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WEAK HARDY SPACES WH?(R") ASSOCIATED TO
OPERATORS SATISFYING k-DAVIES-GAFFNEY ESTIMATES

JUN CAO, DER-CHEN CHANG, HUOXIONG WU, AND DACHUN YANG*

ABSTRACT. Let L be a one-to-one operator of type w having a bounded Hoo
functional calculus and satisfying the k-Davies-Gaffney estimates with & € N.
In this article, the authors introduce the weak Hardy space WH?T(R™) asso-
ciated to L for p € (0, 1] via the non-tangential square function Sz and es-
tablish a weak molecular characterization of WHT (R™). A typical example of
such operators is the 2k-order divergence form homogeneous elliptic operator
L := (-1)* 2 al=k=15] 0" (aa,30™), where {@a,p}|a|=k=|s are complex bounded
measurable functions. As applications, for p € (ﬁ, 1], the authors prove that
the associated Riesz transform V*L~'/? is bounded from W H? (R™) to the clas-
sical weak Hardy space WHP(R"™) and, forall 0 < p <r <1 and a = n(% -1y

T
the fractional power L~ 2k is bounded from WH?(R") to WH}(R"™). Also,
the authors establish an interpolation theorem of WHY(R™) by showing that
L*(R™) N WHE(R™) for all p € (0, 1] are the intermediate spaces in the real
method of interpolation between the spaces L?(R™) N H? (R™) for different p €
(0, 1]. In particular, if L is a nonnegative self-adjoint operator in L*(R™) satisfy-
ing the Davies-Gaffney estimates, the authors further establish the weak atomic
characterization of W HT? (R™). Furthermore, the authors find the dual space of
WH?(R"™) for p € (0, 1], which can be defined via mean oscillations based on
some subtle coverings of bounded open sets and, even when L := —A, are also
previously unknown.

1. INTRODUCTION

It is well known that Stein and Weiss [60] originally inaugurated the study
of real Hardy spaces HP(R™) with p € (0, 1] on the Euclidean space R™. Later,
a real-variable theory of HP(R™) for p € (0, 1] was systematically developed by
Fefferman and Stein in [30]. Since then, the real-variable theory of Hardy spaces
HP(R™) has found many important applications in various fields of analysis and
partial differential equations; see, for example, [17, 18, 20, 34, 48, 55, 57, 58, 61].
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It is now known that HP(R"™) is a good substitute of the Lebesgue space LP(R")
with p € (0, 1] when studying the boundedness of operators; for example, when
p € (0, 1], the Riesz transform V(—A)~1/2 is not bounded on LP(R"), but bounded
on HP(R™), where A is the Laplace operator y ", (,%22 and V is the gradient operator
(8%1, cey %) on R™. Moreover, when considering some weak type inequalities for
some of the most important operators from harmonic analysis and partial differential
equations, we are led to the more general weak Hardy space W HP(R™) (see, for
example, [31, 51, 33, 2, 35, 56, 1, 54]). It is well known that the weak Hardy
space W HP(R™) is a suitable substitute of both the weak Lebesgue space W LP(R")
and the Hardy space HP(R™) when studying the boundedness of operators in the
critical case. For example, let 6 € (0, 1], T be a §-Calderdn-Zygmund operator
and T7*(1) = 0, where 7™ denotes the adjoint operator of T. It is known that 7" is

bounded on HP(R") for all p € (;;}5, 1] and not bounded on H#+5 (R"), but, instead

of this, T" is bounded from HnLH(]R”) to WHWL%(R”) (see [51, 2]). Recall that the
Riesz transform V(—A)_l/ 2 is a 1-Calderén-Zygmund operator with convolution
kernel, which is smooth on R™ x R™ except on the diagonal points

{(z,y) e R" xR": =z =y}.

For more related history and properties about W HP(R™), we refer to [29, 31, 51,
2, 52, 56, 1] and the references cited therein. We should point out that Fefferman,
Riviere and Sagher [29] proved that the weak Hardy space W HP(R™) naturally
occurs as the intermediate spaces in the real method of interpolation between the
Hardy spaces HP(R™). It is easy to see that the classical Hardy spaces HP(R") and
the weak Hardy spaces W HP(R™) are essentially related to the Laplace operator A.

In recent years, the study of Hardy spaces and their generalizations associated
to differential operators attracts a lot of attentions; see, for example, [3, 4, 6, 11,
12, 14, 15, 16, 24, 25, 26, 27, 28, 38, 39, 40, 41, 42, 44, 64] and their references. In
particular, Auscher et al. [4] first introduced the Hardy space H}(R") associated
to L, where the heat kernel generated by L satisfies a pointwise Poisson type upper
bound. Later, Duong and Yan [25, 26] introduced the dual space BMOL(R™) and
showed that the dual space of H} (R") is BMOy+(R"), where L* denotes the adjoint
operator of L in L*(R™). Yan [63] further introduced the Hardy space HY (R™) for
some p € (0, 1] but near to 1 and generalized these results to H7 (R") and their
dual spaces. A real-variable theory of Orlicz-Hardy spaces and their dual spaces
associated to L was also developed in [45, 43].

