \leq\left|\left\{x \in \mathbb{R}^{n}: \sum_{i=-\infty}^{i_{0}}\left[S_{T}\left(2^{-i b} \sum_{j \in \mathbb{Z}_{+}} \lambda_{i, j} a_{i, j}\right)(x)\right]^{r}>C 2^{i_{0}(1-b) r}\right\}\right| \\
& \quad \lesssim \frac{1}{2^{i_{0}(1-b) r}} \sum_{i=-\infty}^{i_{0}} 2^{-i b r} \int_{\mathbb{R}^{n}}\left|\sum_{j \in \mathbb{Z}_{+}} \lambda_{i, j} a_{i, j}(x)\right|^{r} d x \tag{2.25}\\
& \quad=: \frac{1}{2^{i_{0}(1-b) r}} \sum_{i=-\infty}^{i_{0}} 2^{-i b r}\left[\mathrm{I}_{i}\right]^{r} .
\end{align*}
$$

Now, let $g \in L^{r^{\prime}}\left(\mathbb{R}^{n}\right)$ satisfying $\|g\|_{L^{r^{\prime}}\left(\mathbb{R}^{n}\right)} \leq 1$ such that

$$
\int_{\mathbb{R}^{n}}\left|\sum_{j \in \mathbb{Z}_{+}} \lambda_{i, j} a_{i, j}(x)\right|^{r} d x \sim\left|\int_{\mathbb{R}^{n}}\left[\sum_{j \in \mathbb{Z}_{+}} \lambda_{i, j} a_{i, j}(x)\right] \overline{g(x)} d x\right|^{r}
$$

For any $k \in \mathbb{N}$, let $S_{k}\left(B_{i, j}\right):=2^{k} B_{i, j} \backslash 2^{k-1} B_{i, j}$ and $S_{0}\left(B_{i, j}\right):=B_{i, j}$. Let $\widetilde{B}_{i, j}:=$ $\frac{1}{10 \sqrt{n}} B_{i, j}$. By Hölder's inequality, Definition 2.19 and the definition of the HardyLittlewood maximal operator \mathcal{M} as in (2.4), we know that

$$
\begin{aligned}
\mathrm{I}_{i} & \lesssim \sum_{j \in \mathbb{Z}_{+}} \int_{\mathbb{R}^{n}}\left|\lambda_{i, j} a_{i, j}(x) \overline{g(x)}\right| d x \\
& \lesssim \sum_{j \in \mathbb{Z}_{+}} \sum_{k \in \mathbb{Z}_{+}} \int_{S_{k}\left(B_{i, j}\right)}\left|\lambda_{i, j} a_{i, j}(x) \overline{g(x)}\right| d x \\
& \lesssim \sum_{j \in \mathbb{Z}_{+}} \sum_{k \in \mathbb{Z}_{+}} 2^{i}\left|B_{i, j}\right|^{\frac{1}{p}}\left\{\int_{S_{k}\left(B_{i, j}\right)}\left|a_{i, j}(x)\right|^{2} d x\right\}^{\frac{1}{2}}\left\{\int_{S_{k}\left(B_{i, j}\right)}|g(x)|^{2} d x\right\}^{\frac{1}{2}} \\
& \lesssim \sum_{j \in \mathbb{Z}_{+}} \sum_{k \in \mathbb{Z}_{+}} 2^{i}\left|B_{i, j}\right| 2^{-k \epsilon}\left\{\frac{1}{\left|2^{k} B_{i, j}\right|} \int_{2^{k} B_{i, j}}|g(x)|^{2} d x\right\}^{\frac{1}{2}} \\
& \lesssim \sum_{j \in \mathbb{Z}_{+}} 2^{i}\left|B_{i, j}\right| \inf _{x \in \widetilde{B}_{i, j}}\left\{\mathcal{M}\left(|g|^{2}\right)(x)\right\}^{\frac{1}{2}} \\
& \lesssim \sum_{j \in \mathbb{Z}_{+}} 2^{i}\left|B_{i, j}\right|\left\{\frac{1}{\left|\widetilde{B}_{i, j}\right|} \int \widetilde{B}_{i, j}\left[\mathcal{M}\left(|g|^{2}\right)(x)\right]^{\frac{r^{\prime}}{2}} d x\right\}^{\frac{1}{r^{\prime}}} \\
& \lesssim \sum_{j \in \mathbb{Z}_{+}} 2^{i}\left|B_{i, j}\right|^{\frac{1}{r}}\left\{\int_{\widetilde{B}_{i, j}}\left[\mathcal{M}\left(|g|^{2}\right)(x)\right]^{\frac{r^{\prime}}{2}} d x\right\}^{\frac{1}{r^{\prime}}}
\end{aligned}
$$

which, together with Hölder's inequality, the uniformly bounded overlap of $\left\{\widetilde{B}_{i, j}\right\}_{j \in \mathbb{Z}_{+}}$ on j, the $L^{r^{\prime} / 2}\left(\mathbb{R}^{n}\right)$ boundedness of $\mathcal{M}, r<2$ and $\|g\|_{L^{r^{\prime}}\left(\mathbb{R}^{n}\right)} \leq 1$, implies that

$$
\begin{align*}
\mathrm{I}_{i} & \lesssim\left\{\sum_{j \in \mathbb{Z}_{+}} 2^{i r}\left|B_{i, j}\right|\right\}^{\frac{1}{r}}\left\{\sum_{j \in \mathbb{Z}_{+}} \int_{\widetilde{B}_{i, j}}\left[\mathcal{M}\left(|g|^{2}\right)(x)\right]^{\frac{r^{\prime}}{2}} d x\right\}^{\frac{1}{r^{\prime}}} \tag{2.26}\\
& \lesssim\left\{\sum_{j \in \mathbb{Z}_{+}} 2^{i(r-p)}\left|\lambda_{i, j}\right|^{p}\right\}^{\frac{1}{r}}
\end{align*}
$$

Thus, by $(2.25),(2.26), b \in\left(0, \frac{r-p}{r}\right)$ and $2^{i_{0}} \sim \alpha$, we conclude that

$$
\begin{aligned}
\left|\left\{x \in \mathbb{R}^{n}: S_{T}\left(f_{1}\right)(x)>\alpha\right\}\right| & \lesssim \frac{1}{2^{i_{0}(1-b) r}} \sum_{i=-\infty}^{i_{0}} 2^{-i b r}\left[\mathrm{I}_{i}\right]^{r} \\
& \lesssim \frac{1}{2^{i_{0}(1-b) r}} \sum_{i=-\infty}^{i_{0}} 2^{-i b r}\left\{\sum_{j \in \mathbb{Z}_{+}} 2^{i(r-p)}\left|\lambda_{i, j}\right|^{p}\right\} \\
& \lesssim \frac{1}{2^{i_{0}(1-b) r}} \sum_{i=-\infty}^{i_{0}} 2^{i(r-p-b r)}\|f\|_{W H_{T, \mathrm{~mol}, \epsilon, \mathrm{M}}^{p}}^{p}\left(\mathbb{R}^{n}\right) \\
& \lesssim \frac{1}{\alpha^{p}}\|f\|_{W H_{T, \mathrm{~mol}, \epsilon, \mathrm{M}}^{p}\left(\mathbb{R}^{n}\right)}^{p}
\end{aligned}
$$

which shows that $f_{1} \in W H_{T}^{p}\left(\mathbb{R}^{n}\right)$ and

$$
\left\|f_{1}\right\|_{W H_{T}^{p}\left(\mathbb{R}^{n}\right)} \lesssim\|f\|_{W H_{T, \mathrm{~mol}, \epsilon, \mathrm{M}}^{p}}^{p}\left(\mathbb{R}^{n}\right)^{p}
$$

Combining the estimates for f_{1} and f_{2}, we then complete the proof of Theorem 2.15 .

Remark 2.18. Observe that, in the proof of Theorem 2.15, if we use Theorem 2.11 to replace Theorem 2.6 in the argument above (2.14), then, for all $f \in$ $W H_{T}^{p}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)$, we obtain a weak atomic decomposition of f of the form $f=$ $\sum_{i \in \mathcal{I}, j \in \Lambda_{i}} \lambda_{i, j} a_{i, j}$ in $L^{2}\left(\mathbb{R}^{n}\right)$, where the index sets \mathcal{I} and Λ_{i} are as in Theorem 2.11, $\left\{a_{i, j}\right\}_{i \in \mathcal{I}, j \in \Lambda_{i}}$ is a sequence of $(p, 2, M)_{T \text {-atoms associated to balls }\left\{B_{i, j}\right\}_{i \in \mathcal{I}, j \in \Lambda_{i}}, ~}^{\text {- }}$ and $\lambda_{i, j}:=\widetilde{C} 2^{i}\left|B_{i, j}\right|^{\frac{1}{p}}$, with \widetilde{C} being a positive constant independent of f, satisfies

$$
\sup _{i \in \mathcal{I}}\left(\sum_{j \in \Lambda_{i}}\left|\lambda_{i, j}\right|^{p}\right)^{\frac{1}{p}} \leq C\|f\|_{W H_{T}^{p}\left(\mathbb{R}^{n}\right)}
$$

where C is a positive constant independent of f.
Now, we try to establish the molecular characterization of $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$. We first recall the notion of $(p, \epsilon, M)_{L^{-}}$-molecules.

Definition 2.19 ([12]). Let $k \in \mathbb{N}, p \in(0,1], \epsilon \in(0, \infty), M \in \mathbb{N}$ and L satisfy Assumptions $(\mathcal{L})_{1},(\mathcal{L})_{2}$ and $(\mathcal{L})_{3}$. A function $m \in L^{2}\left(\mathbb{R}^{n}\right)$ is called a $(p, \epsilon, M)_{L^{-}}$ molecule if there exists a ball $B:=B\left(x_{B}, r_{B}\right)$, with $x_{B} \in \mathbb{R}^{n}$ and $r_{B} \in(0, \infty)$, such that
(i) for each $\ell \in\{1, \ldots, M\}, m$ belongs to the range of L^{ℓ} in $L^{2}\left(\mathbb{R}^{n}\right)$;
(ii) for all $i \in \mathbb{Z}_{+}$and $\ell \in\{0, \ldots, M\}$,

$$
\left\|\left(r_{B}^{-2 k} L^{-1}\right)^{\ell} m\right\|_{L^{2}\left(S_{i}(B)\right)} \leq\left(2^{i} r_{B}\right)^{n\left(\frac{1}{2}-\frac{1}{p}\right)} 2^{-i \epsilon}
$$

Definition 2.20. Let $f \in L^{2}\left(\mathbb{R}^{n}\right), \epsilon \in(0, \infty), M \in \mathbb{Z}_{+}, p \in(0,1]$ and L satisfy Assumptions $(\mathcal{L})_{1},(\mathcal{L})_{2}$ and $(\mathcal{L})_{3}$. Assume that $\left\{m_{i, j}\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}}$is a sequence of $(p, \epsilon, M)_{L}$-molecules associated to balls $\left\{B_{i, j}\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}}$and $\left\{\lambda_{i, j}\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}} \subset \mathbb{C}$ satisfying the conditions that
(i) for all $i \in \mathbb{Z}$ and $j \in \mathbb{Z}_{+}, \lambda_{i, j}:=\widetilde{C} 2^{i}\left|B_{i, j}\right|^{\frac{1}{p}}, \widetilde{C}$ is a positive constant independent of f;
(ii) there exists a positive constant C_{5}, depending only on f, n, p, ϵ and M, such that

$$
\sup _{i \in \mathbb{Z}}\left(\sum_{j \in \mathbb{Z}_{+}}\left|\lambda_{i, j}\right|^{p}\right)^{\frac{1}{p}} \leq C_{5}
$$

Then

$$
f=\sum_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}} \lambda_{i, j} m_{i, j}
$$

is called a weak molecular $(p, \epsilon, M)_{L \text {-representation of } f \text { if } f=\sum_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}} \lambda_{i, j} m_{i, j}, ~}^{\text {ren }}$ holds true in $L^{2}\left(\mathbb{R}^{n}\right)$. The weak molecular Hardy space $W H_{L, \operatorname{mol}, \epsilon, M}^{p}\left(\mathbb{R}^{n}\right)$ is then defined to be the completion of the space
$\mathbb{W} \mathbb{H}_{L, \operatorname{mol}, \epsilon, M}^{p}\left(\mathbb{R}^{n}\right):=\left\{f: f\right.$ has a weak molecular $(p, \epsilon, M)_{L}$-representation $\}$ with respect to the quasi-norm

$$
\begin{array}{r}
\|f\|_{W H_{L, \text { mol }, \epsilon, M}^{p}\left(\mathbb{R}^{n}\right)}:=\inf \left\{\sup _{i \in \mathbb{Z}}\left(\sum_{j \in \mathbb{Z}_{+}}\left|\lambda_{i, j}\right|^{p}\right)^{1 / p}: \quad f=\sum_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}} \lambda_{i, j} m_{i, j}\right. \text { is a weak } \\
\text { molecular } \left.(p, \epsilon, M)_{\left.L^{-} \text {-representation }\right\}}\right\}
\end{array}
$$

where the infimum is taken over all the weak molecular $(p, \epsilon, M)_{L}$-representations of f as above.

We also have the following weak molecular characterization of $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$.
Theorem 2.21. Let $p \in(0,1], k \in \mathbb{N}, \epsilon \in(0, \infty), M \in \mathbb{Z}_{+}$satisfy $M>\frac{n}{2 k}\left(\frac{1}{p}-\frac{1}{2}\right)$ and L Assumptions $(\mathcal{L})_{1},(\mathcal{L})_{2}$ and $(\mathcal{L})_{4}$. Then $W H_{L}^{p}\left(\mathbb{R}^{n}\right)=W H_{L, \operatorname{mol}, \epsilon, M}^{p}\left(\mathbb{R}^{n}\right)$ with equivalent quasi-norms.

To prove Theorem 2.21, we need the following lemma from [10, Propostion 2.13].
Lemma $2.22([10])$. Let L satisfy Assumptions $(\mathcal{L})_{1},(\mathcal{L})_{2}$ and $(\mathcal{L})_{4}$, and $\left(p_{-}(L), p_{+}(L)\right)$ be the range of exponents $p \in[1, \infty]$ for which the holomorphic semigroup $\left\{e^{-t L}\right\}_{t>0}$ is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$. Then, for all $p_{-}(L)<p \leq q<p_{+}(L)$, S_{L} is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$.

We now prove Theorem 2.21.

Proof of Theorem 2.21. To prove this theorem, it suffices to prove

$$
\left(W H_{L}^{p}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)\right)=\mathbb{W} \mathbb{H}_{L, \operatorname{mol}, \epsilon, M}^{p}\left(\mathbb{R}^{n}\right)
$$

with equivalent quasi-norms. The inclusion that $\left(W H_{L}^{p}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)\right) \subset$ $\mathbb{W} \mathbb{H}_{L, \operatorname{mol}, \epsilon, M}^{p}\left(\mathbb{R}^{n}\right)$ follows from a similar argument to the corresponding part of the proof of Theorem 2.15. We only remark that, in this case, the operator $\Pi_{\Psi, T}$ defined in (2.13) is replaced by a new operator $\Pi_{L, M}$ defined by setting, for all $F \in T^{2}\left(\mathbb{R}_{+}^{n+1}\right)$ and $x \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\Pi_{L, M}(F)(x):=\int_{0}^{\infty}\left(t^{2 k} L\right)^{M} e^{-t^{2 k} L}(F(\cdot, t))(x) \frac{d t}{t} \tag{2.27}
\end{equation*}
$$

where k is as in Assumption $(\mathcal{L})_{3}$. It is known, from [12, Lemma 4.2(ii)], that $\Pi_{L, M}$ maps each $T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$-atom into a $(p, \epsilon, M)_{L}$-molecule up to a harmless positive constant multiple.

Although the proof of the inclusion $\mathbb{W} \mathbb{H}_{L, \operatorname{mol}, \epsilon, M}^{p}\left(\mathbb{R}^{n}\right) \subset\left(W H_{L}^{p}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)\right)$ is also similar to the corresponding part of Theorem 2.15 , in this case, we need more careful calculations since the lack of the support condition for the molecules. Let $f \in \mathbb{W} \mathbb{H}_{L, \operatorname{mol}, \epsilon, M}^{p}\left(\mathbb{R}^{n}\right)$. From Definition 2.20 , it follows that f has a weak molecular $(p, \epsilon, M)_{L}$-representation $f=\sum_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}} \lambda_{i, j} m_{i, j}$, where $\left\{m_{i, j}\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}}$ is a sequence of $(p, \epsilon, M)_{L}$-molecules associated to the balls $\left\{B_{i, j}\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}}:=$ $\left\{B\left(x_{B_{i, j}}, r_{B_{i, j}}\right)\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}}, \lambda_{i, j}:=\widetilde{C} 2^{i}\left|B_{i, j}\right|^{1 / p}$, with \widetilde{C} being a positive constant independent of f, and $\sup _{i \in \mathbb{Z}}\left(\sum_{j \in \mathbb{Z}_{+}}\left|\lambda_{i, j}\right|^{p}\right)^{1 / p} \lesssim\|f\|_{W H_{L, \text { mol }, \epsilon, \mathrm{M}}^{p}}\left(\mathbb{R}^{n}\right)$.