Recently, the (Orlicz-)Hardy space associated to a one-to-one operator of type
w satisfying the k-Davies-Gaffney estimates and having a bounded Hy, functional
calculus was introduced in [12, 23, 10, 22]. A typical example of such operators is
the following 2k-order divergence form homogeneous elliptic operator

(1.1) L:=(-1D)% Y 0%aqz0%),
lal=k=|8|

interpreted in the usual weak sense via a sesquilinear form, with complex bounded
measurable coefficients {a,, 5}|a|: k—|p| satisfying the elliptic condition, namely, there
exist constants 0 < A < A < oo such that, for all a, f with |o] = k& = |5],
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a8l oo ey < A and, for all f € WE2(R™), R(L1f, f) > A ||ka||%2(w)' Here and
hereafter, z denotes the real part of z for all z € C.

Notice that, when k = 1, H7(R") is the Hardy space associated to the second-
order divergence form elliptic operator on R™ with complexr bounded measurable
coefficients, which was introduced by Hofmann and Mayboroda [39, 40], Hofmann
et al. [41], and Jiang and Yang [44]. It is known that the associated Riesz transform
VFL=1/2 is bounded from HY(R") to the classical Hardy space HP(R™) for all p €

1] (see [12]). Unlike the classical case, in this case, VFL™'/2 may even not
1/2

(s>
have a smooth convolution kernel. Thus, the boundedness of V*¥L~/2 can not be
extended to the full range of p € (0, co) as before. However, when considering the
endpoint boundedness of the associated Riesz transforms, it is found that the weak
Hardy space is useful. For example, it was proved in [50] that V*L~1/2 is bounded

from HZ/ (ntk) (R") to the weak Hardy space W H™ ("+*)(R"™) which may not be

bounded on HZ/ (ntk) (R™).

Motivated by the above results, in this article, we wish to develop a real-variable
theory of weak Hardy spaces associated to a class of differential operators and
study their applications. More precisely, we always assume that L is a one-to-
one operator of type w having a bounded Ho, functional calculus and satisfying the
k-Davies-Gaffney estimates. For p € (0, 1], we introduce the weak Hardy space
W HY (R™) associated to L via the non-tangential square function Sz, and establish
its weak molecular characterization. In particular, if L is a nonnegative self-adjoint
operator in L?(R™) satisfying the Davies-Gaffney estimates, we further establish
the weak atomic decomposition of WHY (R™). By their atomic characterizations,
we easily see that WH? , (R™) and the closure of W HP(R™) N L*(R") on the quasi-
norm || - ||y gpwny coincide with equivalent quasi-norms. Let L be the 2k-order
divergence form homogeneous elliptic operator as in (1.1). As applications, we
prove that, for all p € (n/(n+ k), 1], the associated Riesz transform V*L~1/2 is
bounded from WHY (R™) to the classical weak Hardy space WHP(R™); further-
more, for all 0 < p < r < 1 and a = n(1/p — 1/r), the fractional power L~/(2k)
is bounded from WHT(R™) to WH] (R™). We also establish a real interpolation
theorem on W HY (R™) by showing that L*(R™) N W HY (R") for all p € (0, 1] are
the the intermediate spaces in the real method of interpolation between the spaces
L2(R™) N HY(R") for different p € (0, 1]. Moreover, if L is nonnegative self-adjoint
and satisfies the Davies-Gaffney estimates, then, for p € (0, 1], we give out the dual
space of WHY(R™), which is defined via mean oscillations of distributions based
on some subtle coverings of bounded open sets, and prove that the elements in
WAG(R™) can be viewed as a weak type Carleson measure of order o. We point
out that, even when L := —A, the dual spaces of WH?(R") are also previously
unknown, since the seminal article [31] of Fefferman and Soria on W H!(R") was
published in 1986. Our aforementioned result on dual spaces of WHY(R™) may
give some light on this problem. In short, the results of this article round out the
picture on weak Hardy spaces associated to operators satisfying k-Davies-Gaffney
estimates. As in the aforementioned articles on the theory of Hardy spaces associ-
ated with operators, the achievement of all results in this article stems from subtle
atomic decompositions of weak tent spaces introduced in this article. To the best
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of our knowledge, all results obtained in this article are new even when L is the
Laplace operator.

This article is organized as follows.