For all $\alpha \in(0, \infty)$, let $i_{0} \in \mathbb{Z}$ satisfy $2^{i_{0}} \leq \alpha<2^{i_{0}+1}$. We write f into

$$
f=\sum_{i=-\infty}^{i_{0}} \sum_{j \in \mathbb{Z}_{+}} \lambda_{i, j} m_{i, j}+\sum_{i=i_{0}+1}^{\infty} \sum_{j \in \mathbb{Z}_{+}} \cdots=: f_{1}+f_{2}
$$

As in the proof of Theorem 2.15, we first estimate f_{2}. For fixed $q \in(0, p)$, by Definition 2.20, we write

$$
\begin{equation*}
f_{1}=\sum_{i=-\infty}^{i_{0}} \sum_{j \in \mathbb{Z}_{+}}\left(\widetilde{C} 2^{i}\left|B_{i, j}\right|^{\frac{1}{q}}\right)\left(\frac{1}{\widetilde{C}}\left|B_{i, j}\right|^{\frac{1}{p}-\frac{1}{q}} m_{i, j}\right)=: \sum_{i=-\infty}^{i_{0}} \sum_{j \in \mathbb{Z}_{+}} \widetilde{\lambda}_{i, j} \widetilde{m}_{i, j} \tag{2.28}
\end{equation*}
$$

Moreover, from Definition 2.20 and the fact $q<p$, we deduce that

$$
\begin{aligned}
\sum_{i=i_{0}+1}^{\infty} \sum_{j \in \mathbb{Z}_{+}}\left|\widetilde{\lambda}_{i, j}\right|^{q} & \lesssim \sum_{i=i_{0}+1}^{\infty} 2^{i q} \sum_{j \in \mathbb{Z}_{+}}\left|B_{i, j}\right| \lesssim \sum_{i=i_{0}+1}^{\infty} 2^{i(q-p)} \sum_{j \in \mathbb{Z}_{+}}\left|\lambda_{i, j}\right|^{p} \\
& \lesssim\|f\|_{W H_{L, \operatorname{mol}, \epsilon, M}^{p}\left(\mathbb{R}^{n}\right)}^{p} \sum_{i=i_{0}+1}^{\infty} 2^{i(q-p)} \\
& \lesssim 2^{i_{0}(q-p)}\|f\|_{W H_{L, \mathrm{~mol}, \epsilon, M}^{p}\left(\mathbb{R}^{n}\right)}^{p}
\end{aligned}
$$

which, together with Lemma 2.17, implies that, to show that $S_{L}\left(f_{2}\right) \in W L^{p}\left(\mathbb{R}^{n}\right)$, it suffices to show that, for all $\alpha \in(0, \infty), i \in \mathbb{Z} \cap\left[i_{0}+1, \infty\right)$ and $j \in \mathbb{Z}_{+}$,

$$
\begin{equation*}
\left|\left\{x \in \mathbb{R}^{n}: S_{L}\left(\widetilde{m}_{i, j}\right)(x)>\alpha\right\}\right| \lesssim \frac{1}{\alpha^{q}} . \tag{2.29}
\end{equation*}
$$

To prove (2.29), by Chebyshev's inequality and Hölder's inequality, we write (2.30)

$$
\left|\left\{x \in \mathbb{R}^{n}: S_{L}\left(\widetilde{m}_{i, j}\right)(x)>\alpha\right\}\right| \lesssim \sum_{l=0}^{\infty} 2^{-i_{0} q}\left\|S_{L}\left(\widetilde{m}_{i, j}\right)\right\|_{L^{2}\left(S_{l}\left(B_{i, j}\right)\right)}^{q}\left|S_{l}\left(B_{i, j}\right)\right|^{1-\frac{q}{2}}
$$

For $l \in\{0, \ldots, 4\}$, by Fubini's theorem, the $L^{2}\left(\mathbb{R}^{n}\right)$ boundedness of S_{L}, Definition 2.19 and (2.28), we conclude that

$$
\begin{equation*}
\left\|S_{L}\left(\widetilde{m}_{i, j}\right)\right\|_{L^{2}\left(S_{l}\left(B_{i, j}\right)\right)} \lesssim\left\|S_{L}\left(\widetilde{m}_{i, j}\right)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \lesssim\left\|\widetilde{m}_{i, j}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \lesssim\left|B_{i, j}\right|^{\frac{1}{2}-\frac{1}{q}} \tag{2.31}
\end{equation*}
$$

For $l \geq 5$, let

$$
\begin{aligned}
\widetilde{\mathrm{J}}_{l, i, j}:=\left\{\int_{S_{l}\left(B_{i, j}\right)}\left[\int_{0}^{r_{B_{i, j}}} \int_{|y-x|<t}\left|t^{2 k} L e^{-t^{2 k} L} \widetilde{m}_{i, j}(y)\right|^{2} \frac{d y d t}{t^{n+1}}\right] d x\right\}^{\frac{q}{2}} \\
\widetilde{\mathrm{~K}}_{l, i, j}:=\left\{\int _ { S _ { l } (B _ { i , j }) } \left[\int_{r_{B_{i, j}}}^{\operatorname{dist}\left(x, B_{i, j}\right) / 4} \int_{|y-x|<t} \mid\left(t^{2 k} L\right)^{M+1} e^{-t^{2 k} L}\right.\right. \\
\left.\left.\left.\quad \circ\left(L^{-M} \widetilde{m}_{i, j}\right)(y)\right|^{2} \frac{d y d t}{t^{4 k M+n+1}}\right] d x\right\}^{\frac{q}{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
\widetilde{\mathrm{Q}}_{l, i, j}:=\left\{\int _ { S _ { l } (B _ { i , j }) } \left[\int_{\operatorname{dist}\left(x, B_{i, j}\right) / 4}^{\infty} \int_{|y-x|<t} \mid\right.\right. & \left.\mid t^{2 k} L\right)^{M+1} e^{-t^{2 k} L} \\
& \left.\left.\left.\circ L^{-M} \widetilde{m}_{i, j}(y)\right|^{2} \frac{d y d t}{t^{4 k M+n+1}}\right] d x\right\}^{\frac{q}{2}}
\end{aligned}
$$

To estimate $\widetilde{J}_{l, i, j}$, let $\widetilde{\mathrm{E}}_{l, i, j}:=\left\{x \in \mathbb{R}^{n}: \operatorname{dist}\left(x, S_{l}\left(B_{i, j}\right)\right)<r_{B_{i, j}}\right\}$ and

$$
\widetilde{\mathrm{G}}_{l, i, j}:=\left\{x \in \mathbb{R}^{n}: \operatorname{dist}\left(x, \widetilde{\mathrm{E}}_{l, i, j}\right)<2^{l-3} r_{B_{i, j}}\right\} .
$$

It is easy to see that $\operatorname{dist}\left(\mathbb{R}^{n} \backslash \widetilde{\mathrm{G}}_{l, i, j}, \widetilde{\mathrm{E}}_{l, i, j}\right)>2^{l-4} r_{B_{i, j}}$. Moreover, by Fubini's theorem, the $L^{2}\left(\mathbb{R}^{n}\right)$ boundedness of S_{L}, Assumption $(\mathcal{L})_{3}$, Definition 2.19 and (2.28), we see that there exists a positive constant $\alpha_{2} \in\left(n\left(\frac{1}{q}-\frac{1}{2}\right), \infty\right)$ such that

$$
\begin{align*}
& \widetilde{\mathrm{J}}_{l, i, j} \lesssim\left\{\int_{0}^{r_{B_{i, j}}} \int_{\widetilde{\mathrm{E}}_{l, i, j}}\left|t^{2 k} L e^{-t^{2 k} L}\left[\chi_{\widetilde{\mathrm{G}}_{l, i, j}}+\chi_{\mathbb{R}^{n} \backslash \widetilde{\mathrm{G}}_{l, i, j}}\right] \widetilde{m}_{i, j}(y)\right|^{2} \frac{d y d t}{t}\right\}^{\frac{q}{2}} \\
& \lesssim\left|B_{i, j}\right|^{\frac{q}{p}-1}\left\|m_{i, j}\right\|_{L^{2}\left(\widetilde{\mathrm{G}}_{l, i, j}\right)}^{q}+\left\|m_{i, j}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{q}\left|B_{i, j}\right|^{\frac{q}{p}-1} \\
& \times\left[\int_{0}^{r_{B_{i, j}}} \exp \left\{-C_{1} \frac{\left[\operatorname{dist}\left(\mathbb{R}^{n} \backslash \widetilde{\mathrm{G}}_{l, i, j}, \widetilde{\mathrm{E}}_{l, i, j}\right)\right]^{2 k /(2 k-1)}}{t^{2 k /(2 k-1)}}\right\} \frac{d t}{t}\right]^{\frac{q}{2}} \tag{2.32}\\
& \lesssim\left\{2^{-l\left[\epsilon q-n\left(\frac{q}{p}-1\right)\right]}+2^{-l\left[q \alpha_{2}-n\left(1-\frac{q}{2}\right)\right]}\right\}\left|2^{l} B_{i, j}\right|^{\frac{q}{2}-1} \lesssim 2^{-l \epsilon_{0}}\left|2^{l} B_{i, j}\right|^{\frac{q}{2}-1},
\end{align*}
$$

where $\epsilon_{0}:=\max \left\{\epsilon q-n\left(\frac{q}{p}-1\right), q \alpha_{2}-n\left(1-\frac{q}{2}\right)\right\}$.
The estimates for $\widetilde{\mathrm{K}}_{l, i, j}$ and $\widetilde{\mathrm{Q}}_{l, i, j}$ are deduced from a way similar to that of $\widetilde{\mathrm{J}}_{l, i, j}$. We omit the details and only point out that, to obtain the needed convergence, we
need $M>\frac{n}{4 k}\left(\frac{1}{q}-\frac{1}{2}\right)$, which, together with $(2.30),(2.31)$ and (2.32), implies that (2.29). Thus,

$$
\left|\left\{x \in \mathbb{R}^{n}: S_{L}\left(f_{2}\right)(x)>\alpha\right\}\right| \lesssim \frac{1}{\alpha^{p}}\|f\|_{W H_{L, \mathrm{~mol}, \epsilon, \mathrm{M}}^{p}\left(\mathbb{R}^{n}\right)^{p}}^{p} .
$$

We now turn to the estimates of f_{1}. Let $\left(p_{-}(L), p_{+}(L)\right)$ be the interior of the maximal interval of the exponents p such that $\left\{e^{-t L}\right\}_{t>0}$ is $L^{p}\left(\mathbb{R}^{n}\right)$ bounded. For any $r \in\left(p_{-}(L), 2\right)$, let $a \in(0,1)$ such that $a<1-\frac{p}{r}$. By Hölder's inequality, we know that

$$
S_{L}\left(f_{1}\right) \lesssim\left\{\sum_{i=-\infty}^{i_{0}} 2^{i a r^{\prime}}\right\}^{\frac{1}{r^{\prime}}}\left\{\sum_{i=-\infty}^{i_{0}}\left[S_{L}\left(2^{-i a} \sum_{j \in \mathbb{Z}_{+}} \lambda_{i, j} m_{i, j}\right)\right]^{r}\right\}^{\frac{1}{r}}
$$

which, together with $\alpha \sim 2^{i_{0}}$, Chebyshev's inequality and the $L^{r}\left(\mathbb{R}^{n}\right)$ boundedness of S_{L} (see Lemma 2.22), implies that there exists a positive constant C such that

$$
\begin{aligned}
& \left|\left\{x \in \mathbb{R}^{n}: S_{L}\left(f_{1}\right)(x)>\alpha\right\}\right| \\
& \quad \leq\left|\left\{x \in \mathbb{R}^{n}: \sum_{i=-\infty}^{i_{0}}\left[S_{L}\left(2^{-i a} \sum_{j \in \mathbb{Z}_{+}} \lambda_{i, j} m_{i, j}\right)(x)\right]^{r}>C 2^{i_{0}(1-a) r}\right\}\right| \\
& \quad \\
& \lesssim \frac{1}{2^{i_{0}(1-a) r}} \sum_{i=-\infty}^{i_{0}} 2^{-i a r} \int_{\mathbb{R}^{n}}\left|\sum_{j \in \mathbb{Z}_{+}} \lambda_{i, j} m_{i, j}(x)\right|^{r} d x \\
& \quad=: \frac{1}{2^{i_{0}(1-a) r}} \sum_{i=-\infty}^{i_{0}} 2^{-i a r}\left[\mathrm{I}_{i}\right]^{r} .
\end{aligned}
$$

The estimate for I_{i} is similar to that of I_{i} in the proof of Theorem 2.15. We also obtain

$$
\begin{equation*}
\mathrm{I}_{i} \lesssim\left\{\sum_{j \in \mathbb{Z}_{+}} 2^{i(r-p)}\left|\lambda_{i, j}\right|^{p}\right\}^{\frac{1}{r}} \tag{2.34}
\end{equation*}
$$

Thus, by (2.33), (2.34), $a \in\left(0, \frac{r-p}{r}\right)$ and $2^{i_{0}} \sim \alpha$, we conclude that

$$
\begin{aligned}
\left|\left\{x \in \mathbb{R}^{n}: S_{L}\left(f_{1}\right)(x)>\alpha\right\}\right| & \lesssim \frac{1}{2^{i_{0}(1-a) r}} \sum_{i=-\infty}^{i_{0}} 2^{-i a r}\left[\mathrm{I}_{i}\right]^{r} \\
& \lesssim \frac{1}{2^{i_{0}(1-a) r}} \sum_{i=-\infty}^{i_{0}} 2^{-i a r}\left\{\sum_{j \in \mathbb{Z}_{+}} 2^{i(r-p)}\left|\lambda_{i, j}\right|^{p}\right\} \\
& \lesssim \frac{1}{2^{i_{0}(1-a) r}} \sum_{i=-\infty}^{i_{0}} 2^{i(r-p-a r)}\|f\|_{W H_{L, \mathrm{~mol}, \epsilon, \mathrm{M}}^{p}}^{p}\left(\mathbb{R}^{n}\right) \\
& \lesssim \frac{1}{\alpha^{p}}\|f\|_{W H_{L, \mathrm{~mol}, \epsilon, \mathrm{M}}^{p}\left(\mathbb{R}^{n}\right)}^{p}
\end{aligned}
$$

which shows that $f_{1} \in W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ and

$$
\left\|f_{1}\right\|_{W H_{L}^{p}\left(\mathbb{R}^{n}\right)} \lesssim\|f\|_{W H_{L, \mathrm{~mol}, \epsilon, \mathrm{M}}^{p}}^{p}\left(\mathbb{R}^{n}\right)^{2}
$$

Combining the estimates of f_{1} and f_{2}, we then complete the proof of Theorem 2.21 .

Remark 2.23. (i) As was observed in the proof of Theorem 2.11, we know that Assumption $(\mathcal{L})_{4}$ is needed only when proving $W H_{L, \operatorname{mol}, \epsilon, M}^{p}\left(\mathbb{R}^{n}\right) \subset W H_{L}^{p}\left(\mathbb{R}^{n}\right)$. Thus, if L only satisfies Assumptions $(\mathcal{L})_{1},(\mathcal{L})_{2}$ and $(\mathcal{L})_{3}$, then $W H_{L}^{p}\left(\mathbb{R}^{n}\right) \subset$ $W H_{L, \mathrm{~mol}, \epsilon, M}^{p}\left(\mathbb{R}^{n}\right)$.
(ii) Let $\left(p_{-}(L), p_{+}(L)\right)$ be the interval of the exponents p for which the semigroup $\left\{e^{-t L}\right\}_{t>0}$ is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$. Assume that $q \in\left(p_{-}(L), p_{+}(L)\right)$. Similar to the notion of $(p, \epsilon, M)_{L^{-}}$-molecules as in Definition 2.19, we also define the $(p, q, \epsilon, M)_{L^{-}}$ molecule as $m \in L^{q}\left(\mathbb{R}^{n}\right)$ belonging to the range of L^{ℓ} for all $\ell \in\{0, \ldots, M\}$ and satisfying that there exist a ball $B:=\left(x_{B}, r_{B}\right)$, with $x_{B} \in \mathbb{R}^{n}$ and $r_{B} \in(0, \infty)$, and a positive constant C such that, for all $i \in \mathbb{Z}_{+}$,

$$
\left\|\left(r_{B}^{2 k} L\right)^{-\ell} m\right\|_{L^{q}\left(S_{i}(B)\right)} \leq C 2^{-i \epsilon}\left|S_{i}(B)\right|^{n\left(\frac{1}{q}-\frac{1}{p}\right)}
$$

Moreover, the corresponding weak molecular Hardy space $W H_{L, \operatorname{mol}, q, \epsilon, M}^{p}\left(\mathbb{R}^{n}\right)$ can be defined analogously to Definition 2.20.

Assume further that L satisfies Assumption $(\mathcal{L})_{4}$. By using the method similar to that used in the proofs of [44, Proposition 4.2] and [10, Theorem 2.23], we can also prove the equivalence between $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ and the molecular weak Hardy space $W H_{L, \text { mol }, q, \epsilon, M}^{p}\left(\mathbb{R}^{n}\right)$. Recall that, in [10, Proposition 2.10] (see also Proposition 2.2), it was proved that, if L is the $2 k$-order divergence form homogeneous elliptic operator as in (1.1), then L satisfies Assumption $(\mathcal{L})_{4}$.

Let L be as in (1.1). Applying the weak molecular characterization, we now study the boundedness of the associated Riesz transform $\nabla^{k} L^{-1 / 2}$ and the fractional power $L^{-\alpha /(2 k)}$ as follows.
Theorem 2.24. Let $k \in \mathbb{N}$ and L be as in (1.1). Then, for all $p \in\left(\frac{n}{n+k}, 1\right]$, the Riesz transform $\nabla^{k} L^{-1 / 2}$ is bounded from $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ to $W H^{p}\left(\mathbb{R}^{n}\right)$.
Proof. Let $f \in W H_{L}^{p}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)$. From Theorem 2.21, we deduce that there exist sequences $\left\{\lambda_{i, j}\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}} \subset \mathbb{C}$ and $\left\{m_{i, j}\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}}$of $(p, \epsilon, M)_{L}$-molecules such that

$$
f=\sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}_{+}} \lambda_{i, j} m_{i, j}
$$

in $L^{2}\left(\mathbb{R}^{n}\right)$ and

$$
\sup _{i \in \mathbb{Z}}\left(\sum_{j \in \mathbb{Z}_{+}}\left|\lambda_{i, j}\right|^{p}\right)^{1 / p} \sim\|f\|_{W H_{L}^{p}\left(\mathbb{R}^{n}\right)}
$$

By the proof of [12, Theorem 6.2], we know that, for all $i \in \mathbb{Z}$ and $j \in \mathbb{Z}_{+}$, $\nabla^{k} L^{-1 / 2}\left(m_{i, j}\right)$ is a classical $H^{p}\left(\mathbb{R}^{n}\right)$-molecule up to a harmless positive constant multiple. From this and Remark 2.13, together with Theorem 2.21 in the case $L=-\Delta$, it follows that $\nabla^{k} L^{-1 / 2} f \in W H^{p}\left(\mathbb{R}^{n}\right)$ and

$$
\left\|\nabla^{k} L^{-1 / 2}(f)\right\|_{W H^{p}\left(\mathbb{R}^{n}\right)} \lesssim \sup _{i \in \mathbb{Z}}\left(\sum_{j \in \mathbb{Z}_{+}}\left|\lambda_{i, j}\right|^{p}\right)^{1 / p} \sim\|f\|_{W H_{L}^{p}\left(\mathbb{R}^{n}\right)},
$$

which, together with a density argument, then completes the proof of Theorem 2.24.

Theorem 2.25. Let $k \in \mathbb{N}$ and L be as in (1.1). Then, for all $0<p<r \leq 1$ and $\alpha=n\left(\frac{1}{p}-\frac{1}{r}\right)$, the fractional power $L^{-\alpha /(2 k)}$ is bounded from $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ to $W H_{L}^{r}\left(\mathbb{R}^{n}\right)$.

Proof. Similar to the proof of [44, Theorems 7.2 and 7.3], we know that $L^{-\alpha /(2 k)}$ maps each $(p, \epsilon, M)_{L^{-} \text {-molecule }}$ to a $(r, q, \epsilon, M)_{L^{-} \text {molecule }}$ with $\alpha=n\left(\frac{1}{2}-\frac{1}{q}\right)$, up to a harmless positive constant multiple. This, together with the fact that $L^{-\alpha /(2 k)}$ is bounded from $L^{2}\left(\mathbb{R}^{n}\right)$ to $L^{q}\left(\mathbb{R}^{n}\right)$ (see [10, Lemma 3.10]) and Remark 2.23, then finishes the proof of Theorem 2.25.

Remark 2.26. (i) The boundedness of the Riesz transform $\nabla^{k} L^{-1 / 2}$, for $k \in \mathbb{N}$ and L as in (1.1), on the Hardy space $H_{L}^{p}\left(\mathbb{R}^{n}\right)$ associated to L is known. Indeed, it was proved in $[12,13]$ that, for all $p \in\left(\frac{n}{n+k}, 1\right], \nabla^{k} L^{-1 / 2}$ is bounded from $H_{L}^{p}\left(\mathbb{R}^{n}\right)$ to the classical Hardy space $H^{p}\left(\mathbb{R}^{n}\right)$ and, at the endpoint case $p=\frac{n}{n+k}, \nabla^{k} L^{-1 / 2}$ is bounded from $H_{L}^{n /(n+k)}\left(\mathbb{R}^{n}\right)$ to the classical weak Hardy space $W H^{n /(n+k)}\left(\mathbb{R}^{n}\right)$.
(ii) The boundedness of the fractional power $L^{-\alpha /(2 k)}$, for $k \in \mathbb{N}$ and L as in (1.1), on the Hardy space $H_{L}^{p}\left(\mathbb{R}^{n}\right)$ associated to L is also well known. Indeed, it was proved that, for all $0<p<r \leq 1$ and $\alpha=n\left(\frac{1}{p}-\frac{1}{r}\right), L^{-\alpha /(2 k)}$ is bounded from $H_{L}^{p}\left(\mathbb{R}^{n}\right)$ to $H_{L}^{r}\left(\mathbb{R}^{n}\right)($ see $[10,41,44])$.

3. The real interpolation of intersections

In this section, we establish a real interpolation theorem on the weak Hardy spaces $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ by showing that $L^{2}\left(\mathbb{R}^{n}\right) \cap W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ is an intermediate space between the spaces $L^{2}\left(\mathbb{R}^{n}\right) \cap H_{L}^{p}\left(\mathbb{R}^{n}\right)$ for different $p \in(0,1]$. To this end, we first recall some basic results on the real interpolation (see [7,62] for more details).

Let $\left(X_{0}, X_{1}\right)$ be a quasi-normed couple, namely, X_{0} and X_{1} are two quasi-normed spaces which are linearly and continuously imbedded in some Hausdorff topological vector space X. Recall that, for any $f \in X_{0}+X_{1}$ and $t \in(0, \infty)$, Peetre's K functional $K\left(t, f ; X_{0}, X_{1}\right)$ is defined by setting,

$$
K\left(t, f ; X_{0}, X_{1}\right):=\inf \left\{\left\|f_{0}\right\|_{X_{0}}+t\left\|f_{1}\right\|_{X_{1}}: f=f_{0}+f_{1}, f_{0} \in X_{0}, \quad f_{1} \in X_{1}\right\}
$$

Then, for all $\theta \in(0,1)$ and $q \in[1, \infty]$, the real interpolation space $\left(X_{0}, X_{1}\right)_{\theta, q}$ is defined to be all $f \in X_{0}+X_{1}$ such that, for $q \in[1, \infty)$,

$$
\begin{equation*}
\|f\|_{\theta, q}:=\left\{\int_{0}^{\infty}\left[t^{-\theta} K\left(t, f ; X_{0}, X_{1}\right)\right]^{q} \frac{d t}{t}\right\}^{1 / q}<\infty \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f\|_{\theta, \infty}:=\sup _{(x, t) \in \mathbb{R}_{+}^{n+1}}\left[t^{-\theta} K\left(t, f ; X_{0}, X_{1}\right)\right]<\infty \tag{3.2}
\end{equation*}
$$

Definition 3.1. Let X be a quasi-Banach space whose elements are measurable functions. The space X is said to have the lattice property if, for any $g \in X$ and any measurable function f satisfying $|f| \leq|g|$, then $f \in X$.

Krugljak et al. [47] proved the following interesting result on the problem of interpolation of intersections in the case of Banach spaces.

Proposition 3.2 ([47]). Let X_{0}, X_{1} and X be quasi-Banach spaces whose elements are measurable functions and have the lattice property. Then, for all $\theta \in(0,1)$ and $q \in[1, \infty]$,

$$
X \cap\left(X_{0}, X_{1}\right)_{\theta, q}=\left(X \cap X_{0}, X \cap X_{1}\right)_{\theta, q}
$$

where, for any two quasi-Banach spaces Y and Y_{1}, the quasi-norm in $Y \cap Y_{1}$ is just the restriction of the quasi-norm from Y_{1}.

Proof. Recall that Proposition 3.2 in the case of Banach spaces was proved in [47]. To make it still be valid in the case of quasi-Banach spaces, we also give a proof based on some ideas from [47] with some details.

The inclusion that

$$
\left(X \cap X_{0}, X \cap X_{1}\right)_{\theta, q} \subset X \cap\left(X_{0}, X_{1}\right)_{\theta, q}
$$

follows immediately from the fact that, for all $f \in\left(X \cap X_{0}, X \cap X_{1}\right)_{\theta, q}$,

$$
K\left(t, f ; X_{0}, X_{1}\right) \leq K\left(t, f ; X \cap X_{0}, X \cap X_{1}\right)
$$

and (3.1).
We now turn to the proof of the converse inclusion. Let $f \in X \cap\left(X_{0}, X_{1}\right)_{\theta, q}$. By (3.1), it suffices to show that, for all $t \in(0, \infty)$,

$$
\begin{equation*}
K\left(t, f ; X \cap X_{0}, X \cap X_{1}\right) \lesssim K\left(t, f ; X_{0}, X_{1}\right) \tag{3.3}
\end{equation*}
$$

To prove (3.3), we make the claim: For any $g \in X \cap\left(X_{0}, X_{1}\right)_{\theta, q}$ and $t \in(0, \infty)$,

$$
\begin{align*}
K\left(t, g ; X_{0}, X_{1}\right)=\inf \left\{\left\|g_{0}\right\|_{X_{0}}+t\left\|g_{1}\right\|_{X_{1}}:\right. & g=g_{0}+g_{1}, g_{0} \in X_{0} \tag{3.4}\\
& \left.\left|g_{0}\right| \leq|g|, g_{1} \in X_{1},\left|g_{1}\right| \leq|g|\right\}
\end{align*}
$$

Indeed, let $g=\widetilde{g}_{0}+\widetilde{g}_{1}$ be any decomposition of g satisfying $\widetilde{g}_{0} \in X_{0}$ and $\widetilde{g}_{1} \in X_{1}$. If $\left|\widetilde{g}_{0}\right|>|g|$, then using the lattice property of X_{0}, we know $g \in X_{0}$. Thus, $g=g+0$ is also a decomposition of g with $g \in X_{0}$ and $0 \in X_{1}$. Moreover, for all $t \in(0, \infty)$,

$$
\|g\|_{X_{0}}+t\|0\|_{X_{1}}<\left\|\widetilde{g}_{0}\right\|_{X_{0}}+t\left\|\widetilde{g}_{1}\right\|_{X_{1}}
$$

which, together with the definition of Peetre's K-functional, shows (3.4) is true. This immediately proves the above claim.

We now continue the proof of (3.3) by estimating $K\left(t, f ; X_{0}, X_{1}\right)$. Let $f=f_{0}+f_{1}$ be any decomposition of f satisfying $f_{0} \in X_{0}$ and $f_{1} \in X_{1}$. By the above claim, we may assume that $\left|f_{0}\right| \leq|f|$ and $\left|f_{1}\right| \leq|f|$, which, together with the lattice property of X, implies that $f_{0} \in X_{0} \cap X$ and $f_{1} \in X_{1} \cap X$. This, together with the definition of Peetre's K-functional, shows (3.3) holds. Thus, $\left(X \cap X_{0}, X \cap X_{1}\right)_{\theta, q} \subset$ $X \cap\left(X_{0}, X_{1}\right)_{\theta, q}$, which completes the proof of Proposition 3.2.
Remark 3.3. Let X_{0}, X_{1} and X be some quasi-Banach spaces. The problem of interpolation of intersections asks the question that, under which conditions, does we have the equality

$$
X \cap\left(X_{0}, X_{1}\right)_{\theta, q}=\left(X \cap X_{0}, X \cap X_{1}\right)_{\theta, q}
$$

The answer for the above problem is still unknown in the general case (see [47] and the references cited therein for more details). Proposition 3.2 shows that, if X_{0}, X_{1} and X consist of measurable functions and have the lattice property, then the problem of interpolation of intersections for X_{1}, X_{2} and X has a positive answer.
Remark 3.4. For all $p \in(0, \infty)$, let $T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$ be the tent space as in (2.3). Observe that, for all $0<p_{0}<p_{1}<\infty, T^{p_{0}}\left(\mathbb{R}_{+}^{n+1}\right), T^{p_{1}}\left(\mathbb{R}_{+}^{n+1}\right)$ and $T^{2}\left(\mathbb{R}_{+}^{n+1}\right)$ have the lattice properties. Thus, by the real interpolation of $T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$ (see [19] in the case $p \in[1, \infty)$ and $[9]$ in the case $p \in(0,1)$) and Proposition 3.2, we conclude that, for all $0<p_{0}<p_{1}<\infty, \theta \in(0,1)$ and $q \in[1, \infty]$,

$$
\begin{aligned}
& \left(T^{2}\left(\mathbb{R}_{+}^{n+1}\right) \cap T^{p_{0}}\left(\mathbb{R}_{+}^{n+1}\right), T^{2}\left(\mathbb{R}_{+}^{n+1}\right) \cap T^{p_{1}}\left(\mathbb{R}_{+}^{n+1}\right)\right)_{\theta, q} \\
& =T^{2}\left(\mathbb{R}_{+}^{n+1}\right) \cap\left(T^{p_{0}}\left(\mathbb{R}_{+}^{n+1}\right), T^{p_{1}}\left(\mathbb{R}_{+}^{n+1}\right)\right)_{\theta, q}
\end{aligned}
$$

where $p \in\left(p_{0}, p_{1}\right)$ satisfies $\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}$. In particular, if $q=\infty$, then

$$
\left(T^{p_{0}}\left(\mathbb{R}_{+}^{n+1}\right), T^{p_{1}}\left(\mathbb{R}_{+}^{n+1}\right)\right)_{\theta, \infty}=W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)
$$

Now, let L satisfy Assumptions $(\mathcal{L})_{1},(\mathcal{L})_{2}$ and $(\mathcal{L})_{4}$, and $H_{L}^{p}\left(\mathbb{R}^{n}\right)$ be the Hardy space associated to L defined as in Section 2.3. Our main result of this section is as follows.

Theorem 3.5. Let $0<p_{0}<p_{1} \leq 1, \theta \in(0,1)$ and L satisfy Assumptions $(\mathcal{L})_{1}$, $(\mathcal{L})_{2}$ and $(\mathcal{L})_{4}$. Then

$$
\left(L^{2}\left(\mathbb{R}^{n}\right) \cap H_{L}^{p_{0}}\left(\mathbb{R}^{n}\right), L^{2}\left(\mathbb{R}^{n}\right) \cap H_{L}^{p_{1}}\left(\mathbb{R}^{n}\right)\right)_{\theta, \infty}=L^{2}\left(\mathbb{R}^{n}\right) \cap W H_{L}^{p}\left(\mathbb{R}^{n}\right)
$$

where $p \in(0,1]$ satisfies $\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}$.
Remark 3.6. Recall that, in [29], Fefferman et al. showed that, for all $0<p_{0}<$ $p_{1} \leq 1, \theta \in(0,1)$ and $p \in(0,1]$ satisfies $\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}$,

$$
\begin{equation*}
\left(H^{p_{0}}\left(\mathbb{R}^{n}\right), H^{p_{1}}\left(\mathbb{R}^{n}\right)\right)_{\theta, \infty}=W H^{p}\left(\mathbb{R}^{n}\right) \tag{3.5}
\end{equation*}
$$

They proved (3.5) by only considering the Schwartz functions in $S\left(\mathbb{R}^{n}\right)$. However, as was pointed out in $[31,37], S\left(\mathbb{R}^{n}\right)$ may not dense in $W H^{p}\left(\mathbb{R}^{n}\right)$. Thus, there is a gap in their proof of (3.5). Indeed, Fefferman et al. [29] proved

$$
\left(S\left(\mathbb{R}^{n}\right) \cap H^{p_{0}}\left(\mathbb{R}^{n}\right), S\left(\mathbb{R}^{n}\right) \cap H^{p_{1}}\left(\mathbb{R}^{n}\right)\right)_{\theta, \infty}=S\left(\mathbb{R}^{n}\right) \cap W H^{p}\left(\mathbb{R}^{n}\right)
$$

Thus, Theorem 3.5 is a generalization of this result.
To prove Theorem 3.5, we need the following lemma.
Lemma 3.7. Let $p \in(0,1]$ and L satisfy Assumptions $(\mathcal{L})_{1},(\mathcal{L})_{2}$ and $(\mathcal{L})_{4}$. Then, for all $M \in \mathbb{N}$ satisfying $M>\frac{n}{2 k}\left(\frac{1}{p}-\frac{1}{2}\right)$,

$$
\Pi_{L, M}\left(T^{2}\left(\mathbb{R}_{+}^{n+1}\right) \cap W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)\right)=L^{2}\left(\mathbb{R}^{n}\right) \cap W H_{L}^{p}\left(\mathbb{R}^{n}\right)
$$

where $\Pi_{L, M}$ is the operator defined as in (2.27).

Proof. We first prove

$$
\begin{equation*}
L^{2}\left(\mathbb{R}^{n}\right) \cap W H_{L}^{p}\left(\mathbb{R}^{n}\right) \subset \Pi_{L, M}\left(T^{2}\left(\mathbb{R}_{+}^{n+1}\right) \cap W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)\right) \tag{3.6}
\end{equation*}
$$

Indeed, for any $f \in L^{2}\left(\mathbb{R}^{n}\right) \cap W H_{L}^{p}\left(\mathbb{R}^{n}\right)$, by the bounded H_{∞}-functional calculus, we know that

$$
\begin{equation*}
f=\Pi_{L, M} \circ Q_{t, L}(f), \tag{3.7}
\end{equation*}
$$

where $Q_{t, L}:=t^{2 k} L e^{-t^{2 k} L}$. Moreover, by the definition of $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ and k-DaviesGaffney estimates, we know that $Q_{t, L}(f) \in T^{2}\left(\mathbb{R}_{+}^{n+1}\right) \cap W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$. This, together with (3.7), implies that $f \in \Pi_{L, M}\left(T^{2}\left(\mathbb{R}_{+}^{n+1}\right) \cap W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)\right)$. Thus, (3.6) is true.

We now prove

$$
\begin{equation*}
\Pi_{L, M}\left(T^{2}\left(\mathbb{R}_{+}^{n+1}\right) \cap W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)\right) \subset L^{2}\left(\mathbb{R}^{n}\right) \cap W H_{L}^{p}\left(\mathbb{R}^{n}\right) \tag{3.8}
\end{equation*}
$$

Indeed, for any $g \in \Pi_{L, M}\left(T^{2}\left(\mathbb{R}_{+}^{n+1}\right) \cap W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)\right)$, we know that there exists

$$
G \in T^{2}\left(\mathbb{R}_{+}^{n+1}\right) \cap W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)
$$

such that $g=\Pi_{L, M}(G)$. Using the weak atomic decomposition of $W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$ (see Theorem 2.6), we know that there exist $\left\{\lambda_{i, j}\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}} \subset \mathbb{C}$ and $\left\{A_{i, j}\right\}_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}}$of $T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$-atoms such that

$$
G=\sum_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}} \lambda_{i, j} A_{i, j}
$$

holds in $T^{2}\left(\mathbb{R}_{+}^{n+1}\right)$ and almost everywhere in \mathbb{R}_{+}^{n+1}. Moreover,

$$
\begin{equation*}
\sup _{i \in \mathbb{Z}}\left\{\sum_{j \in \mathbb{Z}_{+}}\left|\lambda_{i, j}\right|^{p}\right\}^{\frac{1}{p}} \sim\|G\|_{W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)} \tag{3.9}
\end{equation*}
$$

Using the boundedness of $\Pi_{L, M}$ from $T^{2}\left(\mathbb{R}_{+}^{n+1}\right)$ to $L^{2}\left(\mathbb{R}^{n}\right)$ (which can be deduced from the quadratic estimates, since L has a bounded H_{∞} functional calculus), we know that

$$
g=\sum_{i \in \mathbb{Z}, j \in \mathbb{Z}_{+}} \lambda_{i, j} \Pi_{L, M}\left(A_{i, j}\right)
$$

in $L^{2}\left(\mathbb{R}^{n}\right)$, where, by the argument below (2.27), we know that $\Pi_{L, M}\left(A_{i, j}\right)$ is a $(p, \epsilon, M)_{L}$-molecule up to a harmless positive constant multiple. This, together with Theorem 2.21, implies that $g \in L^{2}\left(\mathbb{R}^{n}\right) \cap W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ and hence (3.8) is true, which completes the proof of Lemma 3.7.