In Section 2, we first present some assumptions on the operator L used throughout
the whole article (see Assumptions (£)1, (£)2, (£)3 and (£)4 below) and recall some
basic facts concerning the k-Davies-Gaffney estimates (see Lemmas 2.3, 2.4 and 2.5
below) in Subsection 2.1. In Subsection 2.2, we introduce the weak tent space and
establish its weak atomic decomposition (see Theorem 2.6 below). Later, via the
Whitney decomposition lemma, we obtain another weak atomic decomposition of
WTP(R") (see Theorem 2.11 below), which plays an important role in the dual
theory of our weak Hardy spaces.

Finally, in Section 2.3, after recalling some necessary results on the Hardy space
HT (R™) associated to L, we introduce the weak Hardy space W HY (R™) associated
to L (see Definition 2.12 below) and establish its weak molecular characterization
(see Theorem 2.21 below). As applications, if L is the 2k-order divergence form ho-
mogeneous elliptic operator as in (1.1), we prove the boundedness of the associated
Riesz transform V*L~1/2 and fractional power L=/(2%) on W H? (R") (see Theo-
rems 2.24 and 2.25 below). Moreover, when L is a nonnegative self-adjoint operator
in L?(R") satisfying the Davies-Gaffney estimates, we obtain its weak atomic char-
acterization (see Theorem 2.15 below). Recall that, in [31, 51], for all p € (0, 1], a
weak atomic decomposition of the classical weak Hardy space W HP(R™) is obtained.
However, the “atoms” appeared in the weak atomic characterization of W HP(R")
in [31, 51] are essentially closer, in spirit, to the classical “L*°(R™)-atoms”, while
the “atoms” appeared in our weak atomic characterization of WH%(R”) are just
HT (R™)-atoms associated to L from [38] when p = 1 and from [42] when p € (0, 1]
(see Theorem 2.15 below).

In order to establish the weak atomic decomposition of weak tent spaces in The-
orem 2.6 below, we want to point out that we borrow some ideas from the proof
of [19, Proposition 2], with some necessary adjustments by changing the forma-
tion of the norm from the original strong version to the present weak version. We
also remark that this weak atomic characterization still holds true under some small
modifications of the level set of the A-functional (see (2.1) and Remark 2.10 below).
An innovation of Theorem 2.6 is to establish an explicit relation between the sup-
ports of TP (R’rrl)—atoms and the corresponding coefficients, which plays a key role
in establishing the weak atomic/molecular characterizations of weak Hardy spaces
associated to L (see Theorems 2.6(ii), 2.15 and 2.21 below). Indeed, the proof of
Theorem 2.15 strongly depends on Theorem 2.6 and a superposition principle on
weak type estimates from Stein et al. [59] (see also Lemma 2.17 below). We point
out that, without Theorem 2.6(ii), Theorem 2.15 seems impossible (see (2.19) and
(2.20) below). The proof of Theorem 2.21 is similar to that of Theorem 2.15, but
needs finer off-diagonal estimates because of the lack of the support condition of
molecules.

In Section 3, we establish an interpolation theorem of W HY (R™) by showing that
LA(R™)NW HE (R™) for all p € (0, 1] are the intermediate spaces in the real method
of interpolation between the Hardy spaces L?(R™) N HY (R™) for different p € (0, 1]
(see Theorem 3.5 below). Unlike in the classical case in [29], we prove Theorem 3.5
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by using a real interpolation result on the tent space TP(RTLI) from [9] and a result
on the interpolation of intersections from Krugljak et al. [47].

Section 4 is devoted to the dual theory of WHT (R™). Let L be nonnegative self-
adjoint and satisfy the Davies-Gaffney estimates. We first introduce the notion of
the weak Lipschitz space WA% n(R™) via the mean oscillation over bounded open
sets, then we prove that the elements in WAT n(R™) can be viewed as some weak
Carleson measures of order « (see Proposition 4.9 below) and prove that the dual
space of WHY (R™) is WAzg\%p 71)(]1%") (see Theorem 4.6 below).

Recall that the dual space of the classical weak Hardy space W H!(R") was first
considered by Fefferman and Soria [31]. More precisely, for any bounded open set
2 C R™ and function ¢ on R™, the mean oscillation O(p, Q) of ¢ over Q was
defined by Fefferman and Soria in [31] as

1
O(p, Q) == SUP@ E /Q
k k

where pg = ﬁ fQ o(z)dr for any cube @ and the supremum is taken over all

(10($) — PQx dm?

collections {Qy}x of subcubes of 2 with bounded C(n)-overlap (which means that
there exists a positive constant C'(n) such that >, xg, < C(n)). Let w(d) :=

sup|g|=5 O(¢p, 1),
LYR") := {f cL'®Y: [ fla)de= 0}
Rn

and L} (R™) be the closure of L§(R™) in the norm of the weak Hardy space W H!(R™).
In [31], Fefferman and Soria proved that the dual of L}(IR™) is the set of all the

functions ¢ satisfying
< w(0)
o]l ::/0 —=dd < 0.