We now turn to the proof of Theorem 3.5.
Proof of Theorem 3.5. Let $\Pi_{L, M}$ be defined as in (2.27) and $Q_{t, L}:=t^{2 k} L e^{-t^{2 k} L}$. By the bounded H_{∞}-functional calculus, we know that

$$
\begin{equation*}
f=\Pi_{L, M} \circ Q_{t, L}(f), \tag{3.10}
\end{equation*}
$$

which implies that $\left(L^{2}\left(\mathbb{R}^{n}\right) \cap H_{L}^{p_{0}}\left(\mathbb{R}^{n}\right), L^{2}\left(\mathbb{R}^{n}\right) \cap H_{L}^{p_{1}}\left(\mathbb{R}^{n}\right)\right)$ is a retract of

$$
\left(T^{2}\left(\mathbb{R}_{+}^{n+1}\right) \cap T^{p_{0}}\left(\mathbb{R}_{+}^{n+1}\right), T^{2}\left(\mathbb{R}_{+}^{n+1}\right) \cap T^{p_{1}}\left(\mathbb{R}_{+}^{n+1}\right)\right)
$$

namely, there exist two linear bounded operators

$$
Q_{t, L}: L^{2}\left(\mathbb{R}^{n}\right) \cap H_{L}^{p_{i}}\left(\mathbb{R}^{n}\right) \rightarrow T^{2}\left(\mathbb{R}_{+}^{n+1}\right) \cap T^{p_{i}}\left(\mathbb{R}_{+}^{n+1}\right)
$$

and

$$
\Pi_{L, M}: T^{2}\left(\mathbb{R}_{+}^{n+1}\right) \cap T^{p_{i}}\left(\mathbb{R}_{+}^{n+1}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right) \cap H_{L}^{p_{i}}\left(\mathbb{R}^{n}\right)
$$

such that $\Pi_{L, M} \circ Q_{t, L}=I$ on each $L^{2}\left(\mathbb{R}^{n}\right) \cap H_{L}^{p_{i}}\left(\mathbb{R}^{n}\right)$, where $i \in\{0,1\}$. Thus, by [46, Lemma 7.11], we see that

$$
\begin{aligned}
& \left(L^{2}\left(\mathbb{R}^{n}\right) \cap H_{L}^{p_{0}}\left(\mathbb{R}^{n}\right), L^{2}\left(\mathbb{R}^{n}\right) \cap H_{L}^{p_{1}}\left(\mathbb{R}^{n}\right)\right)_{\theta, \infty} \\
& \quad=\Pi_{L, M}\left(\left(T^{2}\left(\mathbb{R}_{+}^{n+1}\right) \cap T^{p_{0}}\left(\mathbb{R}_{+}^{n+1}\right), T^{2}\left(\mathbb{R}_{+}^{n+1}\right) \cap T^{p_{0}}\left(\mathbb{R}_{+}^{n+1}\right)\right)_{\theta, \infty}\right)
\end{aligned}
$$

which, together with Lemma 3.7 and Remark 3.4, implies that

$$
\begin{aligned}
& \left(L^{2}\left(\mathbb{R}^{n}\right) \cap H_{L}^{p_{0}}\left(\mathbb{R}^{n}\right), L^{2}\left(\mathbb{R}^{n}\right) \cap H_{L}^{p_{1}}\left(\mathbb{R}^{n}\right)\right)_{\theta, \infty} \\
& \quad=\Pi_{L, M}\left(\left(T^{2}\left(\mathbb{R}_{+}^{n+1}\right) \cap T^{p_{0}}\left(\mathbb{R}_{+}^{n+1}\right), T^{2}\left(\mathbb{R}_{+}^{n+1}\right) \cap T^{p_{0}}\left(\mathbb{R}_{+}^{n+1}\right)\right)_{\theta, \infty}\right) \\
& \quad=\Pi_{L, M}\left(T^{2}\left(\mathbb{R}_{+}^{n+1}\right) \cap\left(T^{p_{0}}\left(\mathbb{R}_{+}^{n+1}\right), T^{p_{1}}\left(\mathbb{R}_{+}^{n+1}\right)\right)_{\theta, \infty}\right) \\
& \quad=\Pi_{L, M}\left(T^{2}\left(\mathbb{R}_{+}^{n+1}\right) \cap W T^{p}\left(\mathbb{R}_{+}^{n+1}\right)\right)=L^{2}\left(\mathbb{R}^{n}\right) \cap W H_{L}^{p}\left(\mathbb{R}^{n}\right) .
\end{aligned}
$$

This finishes the proof of Theorem 3.5.

4. The dual space of $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$

In this section, letting L be nonnegative self-adjoint and satisfy the DaviesGaffney estimates, we study the dual space of $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$. It turns out that the dual of $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ is some weak Lipschitz space, which can be defined via the mean oscillation over some bounded open sets.

Before giving the definition of weak Lipschitz spaces, we first introduce a class of coverings of all bounded open sets, which is motivated by the subtle covering, appearing in the proof of Theorem 2.11, of the level sets of \mathcal{A}-functionals, obtained via the Whitney decomposition lemma.

Definition 4.1. Let Ω be a bounded open set in \mathbb{R}^{n} and Λ an index set. A family $\vec{B}:=\left\{B_{j}\right\}_{j \in \Lambda}$ of open balls is said to be in the class \mathcal{W}_{Ω} if
(i) $\Omega \subset \cup_{j \in \Lambda} B_{j}$;
(ii) $r:=\inf _{j \in \Lambda}\left\{r_{B_{j}}\right\}>0$;
(iii) letting $\widetilde{B}_{j}:=\frac{1}{20 \sqrt{n}} B_{j}$, then $\left\{\widetilde{B}_{j}\right\}_{j \in \Lambda}$ are mutually disjoint;
(iv) there exists a positive constant M_{0} such that $\sum_{j \in \Lambda}\left|B_{j}\right|<2 M_{0}|\Omega|$.

From the argument below (2.8), it follows that, for any bounded open set Ω with $|\Omega| \in(0, \infty), \mathcal{W}_{\Omega} \neq \emptyset$.

Now, let $\alpha \in[0, \infty), \epsilon \in(0, \infty), M \in \mathbb{Z}_{+}$satisfy $M>\frac{1}{2}\left(\alpha+\frac{n}{2}\right)$ and L be nonnegative self-adjoint in $L^{2}\left(\mathbb{R}^{n}\right)$ and satisfy the Davies-Gaffney estimates. The space $\mathcal{M}_{\alpha, L}^{\epsilon, M}\left(\mathbb{R}^{n}\right)$ is defined to be the space of all functions u in $L^{2}\left(\mathbb{R}^{n}\right)$ satisfying the following two conditions:
(i) for all $\ell \in\{0, \ldots, M\}, L^{-\ell} u \in L^{2}\left(\mathbb{R}^{n}\right)$;
(ii) letting Q_{0} be the unit cube with its center at the origin, then

$$
\begin{equation*}
\|u\|_{\mathcal{M}_{\alpha, L}^{\epsilon, M}\left(\mathbb{R}^{n}\right)}:=\sup _{j \in \mathbb{Z}_{+}}\left\{2^{-j\left(\frac{n}{2}+\epsilon+\alpha\right)} \sum_{\ell=0}^{M}\left\|L^{-\ell} u\right\|_{L^{2}\left(S_{j}\left(Q_{0}\right)\right)}\right\}<\infty \tag{4.1}
\end{equation*}
$$

Let $\mathcal{M}_{\alpha, L}^{M, *}\left(\mathbb{R}^{n}\right):=\cap_{\epsilon \in(0, \infty)}\left(\mathcal{M}_{\alpha, L}^{\epsilon, M}\left(\mathbb{R}^{n}\right)\right)^{*}$. For all $r \in(0, \infty)$, let

$$
\begin{equation*}
\mathcal{A}_{r}:=\left(I-e^{-r^{2} L}\right)^{M} \tag{4.2}
\end{equation*}
$$

For any $f \in \mathcal{M}_{\alpha, L}^{M, *}\left(\mathbb{R}^{n}\right)$, bounded open set Ω and $\mathcal{N} \in\left(n\left(\frac{1}{p}-\frac{1}{2}\right), \infty\right)$, let $\mathcal{O}_{\mathcal{N}}(f, \Omega)$ be the mean oscillation of f over Ω defined by

$$
\begin{equation*}
\mathcal{O}_{\mathcal{N}}(f, \Omega):=\sup _{i \in \mathbb{Z}_{+}} \sup _{\vec{B} \in \mathcal{W}_{\Omega}}\left[2^{-i \mathcal{N}}\left\{\frac{1}{|\Omega|^{1+\frac{2 \alpha}{n}}} \int_{S_{i}(\vec{B})}\left|\mathcal{A}_{r} f(x)\right|^{2} d x\right\}^{\frac{1}{2}}\right] \tag{4.3}
\end{equation*}
$$

where $r:=\inf _{j \in \Lambda}\left\{r_{B_{j}}\right\}$ and, for $i \in \mathbb{N}$,

$$
\begin{equation*}
S_{i}(\vec{B}):=\left(\bigcup_{j \in \Lambda} 2^{i} B_{j}\right) \backslash\left(\bigcup_{j \in \Lambda} 2^{i-1} B_{j}\right) \tag{4.4}
\end{equation*}
$$

and $S_{0}(\vec{B}):=\cup_{j \in \Lambda} B_{j}$. By the Davies-Gaffney estimates, we know that the above integral is well defined.

For all $\delta \in(0, \infty)$, define

$$
\begin{equation*}
\omega_{\mathcal{N}}(\delta):=\sup _{|\Omega|=\delta} \mathcal{O}_{\mathcal{N}}(f, \Omega) \tag{4.5}
\end{equation*}
$$

From its definition, it follows that ω is a decreasing function on ($0, \infty$). Indeed, assume that $f \in \mathcal{M}_{\alpha, L}^{M, *}\left(\mathbb{R}^{n}\right), \delta \in(0, \infty)$ and Ω is an open set satisfying $|\Omega|=\delta$. For all $\vec{B} \in \mathcal{W}_{\Omega}$, we know, from Definition 4.1 , that there exists a positive constant $\widetilde{C} \in(1, \infty)$ such that $\sum_{j \in \Lambda}\left|B_{j}\right|<\frac{2 M_{0}}{\widetilde{C}}|\Omega|$. This implies that, for all open sets $\widetilde{\Omega} \subset \Omega$ satisfying that $|\widetilde{\Omega}|=: \widetilde{\delta} \in\left[\frac{\delta}{\widetilde{C}}, \delta\right)$,

$$
\sum_{j \in \Lambda}\left|B_{j}\right|<2 M_{0}|\widetilde{\Omega}|
$$

which immediately shows that $\vec{B} \in \mathcal{W}_{\widetilde{\Omega}}$. Thus, from its definition, it follows that

$$
\mathcal{O}_{\mathcal{N}}(f, \Omega) \leq \mathcal{O}_{\mathcal{N}}(f, \widetilde{\Omega})
$$

and hence $\omega_{\mathcal{N}}(\delta) \leq \omega_{\mathcal{N}}(\widetilde{\delta})$ for all $\widetilde{\delta} \in\left[\frac{\delta}{\widetilde{C}}, \delta\right)$. This implies that ω is decreasing.
Now, we introduce the notion of the weak Lipschitz space associated to L.
Definition 4.2. Let $\alpha \in[0, \infty), \epsilon \in(0, \infty), M \in \mathbb{Z}_{+}$satisfy $M>\frac{1}{2}\left(\alpha+\frac{n}{2}\right)$, and L be nonnegative self-adjoint and satisfy the Davies-Gaffney estimates. The weak Lipschitz space $W \Lambda_{L, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right)$ is defined to be the space of all functions $f \in \mathcal{M}_{\alpha, L}^{M, *}\left(\mathbb{R}^{n}\right)$ such that

$$
\|f\|_{W \Lambda_{L, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right)}:=\int_{0}^{\infty} \frac{\omega_{\mathcal{N}}(\delta)}{\delta} d \delta<\infty
$$

where $\omega_{\mathcal{N}}(\delta)$ for $\delta \in(0, \infty)$ is as in (4.5) and $\mathcal{N} \in\left(n\left(\frac{1}{p}-\frac{1}{2}\right), \infty\right)$.

We also introduce the notion of the resolvent weak Lipschitz space. To this end, we need another class of open sets as follows, which is a slight variant of the class \mathcal{W}_{Ω}.

Definition 4.3. Let Ω be a bounded open set in \mathbb{R}^{n} and Λ an index set. A family $\vec{B}:=\left\{B_{j}\right\}_{j \in \Lambda}$ of open sets is said to be in the class $\widetilde{\mathcal{W}}_{\Omega}$ if
(i) $\Omega \subset \cup_{j \in \Lambda} B_{j}$;
(ii) $r:=\inf _{j \in \Lambda}\left\{r_{B_{j}}\right\}>0$;
(iii) letting $\widetilde{B}_{j}:=\frac{1}{10 \sqrt{n}} B_{j}$, then $\left\{\widetilde{B}_{j}\right\}_{j \in \Lambda}$ are mutually disjoint;
(iv) there exists a positive constant M_{0} such that $\sum_{j \in \Lambda}\left|B_{j}\right|<2 M_{0}|\Omega|$.

It is easy to see that, for any bounded open set $\Omega, \widetilde{\mathcal{W}}_{\Omega} \subset \mathcal{W}_{\Omega}$. For all $\alpha \in[0, \infty)$, and $M \in \mathbb{N}$ satisfying $M>\frac{1}{2}\left(\alpha+\frac{n}{2}\right)$ and $r \in(0, \infty)$, let

$$
\begin{equation*}
\mathcal{B}_{r}:=\left[I-\left(I+r^{2} L\right)^{-1}\right]^{M} \tag{4.6}
\end{equation*}
$$

Assume that $f \in \mathcal{M}_{\alpha, L}^{M, *}\left(\mathbb{R}^{n}\right)$ and $\delta \in(0, \infty)$. Let

$$
\mathcal{O}_{\text {res }, \tilde{\mathcal{N}}_{\Omega}}(f, \Omega):=\sup _{i \in \mathbb{Z}_{+}} \sup _{\vec{B} \in \widetilde{\mathcal{W}}_{\Omega}}\left[2^{-i \mathcal{N}}\left\{\frac{1}{|\Omega|^{1+\frac{2 \alpha}{n}}} \int_{S_{i}(\vec{B})}\left|\mathcal{B}_{r} f(x)\right|^{2} d x\right\}^{\frac{1}{2}}\right]
$$

where $\mathcal{N} \in\left(n\left(\frac{1}{p}-\frac{1}{2}\right), \infty\right), r:=\inf _{j \in \Lambda}\left\{r_{B_{j}}\right\}$ and $S_{i}(\vec{B})$ is as in (4.4). Let also, for any $\delta \in(0, \infty)$,

$$
\begin{equation*}
\omega_{\mathrm{res}, \mathcal{N}}(\delta):=\sup _{|\Omega|=\delta} \mathcal{O}_{\mathrm{res}, \mathcal{N}}(f, \Omega) \tag{4.7}
\end{equation*}
$$

Definition 4.4. Let $\alpha \in[0, \infty), \epsilon \in(0, \infty), M \in \mathbb{Z}_{+}$satisfy $M>\frac{1}{2}\left(\alpha+\frac{n}{2}\right)$, $\mathcal{N} \in\left(n\left(\frac{1}{p}-\frac{1}{2}\right), \infty\right)$, and L be nonnegative self-adjoint and satisfy the Davies-Gaffney estimates. The resolvent weak Lipschitz space $W \Lambda_{L, \mathrm{res}, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right)$ is then defined to be the space of all functions $f \in \mathcal{M}_{\alpha, L}^{M, *}\left(\mathbb{R}^{n}\right)$ satisfying

$$
\|f\|_{W \Lambda_{L, \mathrm{res}, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right)}:=\int_{0}^{\infty} \frac{\omega_{\mathrm{res}, \mathcal{N}}(\delta)}{\delta} d \delta<\infty
$$

We have the following relationship between the weak Lipschitz space and the resolvent weak Lipschitz space.

Proposition 4.5. Let $\alpha \in[0, \infty)$ and L be nonnegative self-adjoint and satisfy the Davies-Gaffney estimates. Let $\mathcal{N} \in\left(n\left(\frac{1}{p}-\frac{1}{2}\right), \infty\right)$. Then $W \Lambda_{L, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right) \subset$ $W \Lambda_{L, \mathrm{res}, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right)$.
Proof. We prove this proposition by showing that, for all $f \in W \Lambda_{L, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right)$,

$$
\|f\|_{W \Lambda_{L, \mathrm{res}, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right)} \lesssim\|f\|_{W \Lambda_{L, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right)}
$$

By an argument similar to that used in the proof of $[41,(3.42)]$, we see that

$$
f=2^{M}\left[r^{-2} \int_{r}^{2^{1 / 2} r} s\left(I-e^{-s^{2} L}\right)^{M} d s+\sum_{\ell=1}^{M}\binom{M}{\ell} r^{-2} L^{-1} e^{-\ell r^{2} L}\right.
$$

$$
\begin{aligned}
& \left.\circ\left(I-e^{-r^{2} L}\right)\left(\sum_{i=0}^{\ell-1} e^{-i r^{2} L}\right)\right]^{M} f \\
& =2^{M}\left[r^{-2} \int_{r}^{2^{1 / 2} r} s\left(I-e^{-s^{2} L}\right)^{M} d s\right]^{M} f \\
& \\
& +2^{M}\binom{M}{1}^{\ell_{1}} \cdots\binom{M}{M-1}^{\ell_{M-1}} \sum_{\substack{\ell_{0}+\cdots+\ell_{M}=M \\
\ell_{0}<M, \ell_{M}<M}}\binom{M}{\ell_{0}, \ldots, \ell_{M}} \\
& \times\left[r^{-2} \int_{r}^{2^{1 / 2} r^{2}} s\left(I-e^{-s^{2} L}\right)^{M} d s\right]^{\ell_{0}} \\
& \\
& \times \cdots \times\left[r^{-2} L^{-1} e^{-\ell r^{2} L}\left(I-e^{-r^{2} L}\right)\left(\sum_{i=0}^{M-1} e^{-i r^{2} L}\right)\right]^{\ell_{M}} f \\
& \quad+2^{M}\left[r^{-2} L^{-1} e^{-\ell r^{2} L}\left(I-e^{-r^{2} L}\right)\left(\sum_{i=0}^{M-1} e^{-i r^{2} L}\right)\right]^{M} f \\
& =: \mathrm{A}_{0} f+\sum_{\substack{\ell_{0}+\ldots+\ell_{M}=M}}^{\ell_{0}<M, \ell_{M}<M}<
\end{aligned}
$$

where $\binom{M}{\ell}$ denotes the binomial coefficients.
For all $i \in \mathbb{Z}_{+}, \vec{B} \in \widetilde{\mathcal{W}}_{\Omega}$ and $\mathcal{N} \in\left(n\left(\frac{1}{p}-\frac{1}{2}\right), \infty\right)$, we first estimate

$$
\mathrm{D}:=2^{-i \mathcal{N}}\left\{\frac{1}{|\Omega|^{1+\frac{2 \alpha}{n}}} \int_{S_{i}(\vec{B})}\left|\mathcal{B}_{r} \mathrm{~A}_{\ell_{0}, \ldots, \ell_{M}} f(x)\right|^{2} d x\right\}^{\frac{1}{2}}
$$

Let

$$
\widetilde{A}_{\ell_{0}, \ldots, \ell_{M}}:=\left(r^{2} L\right)^{\ell_{1}+\cdots+\ell_{M}} \mathrm{~A}_{\ell_{0}, \ldots, \ell_{M}}\left(r^{-2} \int_{r}^{2^{1 / 2} r} s \mathcal{A}_{s} d s\right)^{-1}
$$

From the functional calculus and the fact that $\left\{e^{-t L}\right\}_{t>0}$ satisfies the Davies-Gaffney estimates, we deduce that \mathcal{B}_{r} satisfies the Davies-Gaffney estimates with $t \sim r^{2}$, namely, there exists a positive constant C_{1} such that, for all closed sets E and F in $\mathbb{R}^{n}, t \in(0, \infty)$ and $f \in L^{2}\left(\mathbb{R}^{n}\right)$ supported in E,

$$
\left\|\mathcal{B}_{r} f\right\|_{L^{2}(F)} \lesssim \exp \left\{-C_{1} \frac{[\operatorname{dist}(E, F)]^{2}}{r^{2}}\right\}\|f\|_{L^{2}(E)}
$$

Moreover, from Lemmas 2.3 and 2.4, it follows that $\widetilde{A}_{\ell_{0}, \ldots, \ell_{M}}$ also satisfies the DaviesGaffney estimates with $t \sim r^{2}$. Similarly, $\left(r^{-2} L^{-1}\right)^{\ell_{1}+\cdots+\ell_{M}} \mathcal{B}_{r}$ also satisfies the Davies-Gaffney estimates with $t \sim r^{2}$.

Now, let

$$
\begin{equation*}
F_{s}:=\frac{1}{r^{2}} \int_{r}^{2^{1 / 2} r} s\left(I-e^{-s^{2} L}\right)^{M} f d s \tag{4.8}
\end{equation*}
$$

By Minkowski's inequality, the Davies-Gaffney estimates and Hölder's inequality, we know that there exists a positive constant $\alpha_{3} \in(0, \infty)$ such that

$$
\begin{aligned}
\mathrm{D} & \lesssim 2^{-i \mathcal{N}}\left\{\frac{1}{|\Omega|^{1+\frac{2 \alpha}{n}}} \int_{S_{i}(\vec{B})}\left|\left[\left(r^{-2} L^{-1}\right)^{\ell_{1}+\cdots+\ell_{M}} \mathcal{B}_{r}\right] \widetilde{\mathrm{A}}_{\ell_{0}, \ldots, \ell_{M}} F_{s}(x)\right|^{2} d x\right\}^{\frac{1}{2}} \\
& \lesssim 2^{-i \mathcal{N}}\left\{\frac { 1 } { | \Omega | ^ { 1 + \frac { 2 \alpha } { n } } } \left[\sum _ { \ell \in \mathbb { Z } _ { + } } \left\{\int_{S_{i}(\vec{B})} \mid\left[\left(r^{-2} L^{-1}\right)^{\ell_{1}+\cdots+\ell_{M}} \mathcal{B}_{r}\right]\right.\right.\right. \\
& \left.\left.\left.\times\left.\widetilde{\mathrm{A}}_{\ell_{0}, \ldots, \ell_{M}}\left(\chi_{S_{\ell}(\vec{B})} F_{s}\right)(x)\right|^{2} d x\right\}^{1 / 2}\right]^{2}\right\}^{\frac{1}{2}} \\
& \lesssim 2^{-i \mathcal{N}}\left\{\frac { 1 } { | \Omega | ^ { 1 + \frac { 2 \alpha } { n } } } \left\{\sum_{\ell=i-1}^{i+1}\left[\int_{S_{\ell}(\vec{B})}\left|F_{s}(x)\right|^{2} d x\right]^{1 / 2}\right.\right. \\
& \left.\left.+\sum_{\ell \in \mathbb{Z}_{+}} 2^{-\ell\left(\mathcal{N}+\alpha_{3}\right)}\left[\int_{S_{\ell}(\vec{B})}\left|F_{s}(x)\right|^{2} d x\right]^{1 / 2}\right\}^{2}\right\}^{\frac{1}{2}} \\
& \lesssim\left\{\frac{1}{\left.|\Omega|^{1+\frac{2 \alpha}{n}}\left[\sum_{\ell=i-1}^{i+1} 2^{-2 \ell \mathcal{N}}+\sum_{\ell \in \mathbb{Z}_{+}} 2^{-2 \ell\left(\mathcal{N}+\alpha_{3}\right)}\right] \int_{S_{\ell}(\vec{B})}\left|F_{s}(x)\right|^{2} d x\right\}^{\frac{1}{2}}}\right. \\
& \lesssim \sup _{i \in \mathbb{Z}_{+}}\left[2^{-i \mathcal{N}}\left\{\frac{1}{|\Omega|^{1+\frac{2 \alpha}{n}}} \int_{S_{i}(\vec{B})}\left|F_{s}(x)\right|^{2} d x\right\}^{\frac{1}{2}}\right]=: \widetilde{\mathrm{D}} .
\end{aligned}
$$

We now estimate $\widetilde{\mathrm{D}}$. By (4.8), Minkowski's integral inequality and the mean value theorem for integrals, we see that there exists a positive constant $\widetilde{r} \in\left(r, 2^{\frac{1}{2}} r\right)$ such that

$$
\begin{align*}
\widetilde{\mathrm{D}} & \lesssim \sup _{i \in \mathbb{Z}_{+}}\left[2^{-i \mathcal{N}}\left\{\frac{1}{|\Omega|^{1+\frac{2 \alpha}{n}}} \int_{S_{i}(\vec{B})}\left|\frac{1}{r^{2}} \int_{r}^{2^{1 / 2} r} s\left(I-e^{-s^{2} L}\right)^{M} f(x) d s\right|^{2} d x\right\}^{\frac{1}{2}}\right] \\
& \lesssim \sup _{i \in \mathbb{Z}_{+}}\left[2^{-i \mathcal{N}} \frac{1}{r^{2}} \int_{r}^{2^{1 / 2} r} s\left\{\frac{1}{|\Omega|^{1+\frac{2 \alpha}{n}}} \int_{S_{i}(\vec{B})}\left|\left(I-e^{-s^{2} L}\right)^{M} f(x)\right|^{2} d x\right\}^{\frac{1}{2}} d s\right] \tag{4.9}\\
& \approx \sup _{i \in \mathbb{Z}_{+}}\left[2^{-i \mathcal{N}}\left\{\frac{1}{|\Omega|^{1+\frac{2 \alpha}{n}}} \int_{S_{i}(\vec{B})}\left|\left(I-e^{-\widetilde{r}^{2} L}\right)^{M} f(x)\right|^{2} d x\right\}^{\frac{1}{2}}\right] .
\end{align*}
$$

Moreover, since $\vec{B} \in \widetilde{W}_{\Omega}$, if let $C_{0} \in\left(1,2^{1 / 2}\right)$ satisfying $\widetilde{r}=C_{0} r$, then it is easy to see that $C_{0} \vec{B}:=\left\{C_{0} B_{j}\right\}_{j \in \Lambda} \in W_{\Omega}$ and

$$
r_{C_{0} \vec{B}}:=\inf _{j \in \Lambda}\left\{r_{C_{0} B_{j}}\right\}=C_{0} r=\widetilde{r}
$$

which, together with (4.9) and the fact that $S_{i}\left(C_{0} \vec{B}\right) \subset \cup_{j=i-1}^{i+1} S_{j}\left(C_{0} \vec{B}\right)$, implies that

$$
\widetilde{\mathrm{D}} \lesssim \sup _{i \in \mathbb{Z}_{+}}\left[2^{-i \mathcal{N}}\left\{\frac{1}{|\Omega|^{1+\frac{2 \alpha}{n}}} \sum_{j=i-1}^{i+1} \int_{S_{j}(\vec{B})}\left|\left(I-e^{-\widetilde{r}^{2} L}\right)^{M} f(x)\right|^{2} d x\right\}^{\frac{1}{2}}\right]
$$

$$
\lesssim \sup _{i \in \mathbb{Z}_{+}} \sup _{\vec{B} \in W_{\Omega}}\left[2^{-i \mathcal{N}}\left\{\frac{1}{|\Omega|^{1+\frac{2 \alpha}{n}}} \int_{S_{i}(\vec{B})}\left|\left(I-e^{-r^{2} L}\right)^{M} f(x)\right|^{2} d x\right\}^{\frac{1}{2}}\right]
$$

where $r:=\inf _{j \in \Lambda}\left\{r_{B_{j}}\right\}$. This, together with (4.3), implies that

$$
\mathrm{D} \lesssim \mathcal{O}_{\mathcal{N}}(f, \Omega)
$$

Thus, for all $\ell_{0}+\cdots+\ell_{M}=M$ satisfying $\ell_{0}<M$ and $\ell_{M}<M$, we have

$$
\mathcal{O}_{\mathrm{res}, \mathcal{N}_{\Omega}}\left(\mathrm{A}_{\ell_{0}, \ldots, \ell_{M}} f, \Omega\right)=\sup _{i \in \mathbb{Z}} \sup _{\vec{B} \in \widetilde{W}_{\Omega}} \mathrm{D} \lesssim \mathcal{O}_{\mathcal{N}}(f, \Omega) .
$$

This implies that $\left\|\AA_{\ell_{0}, \ldots, \ell_{M}} f\right\|_{W \Lambda_{L, \text { res }, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right)} \lesssim\|f\|_{W \Lambda_{L, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right)}$. Similarly, we also have

$$
\left\|\mathrm{A}_{0} f\right\|_{W \Lambda_{L, \text { res }, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right)} \lesssim\|f\|_{W \Lambda_{L, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right)}
$$

and $\left\|\mathrm{A}_{M} f\right\|_{W \Lambda_{L, \text { res }, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right)} \lesssim\|f\|_{W \Lambda_{L, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right)}$, which completes the proof of Proposition 4.5.

Now we state the main result of this section.
Theorem 4.6. Let $p \in(0,1]$ and L be a nonnegative self-adjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$ satisfying the Davies-Gaffney estimates. Then, for all $\mathcal{N} \in\left(n\left(\frac{1}{p}-\frac{1}{2}\right), \infty\right)$, $\left(W H_{L}^{p}\left(\mathbb{R}^{n}\right)\right)^{*}=W \Lambda_{L, \mathcal{N}}^{n\left(\frac{1}{p}-1\right)}\left(\mathbb{R}^{n}\right)$.

To prove Theorem 4.6, we first introduce the following notion of weak Carleson measures.

Definition 4.7. Let Ω be a bounded open set in \mathbb{R}^{n} and Λ an index set. A family $\vec{B}:=\left\{B_{j}\right\}_{j \in \Lambda}$ of open sets is said to be in the class $\widetilde{\widetilde{\mathcal{W}}}_{\Omega}$ if
(i) $\Omega \subset \cup_{j \in \Lambda} B_{j}$;
(ii) $r:=\inf _{j \in \Lambda}\left\{r_{B_{j}}\right\}>0$;
(iii) letting $\widetilde{B}_{j}:=\frac{1}{10 \sqrt{n}} B_{j}$, then $\left\{\widetilde{B}_{j}\right\}_{j \in \Lambda}$ are mutually disjoint;
(iv) there exists a positive constant M_{0} such that $\sum_{j \in \Lambda}\left|B_{j}\right|<2 M_{0}|\Omega|$.
(v) letting Q_{j} for any $j \in \Lambda$ be the closed cube having the same center as B_{j} with the length $\frac{r_{B_{j}}}{5 \sqrt{n}}$, then $\left\{Q_{j}\right\}_{j \in \Lambda}$ are mutually disjoint and $\left\{2 Q_{j}\right\}_{j \in \Lambda}$ have bounded overlap. Moreover, $\Omega \subset \cup_{j \in \Lambda} Q_{i}$.

From the argument below (2.8), it follows that, for any bounded open set Ω with $|\Omega| \in(0, \infty), \widetilde{\widetilde{\mathcal{W}}}_{\Omega} \neq \emptyset$. Moreover, $\widetilde{\mathcal{W}}_{\Omega} \subset \widetilde{\mathcal{W}}_{\Omega} \subset \mathcal{W}_{\Omega}$.

Now, let $\alpha \in[0, \infty)$ and μ be a positive measure on \mathbb{R}_{+}^{n+1}. For all bounded open sets Ω, let

$$
\mathcal{C}_{\alpha}(\mu, \Omega):=\sup _{\vec{B} \in \widetilde{\widetilde{\mathcal{W}}}_{\Omega}}\left\{\frac{1}{|\Omega|^{1+\frac{2 \alpha}{n}}} \mu\left(\bigcup_{j \in \Lambda} \widehat{B}_{j} \cap\left(Q_{j} \times(0, \infty)\right)\right)\right\}^{\frac{1}{2}}
$$

where $\widetilde{\widetilde{\mathcal{W}}}_{\Omega}$ is as in Definition 4.7.
For all $\delta \in(0, \infty)$, let

$$
\begin{equation*}
\omega_{\mathcal{C}}(\delta):=\sup _{|\Omega|=\delta} \mathcal{C}_{\alpha}(\mu, \Omega) . \tag{4.10}
\end{equation*}
$$

Then μ is called a weak Carleson measure of order α, denoted by \mathcal{C}_{α}, if

$$
\|\mu\|_{\mathcal{C}_{\alpha}}:=\int_{0}^{\infty} \frac{\omega_{\mathcal{C}}(\delta)}{\delta} d \delta<\infty
$$

Recall that, if L is nonnegative self-adjoint and satisfies the Davies-Gaffney estimates, then L satisfies the finite speed propagation property for solutions of the corresponding wave equation, namely, there exists a positive constant C_{0} such that

$$
\begin{equation*}
\left(\cos (t \sqrt{L}) f_{1}, f_{2}\right)=0 \tag{4.11}
\end{equation*}
$$

for all closed sets U_{1} and $U_{2}, 0<C_{0} t<\operatorname{dist}\left(U_{1}, U_{2}\right), f_{1} \in L^{2}\left(U_{1}\right)$ and $f_{2} \in L^{2}\left(U_{2}\right)$ (see, for example, [38]). Moreover, we have the following conclusion, which can be deduced from [38, Lemma 3.5] with a slight modification, the details being omitted.
Lemma 4.8 ([38]). Let L be nonnegative self-adjoint and satisfy the Davies-Gaffney estimates. Assume that $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ is even, $\operatorname{supp} \varphi \subset\left(-C_{1}^{-1}, C_{1}^{-1}\right)$, where $C_{1} \in$ $(0,1)$ is a positive constant. Let Φ be the Fourier transform of φ. Then, for all $k \in \mathbb{Z}_{+}$and $t \in(0, \infty)$, the kernel $K_{\left(t^{2} L\right)^{k} \Phi(t \sqrt{L})}(x, y)$ of the operator $\left(t^{2} L\right)^{k} \Phi(t \sqrt{L})$ satisfies

$$
\begin{equation*}
\operatorname{supp} K_{\left(t^{2} L\right)^{k} \Phi(t \sqrt{L})}(x, y) \subset\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: d(x, y) \leq \frac{C_{0}}{C_{1}} t\right\} \tag{4.12}
\end{equation*}
$$

Proposition 4.9. Let $\alpha \in[0, \infty), M \in \mathbb{N}$ satisfy that $M>\frac{n}{2}\left(\frac{1}{p}-\frac{1}{2}\right), \mathcal{N} \in$ $\left(n\left(\frac{1}{p}-\frac{1}{2}\right), \infty\right)$, and L be a nonnegative self-adjoint operator satisfying the DaviesGaffney estimates. Assume that $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ is even, $\operatorname{supp} \varphi \subset\left(-C_{1}^{-1}, C_{1}^{-1}\right)$ satisfies $\frac{C_{0}}{C_{1}} \in\left(0, \frac{1}{10 \sqrt{n}}\right)$, where C_{0} is as in (4.11). Let Φ be the Fourier transform of φ. Then, for all $f \in W \Lambda_{L, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right)$,

$$
\mu_{f}(x, t):=\left|\left(t^{2} L\right)^{M} \Phi(t \sqrt{L}) f(x)\right|^{2} \frac{d x d t}{t}, \quad \forall(x, t) \in \mathbb{R}_{+}^{n+1},
$$

is a weak Carleson measure of order α. Moreover, there exists a positive constant C such that, for all $f \in W \Lambda_{L, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right)$,

$$
\left\|\mu_{f}\right\|_{\mathcal{C}_{\alpha}} \leq C\|f\|_{W \Lambda_{L, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right)}
$$

Proof. Let $f \in W \Lambda_{L, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right)$. For all bounded open sets Ω and $\vec{B}=\left\{B_{j}\right\}_{j \in \Lambda} \in \widetilde{\widetilde{\mathcal{W}}}_{\Omega}$, by the definition of weak Carleson measures, we need to estimate

$$
\mathrm{I}:=\left\{\frac{1}{|\Omega|^{1+\frac{2 \alpha}{n}}} \mu_{f}\left(\bigcup_{j \in \Lambda} \widehat{B}_{j} \cap\left(Q_{j} \times(0, \infty)\right)\right)\right\}^{\frac{1}{2}}
$$

To this end, let $r:=\inf _{j \in \Lambda}\left\{r_{B_{j}}\right\}$ and \mathcal{B}_{r} be as in (4.6). By Minkowski's inequality, we write

$$
\begin{aligned}
\mathrm{I} & \sim\left\{\frac{1}{|\Omega|^{1+\frac{2 \alpha}{n}}} \sum_{j \in \Lambda} \iint_{\widehat{B}_{j} \cap\left(Q_{j} \times(0, \infty)\right)}\left|\left(t^{2} L\right)^{M} \Phi(t \sqrt{L}) f(x)\right|^{2} \frac{d x d t}{t}\right\}^{\frac{1}{2}} \\
& \lesssim\left\{\frac{1}{|\Omega|^{1+\frac{2 \alpha}{n}}} \sum_{j \in \Lambda} \iint_{\widehat{B}_{j} \cap\left(Q_{j} \times(0, \infty)\right)}\left|\left(t^{2} L\right)^{M} \Phi(t \sqrt{L}) \mathcal{B}_{r} f(x)\right|^{2} \frac{d x d t}{t}\right\}^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \quad+\left\{\frac{1}{|\Omega|^{1+\frac{2 \alpha}{n}}} \sum_{j \in \Lambda} \iint_{\widehat{B}_{j} \cap\left(Q_{j} \times(0, \infty)\right)}\left|\left(t^{2} L\right)^{M} \Phi(t \sqrt{L})\left(I-\mathcal{B}_{r}\right) f(x)\right|^{2} \frac{d x d t}{t}\right\}^{\frac{1}{2}} \\
& =: \mathrm{I}_{1}+\mathrm{I}_{2}
\end{aligned}
$$

To estimate I_{1}, by Minkowski's inequality again, we obtain

$$
\begin{aligned}
\mathrm{I}_{1} \lesssim\{ & \frac{1}{|\Omega|^{1+\frac{2 \alpha}{n}}} \sum_{j \in \Lambda}\left[\sum _ { i \in \mathbb { Z } _ { + } } \left\{\iint_{\widehat{B}_{j} \cap\left(Q_{j} \times(0, \infty)\right)}\left|\left(t^{2} L\right)^{M} \Phi(t \sqrt{L})\left(\chi_{S_{i}\left(Q_{j}\right)} \mathcal{B}_{r} f\right)(x)\right|^{2}\right.\right. \\
& \left.\left.\left.\times \frac{d x d t}{t}\right\}^{1 / 2}\right]^{2}\right\}^{\frac{1}{2}}
\end{aligned}
$$

Now, let $\widetilde{S}_{i}\left(B_{j}\right):=2^{i+1} B_{j} \backslash 2^{i-2} B_{j}$. By Lemma 4.8 with $\frac{C_{0}}{C_{1}} \in\left(0, \frac{1}{10 \sqrt{n}}\right), t \in$ $\left(0, r_{B_{i, j}}\right)$ and $Q_{j}=\frac{1}{5 \sqrt{n}} B_{j}$, we know that $\operatorname{supp}\left\{\left(t^{2} L\right)^{M} \Phi(t \sqrt{L})\left(\chi_{S_{i}\left(Q_{j}\right)} \mathcal{B}_{r} f\right)\right\} \subset$ $\widetilde{S}_{i}\left(Q_{j}\right)$, which, together with Definitions 4.7 and 4.3 , and the quadratic estimates, implies that

$$
\begin{aligned}
\mathrm{I}_{1} & \lesssim\left\{\frac{1}{|\Omega|^{1+\frac{2 \alpha}{n}}}\right. \\
& \left.\times \sum_{j \in \Lambda}\left[\sum_{i=0}^{1}\left\{\iint_{Q_{j} \cap\left(0, r_{B_{j}}\right)}\left|\left(t^{2} L\right)^{M} \Phi(t \sqrt{L})\left(\chi_{S_{i}\left(Q_{j}\right)} \mathcal{B}_{r} f\right)(x)\right|^{2} \frac{d x d t}{t}\right\}^{\frac{1}{2}}\right]^{2}\right\}^{\frac{1}{2}} \\
& \lesssim\left\{\frac{1}{|\Omega|^{1+\frac{2 \alpha}{n}}} \sum_{j \in \Lambda} \sum_{i=0}^{1} \int_{\mathbb{R}^{n}}\left[\left\{\int_{0}^{\infty}\left|\left(t^{2} L\right)^{M} \Phi(t \sqrt{L})\left(\chi_{S_{i}\left(Q_{j}\right)} \mathcal{B}_{r} f\right)(x)\right|^{2} \frac{d t}{t}\right\}^{\frac{1}{2}}\right]^{2} d x\right\}^{\frac{1}{2}} \\
& \lesssim\left\{\frac{1}{|\Omega|^{1+\frac{2 \alpha}{n}}} \sum_{j \in \Lambda} \int_{2 Q_{j}}\left|\mathcal{B}_{r} f(x)\right|^{2} d x\right\}^{\frac{1}{2}} \lesssim\left\{\frac{1}{\left.|\Omega|^{1+\frac{2 \alpha}{n}} \int_{\cup_{j \in \Lambda} 2 Q_{j}}\left|\mathcal{B}_{r} f(x)\right|^{2} d x\right\}^{\frac{1}{2}}}\right. \\
& \lesssim \sup _{i \in \mathbb{Z}} \sup _{\vec{B} \in \widetilde{W}_{\Omega}}\left[2^{-i \mathcal{N}}\left\{\frac{1}{|\Omega|^{1+\frac{2 \alpha}{n}}} \int_{S_{i}(\vec{B})}\left|\mathcal{B}_{r} f(x)\right|^{2} d x\right\}^{\frac{1}{2}}\right] \lesssim \mathcal{O}_{\mathrm{res}, \mathcal{N}}(f, \Omega)
\end{aligned}
$$

which is desired.
The estimate of I_{2} is similar to that for I_{1}. In this case, we need the following operator equality that, for any $r \in(0, \infty)$,

$$
\left(I-\left[I-\left(I+r^{2} L\right)^{-1}\right]^{M}\right)\left[I-\left(I+r^{2} L\right)^{-1}\right]^{-M}=\sum_{\ell=1}^{M} \frac{M!}{(M-\ell)!\ell!}\left(r^{2} L\right)^{-\ell}
$$

the details being omitted.
By combining the estimates for I_{1} and I_{2}, we conclude that

$$
\mathcal{C}_{\alpha}\left(\mu_{f}, \Omega\right) \lesssim \mathcal{O}_{\mathrm{res}, \mathcal{N}}(f, \Omega)
$$

which, together with Proposition 4.5, shows that μ_{f} is a weak Carleson measure of order α. This finishes the proof of Proposition 4.9.

We now turn to the proof of Theorem 4.6.

Proof of Theorem 4.6. We first prove that

$$
W \Lambda_{L, \mathcal{N}}^{n\left(\frac{1}{p}-1\right)}\left(\mathbb{R}^{n}\right) \subset\left(W H_{L}^{p}\left(\mathbb{R}^{n}\right)\right)^{*}
$$

For any $\epsilon \in(0, \infty)$ and $M>\frac{n}{2}\left(\frac{1}{p}-\frac{1}{2}\right)$, let $\mathcal{M}_{n\left(\frac{1}{p}-1\right), L}^{\epsilon, M}\left(\mathbb{R}^{n}\right)$ be the space defined as in (4.1). For all $g \in W \Lambda_{L, \mathcal{N}}^{n\left(\frac{1}{p}-1\right)}\left(\mathbb{R}^{n}\right)$, since

$$
g \in \bigcap_{\epsilon \in(0, \infty)}\left(\mathcal{M}_{n\left(\frac{1}{p}-1\right), L}^{\epsilon, M}\left(\mathbb{R}^{n}\right)\right)^{*}
$$

 lows that, for any $(p, 2, M)_{L}$-atom $a,\langle g, a\rangle$ is well defined. Moreover, for any $f \in$ $W H_{L}^{p}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)$, by Remark 2.18, we see that f has a weak atomic $(p, 2, M)_{L^{-}}$ representation $\sum_{i \in \mathcal{I}, j \in \Lambda_{i}} \widetilde{\lambda}_{i, j} a_{i, j}$ such that $\left\{a_{i, j}\right\}_{i \in \mathcal{I}, j \in \Lambda_{i}}$ is a sequence of $(p, 2, M)_{T^{-}}$ atoms associated to the balls $\left\{B_{i, j}\right\}_{i \in \mathcal{I}, j \in \Lambda_{i}}$ and $\left\{\widetilde{\lambda}_{i, j}\right\}_{i \in \mathcal{I}, j \in \Lambda_{i}}=\left\{\widetilde{C} 2^{i}\left|B_{i, j}\right|^{\frac{1}{p}}\right\}_{i \in \mathcal{I}, j \in \Lambda_{i}}$, with \widetilde{C} being a positive constant independent of f, satisfies

$$
\begin{equation*}
\sup _{i \in \mathcal{I}}\left(\sum_{j \in \Lambda_{i}}\left|\widetilde{\lambda}_{i, j}\right|^{p}\right)^{1 / p} \lesssim\|f\|_{W H_{L}^{p}\left(\mathbb{R}^{n}\right)} . \tag{4.13}
\end{equation*}
$$

By the definition of $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$, we further know that $t^{2} L e^{-t^{2} L} f \in W T^{p}\left(\mathbb{R}_{+}^{n+1}\right) \cap$ $T^{2}\left(\mathbb{R}_{+}^{n+1}\right)$. This, together with Theorem 2.11 and the proof of Theorem 2.15 (see (2.15) and (2.16)), implies that there exist sequences $\left\{A_{i, j}\right\}_{i \in \mathcal{I}, j \in \Lambda_{i}}$ of $T^{p}\left(\mathbb{R}_{+}^{n+1}\right)$ $\underset{\sim}{\text { atoms, associated }}$ with balls $\left\{B_{i, j}\right\}_{i \in \mathcal{I}, j \in \Lambda_{i}}$, and $\left\{\lambda_{i, j}\right\}_{i \in \mathcal{I}, j \in \Lambda_{i}} \subset \mathbb{C}$ satisfying $\lambda_{i, j}=$ $\widetilde{\widetilde{C}} 2^{i}\left|B_{i, j}\right|^{\frac{1}{p}}$, with $\widetilde{\widetilde{C}}$ being a positive constant independent of f, such that

$$
t^{2} L e^{-t^{2} L} f=\sum_{i \in \mathcal{I}} \sum_{j \in \Lambda_{i}} \lambda_{i, j} A_{i, j}
$$

holds true pointwisely almost everywhere in \mathbb{R}_{+}^{n+1} and in $T^{2}\left(\mathbb{R}_{+}^{n+1}\right)$, where \mathcal{I} and Λ_{i} are as in Theorem 2.11. By (4.13) and the definitions of $\lambda_{i, j}$ and $\widetilde{\lambda}_{i, j}$, we further obtain

$$
\begin{equation*}
\sup _{i \in \mathcal{I}}\left(\sum_{j \in \mathbb{Z}_{+}}\left|\lambda_{i, j}\right|^{p}\right)^{\frac{1}{p}} \lesssim\|f\|_{W H_{L}^{p}\left(\mathbb{R}^{n}\right)} . \tag{4.14}
\end{equation*}
$$

Now, for all $i \in \mathcal{I}$, let $\Omega_{i}:=\cup_{j \in \Lambda_{i}} B_{i, j}$. From the proof of Theorem 2.11 (see the argument below (2.11)), it follows that $\left\{B_{i, j}\right\}_{j \in \Lambda_{i}} \in \widetilde{\mathcal{W}}_{\Omega_{i}}$. Moreover, by comparing the quasi-norms between $W \Lambda_{L, \mathcal{N}}^{n\left(\frac{1}{p}-1\right)}\left(\mathbb{R}^{n}\right)$ and $\Lambda_{L}^{n\left(\frac{1}{p}-1\right)}\left(\mathbb{R}^{n}\right)$, we see that $W \Lambda_{L, \mathcal{N}}^{n\left(\frac{1}{p}-1\right)}\left(\mathbb{R}^{n}\right) \subset \Lambda_{L}^{n\left(\frac{1}{p}-1\right)}\left(\mathbb{R}^{n}\right)$, where $\Lambda_{L}^{n\left(\frac{1}{p}-1\right)}\left(\mathbb{R}^{n}\right)$ denotes the "strong" Lipschitz space associated to L defined as in [41, (1.26)]. This, together with the Calderón reproducing formula [39, Lemma 8.4], Theorem 2.6, Remark 2.10, Theorem 2.11 and Hölder's inequality, implies that

$$
|\langle g, f\rangle| \sim\left|\iint_{\mathbb{R}_{+}^{n+1}}\left(t^{2} L\right)^{M} \Phi(t \sqrt{L}) g(x) \overline{t^{2} L e^{-t^{2} L} f(x)} \frac{d x d t}{t}\right|
$$

$$
\begin{aligned}
& \lesssim \iint_{\mathbb{R}_{+}^{n+1}}\left|\left(t^{2} L\right)^{M} \Phi(t \sqrt{L}) g(x)\left[\sum_{i \in \mathcal{I}} \sum_{j \in \Lambda_{i}} 2^{i}\left|B_{i, j}\right|^{\frac{1}{p}} \overline{A_{i, j}(x, t)}\right]\right| \frac{d x d t}{t} \\
& \lesssim \sum_{i \in \mathcal{I}} 2^{i} \sum_{j \in \Lambda_{i}}\left|B_{i, j}\right|^{\frac{1}{p}}\left[\iint_{\widehat{B}_{i, j} \cap\left(\operatorname{supp} A_{i, j}\right)}\left|G_{L}(t, x)\right|^{2} \frac{d x d t}{t}\right]^{\frac{1}{2}} \\
& \quad \times\left[\iint_{\widehat{B}_{i, j}}\left|A_{i, j}(x, t)\right|^{2} \frac{d x d t}{t}\right]^{\frac{1}{2}} \\
& =: \mathrm{I}
\end{aligned}
$$

where, for all $t \in(0, \infty)$ and $x \in \mathbb{R}^{n}$, we let

$$
G_{L}(t, x):=\left(t^{2} L\right)^{M} \Phi(t \sqrt{L}) g(x) .
$$

To estimate I, by Proposition 4.9, Hölder's inequality, the definition of $\lambda_{i, j}$ and (4.14), we conclude that

$$
\begin{aligned}
\mathrm{I} & \lesssim \sum_{i \in \mathcal{I}} 2^{i}\left|\Omega_{i}\right|^{\frac{1}{p}-\frac{1}{2}}\left\{\sum_{j \in \Lambda_{i}}\left|B_{i, j}\right|^{\frac{1}{2}}\left[\frac{1}{\left|\Omega_{i}\right|^{\frac{p_{p}^{p}}{p}}} \iint_{\widehat{B}_{i, j} \cap\left(\operatorname{supp} A_{i, j}\right)}\left|G_{L}(t, x)\right|^{2} \frac{d x d t}{t}\right]^{\frac{1}{2}}\right\} \\
& \lesssim \sum_{i \in \mathcal{I}} 2^{i}\left|\Omega_{i}\right|^{\frac{1}{p}-\frac{1}{2}}\left[\sum_{j \in \Lambda_{i}}\left|B_{i, j}\right|\right]^{\frac{1}{2}}\left[\sum_{j \in \Lambda_{i}} \frac{1}{\left|\Omega_{i}\right|^{\frac{2}{p}-1}} \iint_{\widehat{B}_{i, j} \cap\left(\operatorname{supp} A_{i, j}\right)}\left|G_{L}(t, x)\right|^{2} \frac{d x d t}{t}\right]^{\frac{1}{2}} \\
& \lesssim \sum_{i \in \mathcal{I}} 2^{i}\left|\Omega_{i}\right|^{\frac{1}{p}}\left[\frac{1}{\left|\Omega_{i}\right|^{\frac{2}{p}-1}} \iint_{\cup_{j \in \Lambda_{i}} \widehat{B}_{i, j} \cap\left(\operatorname{supp} A_{i, j}\right)}\left|G_{L}(t, x)\right|^{2} \frac{d x d t}{t}\right]^{\frac{1}{2}} \\
& \lesssim\|f\|_{W H_{L}^{p}\left(\mathbb{R}^{n}\right)} \sum_{i \in \mathcal{I}} \omega_{\mathcal{C}}\left(\left|\Omega_{i}\right|\right) .
\end{aligned}
$$

From this, together with Remark 2.10, the fact that $\omega_{\mathcal{C}} \lesssim \omega_{\mathcal{N}}$ and the decreasing property of $\omega_{\mathcal{N}}$, where $\omega_{\mathcal{N}}$ and $\omega_{\mathcal{C}}$ are, respectively, as in (4.5) and (4.10), we know that

$$
\begin{aligned}
\mathrm{I} & \lesssim\|f\|_{W H_{L}^{p}\left(\mathbb{R}^{n}\right)} \sum_{\tilde{i}_{j} \in \widetilde{\mathcal{I}}} \omega_{\mathcal{N}}\left(2^{-\tilde{\boldsymbol{i}}_{j}}\left|\Omega_{i_{0}}\right|\right) \\
& \lesssim\|f\|_{W H_{L}^{p}\left(\mathbb{R}^{n}\right)} \sum_{i \in \mathbb{Z}} \omega_{\mathcal{N}}\left(2^{-i}\left|\Omega_{i_{0}}\right|\right) \lesssim\|f\|_{W H_{L}^{p}\left(\mathbb{R}^{n}\right)} \int_{0}^{\infty} \frac{\omega_{\mathcal{N}}(\delta)}{\delta} d \delta \\
& \sim\|f\|_{W H_{L}^{p}\left(\mathbb{R}^{n}\right)}\|g\|_{W \Lambda_{L, \mathcal{N}}^{n\left(\frac{1}{p}-1\right)}\left(\mathbb{R}^{n}\right)},
\end{aligned}
$$

where both \widetilde{i}_{j} and i_{0} are as in Remark 2.10, which, combined with a density argument, implies that

$$
W \Lambda_{L, \mathcal{N}}^{n\left(\frac{1}{p}-1\right)}\left(\mathbb{R}^{n}\right) \subset\left(W H_{L}^{p}\left(\mathbb{R}^{n}\right)\right)^{*}
$$

Now, we prove the inclusion that $\left(W H_{L}^{p}\left(\mathbb{R}^{n}\right)\right)^{*} \subset W \Lambda_{L, \mathcal{N}}^{n\left(\frac{1}{p}-1\right)}\left(\mathbb{R}^{n}\right)$.
Let $g \in\left(W H_{L}^{p}\left(\mathbb{R}^{n}\right)\right)^{*}$. For all $(p, \epsilon, M)_{L}$-molecules m, from the fact that $\|m\|_{W H_{L}^{p}\left(\mathbb{R}^{n}\right)} \lesssim 1$, it follows that $|g(m)| \lesssim 1$. By this and the fact that, for all $\epsilon \in(0, \infty), M \in \mathbb{N}$ and $m_{0} \in \mathcal{M}_{\alpha, L}^{\epsilon, M}\left(\mathbb{R}^{n}\right), m_{0}$ is a (p, ϵ, M)-molecule, we conclude that $g \in \mathcal{M}_{\alpha, L}^{M, *}\left(\mathbb{R}^{n}\right)$.

Now, we prove that $\|g\|_{W \Lambda^{n\left(\frac{1}{p}-1\right)}{ }_{\left(\mathbb{R}^{n}\right)}} \lesssim\|g\|_{\left(W H_{L}^{p}\left(\mathbb{R}^{n}\right)\right)^{*}}$. By Definition 4.2, (4.3) and (4.5), we first write

$$
\begin{aligned}
\int_{0}^{\infty} \frac{\omega_{\mathcal{N}}(\delta)}{\delta} d \delta & \lesssim \sum_{l \in \mathbb{Z}} \omega_{\mathcal{N}}\left(2^{-l}\right) \\
& \lesssim \sum_{l \in \mathbb{Z}} \sup _{|\Omega|=2^{-l}} \sup _{i \in \mathbb{Z}_{+}} \sup _{\vec{B} \in \mathcal{W}_{\Omega}} 2^{-i \mathcal{N}}\left[\frac{1}{|\Omega|^{\frac{2}{p}-1}} \int_{S_{i}(\vec{B})}\left|\mathcal{A}_{r} g(x)\right|^{2} d x\right]^{\frac{1}{2}} \\
& =\sum_{l \in \mathbb{Z}} \sup _{|\Omega|=2^{-l}} \sup _{i \in \mathbb{Z}_{+}} \sup _{\vec{B} \in \mathcal{W}_{\Omega}} \mathrm{A}_{l},
\end{aligned}
$$

where \mathcal{A}_{r} and $S_{i}(\vec{B})$ are, respectively, as in (4.2) and (4.4).
To estimate A_{l}, from the dual norm of $L^{2}\left(\mathbb{R}^{n}\right)$, we deduce that there exists $\varphi_{l} \in L^{2}\left(\mathbb{R}^{n}\right)$ satisfying $\left\|\varphi_{l}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leq 1$ such that

$$
\begin{equation*}
\mathrm{A}_{l} \sim\left|\left\langle g, 2^{-i \mathcal{N}} \frac{1}{|\Omega|^{\frac{1}{p}-\frac{1}{2}}} \mathcal{A}_{r}\left(\chi_{S_{i}(\vec{B})} \varphi_{l}\right)\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)}\right|=:\left|\left\langle g, f_{l}\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)}\right| \tag{4.16}
\end{equation*}
$$

We now estimate the $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$ quasi-norm of f_{l}. For all $\alpha \in(0, \infty)$, by Chebyshev's inequality, Hölder's inequality, the definition of S_{L} and the fact that, for all $\ell \in \mathbb{Z}_{+},\left|S_{\ell}(\vec{B})\right| \lesssim 2^{\ell n}|\Omega| \sim 2^{\ell n} 2^{-l}$, we obtain

$$
\begin{align*}
& \alpha^{p}\left|\left\{x \in \mathbb{R}^{n}: S_{L}\left(f_{l}\right)(x)>\alpha\right\}\right| \tag{4.17}\\
& \quad \lesssim \int_{\mathbb{R}^{n}}\left|S_{L}\left(f_{l}\right)(x)\right|^{p} d x \lesssim \sum_{\ell \in \mathbb{Z}_{+}}\left\{\int_{S_{\ell}(\vec{B})}\left|S_{L}\left(f_{l}\right)(x)\right|^{2} d x\right\}^{\frac{p}{2}}\left|S_{\ell}(\vec{B})\right|^{1-\frac{p}{2}} \\
& \quad \lesssim \sum_{\ell \in \mathbb{Z}_{+}} 2^{-i \mathcal{N} p 2^{\ell n\left(1-\frac{p}{2}\right)}\left\{\left(\int_{S_{\ell}(\vec{B})}\left[\int_{0}^{r}+\int_{r}^{2^{\ell-3} r}+\int_{2^{\ell-3} r}^{\infty}\right] \int_{\left\{y \in \mathbb{R}^{n}:|y-x|<t\right\}}\right.\right.} \\
& \left.\left.\quad \times\left|t^{2} L e^{-t^{2} L} \mathcal{A}_{r}\left(\chi_{S_{i}(\vec{B})} \varphi_{l}\right)(y)\right|^{2} \frac{d y d t d x}{t^{n+1}}\right)^{\frac{1}{2}}\right\}^{p}=: \mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3} .
\end{align*}
$$

We first estimate Q_{1}. For all $\ell \in \mathbb{Z}_{+}$, let

$$
\begin{equation*}
\mathrm{E}_{\ell}:=\left\{x \in \mathbb{R}^{n}: \operatorname{dist}\left(S_{\ell}(\vec{B}), x\right)<r\right\} . \tag{4.18}
\end{equation*}
$$

It is easy to see that, for all $\ell>i+1$,

$$
\frac{r}{\operatorname{dist}\left(E_{\ell}, S_{i}(\vec{B})\right)} \lesssim 2^{-\ell}
$$

where r is as in Definition 4.1(ii). Thus, by Fubini's theorem, the quadratic estimates and the Davies-Gaffney estimates, we know that there exists a positive constant α_{6}, independent of i, l and ℓ, such that

$$
\mathrm{Q}_{1} \lesssim \sum_{\ell \in \mathbb{Z}_{+}} 2^{-i \mathcal{N} p} 2^{\ell n\left(1-\frac{p}{2}\right)}\left\{\left[\int_{0}^{r} \int_{\mathrm{E}_{\ell}}\left|t^{2} L e^{-t^{2} L} \mathcal{A}_{r}\left(\chi_{S_{i}(\vec{B})} \varphi_{l}\right)(y)\right|^{2} \frac{d y d t}{t}\right]^{\frac{1}{2}}\right\}^{p}
$$

$$
\begin{aligned}
& \lesssim \sum_{\ell=0}^{i+1} 2^{-i \mathcal{N} p} 2^{\ell n\left(1-\frac{p}{2}\right)}\left\|\varphi_{l}\right\|_{L^{2}\left(S_{i}(\vec{B})\right)}^{p} \\
& \quad+\sum_{\ell=i+2}^{\infty} 2^{-i \mathcal{N} p} 2^{\ell n\left(1-\frac{p}{2}\right)}\left[\int_{0}^{r} \exp \left\{-\frac{\left[\operatorname{dist}\left(E_{l}, S_{i}(\vec{B})\right)\right]^{2}}{t^{2}}\right\} \frac{d t}{t}\right]^{\frac{p}{2}}\left\|\varphi_{l}\right\|_{L^{2}\left(S_{i}(\vec{B})\right)}^{p} \\
& \lesssim \sum_{\ell=0}^{i+1} 2^{-i \mathcal{N} p} 2^{\ell n\left(1-\frac{p}{2}\right)}\left\|\varphi_{l}\right\|_{L^{2}\left(S_{i}(\vec{B})\right)}^{p} \\
& \quad+\sum_{\ell=i+2}^{\infty} 2^{-i \mathcal{N} p 2^{\ell n\left(1-\frac{p}{2}\right)} 2^{-\ell\left(\mathcal{N}+\alpha_{6}\right)}\left\|\varphi_{l}\right\|_{L^{2}\left(S_{i}(\vec{B})\right)}^{p} \lesssim 1 .}
\end{aligned}
$$

To estimate Q_{2}, for all $\ell \in \mathbb{Z}_{+}$, let

$$
F_{\ell}:=\left\{x \in \mathbb{R}^{n}: \operatorname{dist}\left(x, S_{\ell}(\vec{B})\right)<2^{\ell-3} r\right\} .
$$

By Fubini's theorem, the Davies-Gaffney estimates and the quadratic estimates, we know that there exists a positive constant α_{7}, independent of i, l and ℓ, such that

$$
\begin{aligned}
& \mathrm{Q}_{2} \lesssim \sum_{\ell \in \mathbb{Z}_{+}} 2^{\ell n\left(1-\frac{p}{2}\right)} 2^{-i \mathcal{N} p}\left\{\left[\int_{r}^{2^{\ell-3} r} \int_{F_{\ell}}\left|t^{2} L e^{-t^{2} L} \mathcal{A}_{r}\left(\chi_{S_{i}(\vec{B})} \varphi_{l}\right)(y)\right|^{2} \frac{d y d t}{t}\right]^{\frac{1}{2}}\right\}^{p} \\
& \lesssim \sum_{l \in \mathbb{Z}_{+}} 2^{\ell n\left(1-\frac{p}{2}\right)} 2^{-i \mathcal{N} p}\left\{\left[\int_{r}^{\infty} \int_{F_{l}}\left|\left(t^{2} L\right)^{M+1} e^{-t^{2} L}\left(r^{2} L\right)^{-M} \mathcal{A}_{r}\left(\chi_{S_{i}(\vec{B})} \varphi_{l}\right)(y)\right|^{2}\right.\right. \\
& \left.\left.\times \frac{d y d t}{t^{4 M+1}}\right]^{\frac{1}{2}} r^{2 M}\right\}^{p} \\
& \lesssim \sum_{\ell=0}^{i+1} 2^{\ell n\left(1-\frac{p}{2}\right)} 2^{-i \mathcal{N} p}\left\{\left[\int_{r}^{\infty} \frac{d t}{t^{4 M+1}}\right]^{\frac{1}{2}} r^{2 M}\left\|\chi_{S_{i}(\vec{B})} \varphi_{l}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}\right\}^{p} \\
& +\sum_{\ell=i+2}^{\infty} 2^{\ell n\left(1-\frac{p}{2}\right)} 2^{-i \mathcal{N} p}\left\{\left[\int_{r}^{\infty} \frac{d t}{t^{4 M+1}}\right]^{\frac{1}{2}} r^{2 M} \exp \left\{-C \frac{\left[\operatorname{dist}\left(F_{\ell}, S_{i}(\vec{B})\right)\right]^{2}}{t^{2}}\right\}\right. \\
& \left.\times\left\|\chi_{S_{i}(\vec{B})} \varphi_{i}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}\right\}^{p} \\
& \lesssim \sum_{\ell=0}^{i+1} 2^{-i \mathcal{N} p} 2^{\ln \left(1-\frac{p}{2}\right)}\left\|\chi_{S_{i}(\vec{B})} \varphi_{l}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{p} \\
& +\sum_{\ell=0}^{i+1} 2^{-i \mathcal{N} p} 2^{\ell n\left(1-\frac{p}{2}\right)} 2^{-\ell\left(\mathcal{N}+\alpha_{7}\right)}\left\|\chi_{S_{i}(\vec{B})} \varphi_{l}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{p} \\
& \lesssim 1 .
\end{aligned}
$$

Similar to the estimates of Q_{2}, we also obtain $\mathrm{Q}_{3} \lesssim 1$. Thus, by (4.17) and the estimates of Q_{1}, Q_{2} and Q_{3}, we see that

$$
\alpha^{p}\left|\left\{x \in \mathbb{R}^{n}: S_{L}\left(f_{l}\right)(x)>\alpha\right\}\right| \lesssim 1,
$$

where the implicit positive constant is independent of l. Thus, $\left\{f_{l}\right\}_{l \in \mathbb{Z}}$ are uniformly bounded in $W H_{L}^{p}\left(\mathbb{R}^{n}\right)$, which implies that, for all $N \in \mathbb{N}, \sum_{l=-N}^{N} f_{l} \in W H_{L}^{p}\left(\mathbb{R}^{n}\right)$. By choosing $\widetilde{\alpha} \in(0, \infty)$ satisfying

$$
\left\|\sum_{l=-N}^{N} f_{l}\right\|_{W H_{L}^{p}\left(\mathbb{R}^{n}\right)}^{p} \sim \widetilde{\alpha}^{p}\left|\left\{x \in \mathbb{R}^{n}: S_{L}\left(\sum_{l=-N}^{N} f\right)(x)>\widetilde{\alpha}\right\}\right|
$$

and $l_{0} \in \mathbb{N}$ satisfying $2^{l_{0}} \leq \widetilde{\alpha}^{p}<2^{l_{0}+1}$, we write

$$
\sum_{l=-N}^{N} f_{l}=\sum_{l=-N}^{l_{0}} f_{l}+\sum_{l=l_{0}+1}^{N} \cdots=: f_{1}+f_{2}
$$

Here, without loss of generality, we may assume that $l_{0} \leq N$; otherwise, we only need to estimate f_{1}.

To estimate f_{1}, let $q \in(p, 2)$. By Chebyshev's inequality, Minkowski's inequality, Hölder's inequality and the definition of f_{l}, we know that

$$
\begin{aligned}
\mid\{x & \left.\in \mathbb{R}^{n}: S_{L}\left(f_{1}\right)(x)>\widetilde{\alpha}\right\} \mid \\
& \lesssim \widetilde{\alpha}^{-q}\left(\left[\int_{\mathbb{R}^{n}}\left|S_{L}\left(f_{1}\right)(x)\right|^{q} d x\right]^{\frac{1}{q}}\right)^{q} \lesssim \widetilde{\alpha}^{-q}\left(\sum_{l=-N}^{l_{0}}\left[\int_{\mathbb{R}^{n}}\left|S_{L}\left(f_{l}\right)(x)\right|^{q} d x\right]^{\frac{1}{q}}\right)^{q} \\
& \lesssim \widetilde{\alpha}^{-q}\left\{\sum_{l=-N}^{l_{0}} \sum_{\ell \in \mathbb{Z}_{+}}\left[\int_{S_{\ell}(\vec{B})}\left|S_{L}\left(f_{l}\right)(x)\right|^{2} d x\right]^{\frac{1}{2}}\left|S_{\ell}(\vec{B})\right|^{\frac{1}{q}-\frac{1}{2}}\right\}^{q} \\
& \lesssim \widetilde{\alpha}^{-q}\left[\sum _ { l = - N } ^ { l _ { 0 } } \sum _ { \ell \in \mathbb { Z } _ { + } } 2 ^ { \operatorname { l n } (\frac { 1 } { q } - \frac { 1 } { 2 }) } | \Omega | ^ { (\frac { 1 } { 2 } - \frac { 1 } { p }) + (\frac { 1 } { q } - \frac { 1 } { 2 }) } 2 ^ { - i N } \left\{\int_{S_{\ell}(\vec{B})}\left[\int_{0}^{r}+\int_{r}^{2^{\ell-3} r}+\int_{2^{\ell-3} r}^{\infty}\right]\right.\right. \\
& \left.\left.\times \int_{\left\{y \in \mathbb{R}^{n}:|y-x|<t\right\}}\left|t^{2} L e^{-t^{2} L} \mathcal{A}_{r}\left(\chi_{S_{i}(\vec{B})} \varphi_{l}\right)(y)\right|^{2} \frac{d y d t d x}{t^{n+1}}\right\}^{\frac{1}{2}}\right]^{q} \\
= & : \widetilde{\mathbb{Q}}_{1}+\widetilde{\mathrm{Q}}_{2}+\widetilde{\mathrm{Q}}_{3} .
\end{aligned}
$$

We first estimate $\widetilde{\mathrm{Q}}_{1}$. For all $\ell \in \mathbb{Z}_{+}$, let E_{ℓ} be as in (4.18). It is easy to see that, for all $i \in \mathbb{N}$ and $\ell>i+1$,

$$
\frac{r}{\operatorname{dist}\left(E_{\ell}, S_{i}(\vec{B})\right)} \lesssim 2^{-\ell}
$$

Thus, by the fact $|\Omega| \sim 2^{-l}$, Fubini's theorem, the Davies-Gaffney estimates, the quadratic estimates, $q \in(p, 2)$ and the assumption $2^{l_{0}} \sim \widetilde{\alpha}^{p}$, we conclude that

$$
\begin{aligned}
& \widetilde{\mathrm{Q}}_{1} \lesssim \widetilde{\alpha}^{-q} {\left[\sum_{l=-N}^{l_{0}} \sum_{\ell=0}^{i+1} 2^{\ell n\left(\frac{1}{q}-\frac{1}{2}\right)} 2^{l\left(\frac{1}{p}-\frac{1}{q}\right)} 2^{-i \mathcal{N}}\left\|\varphi_{l}\right\|_{L^{2}\left(S_{i}(\vec{B})\right)}\right]^{q} } \\
& \quad+\widetilde{\alpha}^{-q}\left[\sum_{l=-N}^{l_{0}} \sum_{\ell=i+2}^{\infty} 2^{\ell n\left(\frac{1}{q}-\frac{1}{2}\right)} 2^{l\left(\frac{1}{p}-\frac{1}{q}\right)} 2^{-i \mathcal{N}} \int_{0}^{r} \exp \left\{-C \frac{\left[\operatorname{dist}\left(E_{\ell}, S_{i}(\vec{B})\right)\right]^{2}}{t^{2}}\right\} \frac{d t}{t}\right. \\
&\left.\quad \times\left\|\varphi_{l}\right\|_{L^{2}\left(S_{i}(\vec{B})\right)}\right]^{q}
\end{aligned}
$$

$$
\lesssim \widetilde{\alpha}^{-q}\left[\sum_{l=-\infty}^{l_{0}} 2^{l\left(\frac{1}{p}-\frac{1}{q}\right)}\right]^{q}+\widetilde{\alpha}^{-q} 2^{l_{0}}\left[\sum_{l=-\infty}^{l_{0}} 2^{l\left(\frac{1}{p}-\frac{1}{q}\right)}\right]^{q} \sim \widetilde{\alpha}^{-q} 2^{l_{0}\left(\frac{q}{p}-1\right)} \sim \widetilde{\alpha}^{-p}
$$

Similar to the estimates of Q_{1} and Q_{2}, we have $\widetilde{\mathrm{Q}}_{2}+\widetilde{\mathrm{Q}}_{3} \lesssim \widetilde{\alpha}^{-p}$. Thus,

$$
\widetilde{\alpha}^{p}\left|\left\{x \in \mathbb{R}^{n}: S_{L}\left(f_{1}\right)(x)>\widetilde{\alpha}\right\}\right| \lesssim \widetilde{\alpha}^{p-q} 2^{l_{0}\left(\frac{1}{p}-\frac{1}{q}\right) q} \sim 1
$$

On the other hand, to estimate f_{2}, let $\widetilde{q} \in(0, p)$. Then

$$
\begin{aligned}
\mathrm{J} & :=\left|\left\{x \in \mathbb{R}^{n}: S_{L}\left(\sum_{l=l_{0}+1}^{N} f_{l}\right)(x)>\widetilde{\alpha}\right\}\right| \\
& \lesssim \widetilde{\alpha}^{-q}\left[\sum_{l=-N}^{l_{0}} \sum_{\ell \in \mathbb{Z}_{+}}\left\{\int_{S_{\ell}(\vec{B})}\left[S_{L}\left(f_{l}\right)(x)\right]^{2} d x\right\}^{\frac{1}{2}}\left|S_{\ell}(\vec{B})\right|^{\frac{1}{q}-\frac{1}{2}}\right]^{q}
\end{aligned}
$$

Similar to the estimates of f_{1}, we also obtain

$$
\mathrm{J} \lesssim \widetilde{\alpha}^{-q} 2^{l\left(\frac{1}{p}-\frac{1}{q}\right) \epsilon}
$$

which implies that $\widetilde{\alpha}^{p}\left|\left\{x \in \mathbb{R}^{n}: S_{L}\left(f_{2}\right)(x)>\widetilde{\alpha}\right\}\right| \lesssim 1$. Combining the estimates of f_{1} and f_{2}, we conclude that

$$
\left\|\sum_{l=-N}^{N} f_{l}\right\|_{W H_{L}^{p}\left(\mathbb{R}^{n}\right)} \sim \widetilde{\alpha}^{p}\left|\left\{x \in \mathbb{R}^{n}: S_{L}\left(\sum_{l=-N}^{N} f_{l}\right)(x)>\widetilde{\alpha}\right\}\right| \lesssim 1
$$

where the implicit constants are independent of N. Thus, by letting $N \rightarrow \infty$, we obtain

$$
\left\|\sum_{l=-\infty}^{\infty} f_{l}\right\|_{W H_{L}^{p}\left(\mathbb{R}^{n}\right)} \lesssim 1
$$

Thus, from (4.15), (4.16) and the assumption that $g \in\left(W H_{L}^{p}\left(\mathbb{R}^{n}\right)\right)^{*}$, we deduce that

$$
\|g\|_{W \Lambda_{L, \mathcal{N}}^{n\left(\frac{1}{p}-1\right)}} \sim \int_{0}^{\infty} \frac{w_{\mathcal{N}}(\delta)}{\delta} d \delta \lesssim \lim _{N \rightarrow \infty}\left|\left\langle g, \sum_{l=-N}^{N} f_{l}\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)}\right| \lesssim\|g\|_{\left(W H_{L}^{p}\left(\mathbb{R}^{n}\right)\right)^{*}}
$$

which implies that $g \in W \Lambda_{L, \mathcal{N}}^{n\left(\frac{1}{p}-1\right)}$ and

$$
\|g\|_{W \Lambda_{L, \mathcal{N}}^{n\left(\frac{1}{p}-1\right)}} \lesssim\|g\|_{\left(W H_{L}^{p}\left(\mathbb{R}^{n}\right)\right)^{*}}
$$

This shows that $\left(W H_{L}^{p}\left(\mathbb{R}^{n}\right)\right)^{*} \subset W \Lambda_{L, \mathcal{N}}^{n\left(\frac{1}{p}-1\right)}$ and hence finishes the proof of Theorem 4.6.

Remark 4.10. By Theorem 4.6, we see that $W \Lambda_{L, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right)$ for $\alpha \in[0, \infty)$ is independent of the choice of $\mathcal{N} \in\left(n\left(\frac{1}{p}-\frac{1}{2}\right), \infty\right)$. Thus, we can write $W \Lambda_{L, \mathcal{N}}^{\alpha}\left(\mathbb{R}^{n}\right)$ simply by $W \Lambda_{L}^{\alpha}\left(\mathbb{R}^{n}\right)$.

Acknowledgment

Part of the results in this paper was announced by the second author during the International Workshop on Nonlinear Variational Analysis 2014 which was held on August 1st to 3rd at Kaohsiung Medical University. The second author would like to express his profound gratitude to Professor Jen-Chih Yao for his invitation and for the warm hospitality extended to him during his stay in Taiwan. The authors would like to thank Dr. Dongyong Yang for his careful reading and many helpful discussions on the topic of this article.

References

[1] W. Abu-Shammala and A. Torchinsky, The Hardy-Lorentz spaces $H^{p, q}\left(\mathbb{R}^{n}\right)$, Studia Math. 182 (2007), 283-294.
[2] J. Álvarez, H^{p} and weak H^{p} continuity of Calderón-Zygmund type operators, in Fourier Analysis (Orono, ME, 1992), Lecture Notes in Pure and Appl. Math., 157, Dekker, New York, 1994, pp. 17-34
[3] J. Assaad and E. M. Ouhabaz, Riesz transforms of Schrödinger operators on manifolds, J. Geom. Anal. 22 (2012), 1108-1136.
[4] P. Auscher, X. T. Duong and A. McIntosh, Boundedness of Banach space valued singular integral operators and Hardy spaces, Unpublished preprint, 2005.
[5] P. Auscher and J. M. Martell, Weighted norm inequalities, off-diagonal estimates and elliptic operators. II. Off-diagonal estimates on spaces of homogeneous type, J. Evol. Equ. 7 (2007), 265-316.
[6] P. Auscher, A. McIntosh and E. Russ, Hardy spaces of differential forms on Riemannian manifolds, J. Geom. Anal. 18 (2008), 192-248.
[7] J. Bergh and J. Löfström, Interpolation Spaces, An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976.
[8] S. Blunck and P. Kunstmann, Generalized Gaussian estimates and the Legendre transform, J. Operator Theory 53 (2005), 351-365.
[9] J. Cao, D.-C. Chang, Z. Fu and D. Yang, Real interpolation of weighted tent spaces, Submitted.
[10] J. Cao, D.-C. Chang, D. Yang and S. Yang, Boundedness of generalized Riesz transforms on Orlicz-Hardy spaces associated to operators, Integral Equations Operator Theory 76 (2013), 225-283.
[11] J. Cao, Y. Liu and D. Yang, Hardy spaces $H_{\mathcal{L}}^{1}\left(\mathbb{R}^{n}\right)$ associated to Schrödinger type operators $(-\Delta)^{2}+V^{2}$, Houston J. Math. 36 (2010), 1067-1095.
[12] J. Cao and D. Yang, Hardy spaces $H_{L}^{p}\left(\mathbb{R}^{n}\right)$ associated to operators satisfying k-Davies-Gaffney estimates, Sci. China. Math. 55 (2012), 1403-1440.
[13] J. Cao, D. Yang and S. Yang, Endpoint boundedness of Riesz transforms on Hardy spaces associated with operators, Rev. Mat. Complut. 26 (2013), 99-114.
[14] D.-C. Chang, G. Dafni and E. M. Stein, Hardy spaces, BMO and boundary value problems for the Laplacian on a smooth domain in \mathbb{R}^{n}, Trans. Amer. Math. Soc. 351 (1999), 1605-1661.
[15] D.-C. Chang, S. G. Krantz and E. M. Stein, Hardy spaces and elliptic boundary value problems, in The Madison Symposium on Complex Analysis (Madison, WI, 1991), Contemp. Math., 137, Amer. Math. Soc., Providence, RI, 1992, pp. 119-131.
[16] D.-C. Chang, S. G. Krantz and E. M. Stein, H^{p} theory on a smooth domain in \mathbb{R}^{N} and elliptic boundary value problems, J. Funct. Anal. 114 (1993), 286-347.
[17] R. R. Coifman, A real variable characterization of H^{p}, Studia Math. 51 (1974), 269-274.
[18] R. R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 (1993), 247-286.
[19] R. R. Coifman, Y. Meyer and E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62 (1985), 304-335.
[20] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
[21] E. B. Davies, Uniformly elliptic operators with measurable coefficients, J. Funct. Anal. 132 (1995), 141-169.
[22] Q. Deng, Y. Ding and X. Yao, Characterizations of Hardy spaces associated to higher order elliptic operators, J. Funct. Anal. 263 (2012), 604-674.
[23] X. T. Duong and J. Li, Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus, J. Funct. Anal. 264 (2013), 1409-1437.
[24] X. T. Duong, J. Xiao and L. Yan, Old and new Morrey spaces with heat kernel bounds, J. Fourier Anal. Appl. 13 (2007), 87-111.
[25] X. T. Duong and L. Yan, New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications, Comm. Pure Appl. Math. 58 (2005), 1375-1420.
[26] X. T. Duong and L. Yan, Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, J. Amer. Math. Soc. 18 (2005), 943-973.
[27] J. Dziubański and J. Zienkiewicz, Hardy space H^{1} associated to Schrödinger operator with potential satisfying reverse Hölder inequality, Rev. Mat. Ibero. 15 (1999), 279-296.
[28] J. Dziubański and J. Zienkiewicz, H^{p} spaces for Schrödinger operators, in Fourier Analysis and Related Topics (Bkedlewo, 2000), Banach Center Publ. 56, Polish Acad. Sci., Warsaw, 2002, pp. 45-53.
[29] C. Fefferman, N. M. Riviére and Y. Sagher, Interpolation between H^{p} spaces: the real method, Trans. Amer. Math. Soc. 191 (1974), 75-81.
[30] C. Fefferman and E. M. Stein, H^{p} spaces of several variables, Acta Math. 129 (1972), 137-193.
[31] R. Fefferman and F. Soria, The space weak H^{1}, Studia Math. 85 (1986), 1-16.
[32] M. Gaffney, The conservation property of the heat equation on Riemannian manifolds, Comm. Pure Appl. Math. 12 (1959), 1-11.
[33] L. Grafakos, Hardy space estimates for multilinear operators. II, Rev. Mat. Ibero. 8 (1992), 69-92.
[34] L. Grafakos, Modern Fourier Analysis, Second edition, Graduate Texts in Mathematics 250, Springer, New York, 2009.
[35] L. Grafakos and R. Rochberg, Compensated compactness and the Heisenberg group, Math. Ann. 301 (1995), 601-611.
[36] M. Haase, The Functional Calculus for Sectorial Operators, Operator Theory: Advances and Applications 169, Birkhäuser Verlag, Basel, 2006.
[37] D. He, Square function characterization of weak Hardy spaces, J. Fourier Anal. Appl. 20 (2014), 1083-1110.
[38] S. Hofmann, G. Lu, D. Mitrea, M. Mitrea and L. Yan, Hardy Spaces Associated to Non-Negative Self-Adjoint Operators Satisfying Davies-Gaffney Estimates, Mem. Amer. Math. Soc., vol. 214, No. 1007, Providence, RI, 2011.
[39] S. Hofmann and S. Mayboroda, Hardy and BMO spaces associated to divergence form elliptic operators, Math. Ann. 344 (2009), 37-116.
[40] S. Hofmann and S. Mayboroda, Correction to "Hardy and BMO spaces associated to divergence form elliptic operators", arXiv: 0907.0129.
[41] S. Hofmann, S. Mayboroda and A. McIntosh, Second order elliptic operators with complex bounded measurable coefficients in L^{p}, Sobolev and Hardy spaces, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), 723-800.
[42] R. Jiang and D. Yang, Orlicz-Hardy spaces associated with operators satisfying Davies-Gaffney estimates, Commun. Contemp. Math. 13 (2011), 331-373.
[43] R. Jiang and D. Yang, Predual spaces of Banach completions of Orlicz-Hardy spaces associated with operators, J. Fourier Anal. Appl. 17 (2011), 1-35.
[44] R. Jiang and D. Yang, New Orlicz-Hardy spaces associated with divergence form elliptic operators, J. Funct. Anal. 258 (2010), 1167-1224.
[45] R. Jiang, D. Yang and Y. Zhou, Orlicz-Hardy spaces associated with operators, Sci. China Ser. A 52 (2009), 1042-1080.
[46] N. Kalton, S. Mayboroda and M. Mitrea, Interpolation of Hardy-Sobolev-Besov-TriebelLizorkin spaces and applications to problems in partial differential equations, in Interpolation

Theory and Applications, Contemp. Math., 445, Amer. Math. Soc., Providence, RI, 2007, pp. 121-177.
[47] N. Krugljak, L. Maligranda and L.-E. Persson, The failure of the Hardy inequality and interpolation of intersections, Ark. Mat. 37 (1999), 323-344.
[48] R. H. Latter, A characterization of $H^{p}\left(\mathbb{R}^{n}\right)$ in terms of atoms, Studia Math. 62 (1978), 93-101.
[49] Y. Liang, D. Yang and R. Jiang, Weak Musielak-Orlicz-Hardy spaces and applications, Submitted.
[50] Y. Liang, D. Yang and S. Yang, Applications of Orlicz-Hardy spaces associated with operators satisfying poisson estimates, Sci. China Math. 54 (2011), 2395-2426.
[51] H. Liu, The weak H^{p} spaces on homogenous groups, in Harmonic Analysis (Tianjin, 1988), Lecture Notes in Math., 1984, Springer, Berlin, 1991, pp. 113-118.
[52] S. Lu, Four Lectures on Real H^{p} Spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 1995.
[53] A. McIntosh, Operators which have an H_{∞} functional calculus, in Miniconference on Operator Theory and Partial Differential Equations (North Ryde, 1986), Proc. Centre Math. Anal., Austral. Nat. Univ., 14, Austral. Nat. Univ., Canberra, 1986, pp. 210-231.
[54] D. Mitrea, M. Mitrea and L. Yan, Boundary value problems for the Laplacian in convex and semiconvex domains, J. Funct. Anal. 258 (2010), 2507-2585.
[55] S. Müller, Hardy space methods for nonlinear partial differential equations, Equadiff 8 (Bratislava, 1993), Tatra Mt. Math. Publ. 4 (1994), 159-168.
[56] T. Quek and D. Yang, Calderón-Zygmund-type operators on weighted weak Hardy spaces over \mathbb{R}^{n}, Acta Math. Sin. (Engl. Ser.) 16 (2000), 141-160.
[57] S. Semmes, A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, Comm. Partial Differential Euqations 19 (1994), 277-319.
[58] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series 43, Monographs in Harmonic Analysis III, Princeton University Press, Princeton, NJ, 1993.
[59] E. M. Stein, M. H. Taibleson and G. Weiss, Weak type estimates for maximal operators on certain H^{p} spaces, Rend. Circ. Mat. Palermo, Supplemento 1 (1981), 81-97.
[60] E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables. I. The theory of H^{p}-spaces, Acta Math. 103 (1960), 25-62.
[61] M. H. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces, in Representation theorems for Hardy spaces, Astérisque, 77, Soc. Math. France, Paris, 1980, pp. 67-149.
[62] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Second edition, Johann Ambrosius Barth, Heidelberg, 1995.
[63] L. Yan, Classes of Hardy spaces associated with operators, duality theorem and applications, Trans. Amer. Math. Soc. 360 (2008), 4383-4408.
[64] Da. Yang and Do. Yang, Real-variable characterizations of Hardy spaces associated with Bessel operators, Anal. Appl. (Singap.) 9 (2011), 345-368.

Jun Cao
School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, People's Republic of China

Current address: Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310032, P. R. China

E-mail address: caojun1860@zjut.bnu.edu.cn
Der-Chen Chang
Department of Mathematics and Statistics, Georgetown University, Washington D. C. 20057, U.
S. A.; Department of Mathematics, Fu Jen Catholic University, Tapei 242, Taiwan, R. O. China

E-mail address: chang@georgetown.edu
Huoxiong Wu
School of Mathematical Sciences, Xiamen University, Xiamen 361005, P. R. China
E-mail address: huoxwu@xmu.edu.cn
Dachun Yang
School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, P. R. China

E-mail address: dcyang@bnu.edu.cn

[^0]: 2010 Mathematics Subject Classification. Primary 42B35; Secondary 42B30, 42B20, 42B37, 47B06, 47A60, 35J30, 35J10.

 Key words and phrases. Weak Hardy space, dual, atom, molecule, BMO, real interpolation, Riesz transform, k-Davies-Gaffney estimate, functional calculus, higher order elliptic operator, Schrödinger type operator.

 Der-Chen Chang is partially supported by an NSF grant DMS-1203845 and a Hong Kong RGC competitive earmarked research grant \#601410, Huoxiong Wu is supported by National Natural Science Foundation of China (Grant Nos. 11371295 and 11471041), and Dachun Yang is supported by the National Natural Science Foundation of China (Grant Nos. 11171027 and 11361020), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120003110003) and the Fundamental Research Funds for Central Universities of China (Grant Nos. 2013YB60 and 2014KJJCA10).

 * Corresponding author.