)
In the present article, we show, in Theorem 4.6 below, that the dual space of
WHY(R") for all p € (0, 1] is WAZE}\%I)_I)(R”), which is defined by means of a
similar integral of the mean oscillation based on some smart coverings of bounded
open sets (see Definitions 4.1 and 4.2 below). Here the integral mean ¢q is re-
placed by some approximation of identity, and the collections of subcubes of an
open set with bounded C(n)-overlap by another new class of sets (see Definition

4.1). In particular, when L = —A, WAT_l(i/ %; 1)(]R”) is the dual space of the space

WHP(R™)N LQ(R”)”'HWHP(R”) for p € (0, 1], which seems also new. Here, the space

W HP(R") ﬂLQ(R”)”'HWHP(Rn) denotes the closure of WHP(R"™) N L?(R™) on the
quasi-norm || - |l g @n)-

The proof of Theorem 4.6 strongly depends on a Carderén reproducing formula
obtained in [39], a subtle weak atomic decomposition of the weak tent space (see
Theorem 2.11), and a resolvent characterization of WHY (R™) (see Proposition 4.5
below) and Proposition 4.9 below.

Recall that a key ingredient to prove the duality between Hardy spaces and Lip-
schitz spaces is to represent the Lipschitz norm by means of a dual norm expression




1210 J. CAO, D.-C. CHANG, H. WU, AND D. YANG

of some Hilbert spaces. It is known that, in the case of the classical “strong” Lips-
chitz space A¥(R™), this Hilbert space can be chosen to be L?(B), where B is some
ball (see the proof of [41, Theorem 3.51]). Observe also that the mean oscillation
appearing in the norm of the “strong” Lipschitz space A} (R"™) has the form

(i -y oy

which involves only one ball and hence the off-diagonal estimates can be applied
directly. However, in the weak case, the mean oscillation involves a general bounded
open set (see (4.3) below). Therefore, we can not apply off-diagonal estimates
directly. To overcome this difficulty, we first introduce, in Definition 4.1, subtle
coverings of bounded open sets, which stem from the proof of the weak atomic
decomposition for weak tent spaces in Theorem 2.11, obtained via the Whitney-
type decompositions on level sets for A-functionals in (2.1). More precisely, we first
find a sequence of balls which cover the considered open set via the Whitney-type
decomposition. Then we construct the annuli sets based on a sequence of balls and
consider the off-diagonal estimates on these annuli. Since the radius of the balls
in the sequence are different, the off-diagonal estimates on these annuli are more
complicated than those on a single ball.

As usual, we make some conventions on the notation. Throughout the whole
article, we always let N:= {1,2,...}, Z4 := NU {0} and

R = {(z,t): 2 €R™, t € (0, 00)}

We use C' to denote a positive constant, independent of the main parameters
involved, but whose value may differ from line to line. Constants with subscripts,
such as Cy, My and «g, do not change in different occurrences. If f < Cg, we write
f<gand, if f < g < f, we then write f ~ g. For all x € R", r € (0,00) and

€ (0, ), let B(z,r) :=={y e R": |[z—y| < r}, aB(x,r) := B(z,ar), So(B) := B,
Si(B) := 2B\ (20"'B) and S;(B) := 27t1B\ (20-2B) for all i € Z,, where, when
i <0,2'B :=(. Also, for any set E C R", we use E to denote the set R™\ E and xg
its characteristic function. For any index ¢ € [1, 00|, we denote by ¢’ its conjugate
index, namely, 1/q¢+1/¢' = 1. Let S(R") be the space of Schwartz functions on R™
and S'(R™) its dual space.

2. THE WEAK HARDY SPACE W HY (R")

The main purpose of this section is to introduce the weak Hardy space W H g (R™)
and establish its weak atomic and molecular characterizations. As applications of
this weak molecular characterization, we obtain the boundedness of the associated
Riesz transform and fractional power on WHY (R™). In order to achieve this goal,
we need to describe our hypotheses on the operator L throughout the whole article.

2.1. Assumptions on L. In this subsection, we first survey some known results
on the bounded H, functional calculus. Then, after stating our assumptions on the
operator L throughout the whole article, we recall some useful technical lemmas on
the k-Davies-Gaffney estimates.
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For 6 € [0, ), the open and closed sectors, 5’3 and Sy, of angle 6 in the complex
plane C are defined, respectively, by setting S := {z e C\ {0} : |argz| < 9} and

Sy = {z eC: |argz| < 0}. Let w € [0, 7). A closed operator T' on L?(R") is said
to be of type w, if
(i) the spectrum of T', o(T'), is contained in S,;

(ii) for each 0 € (w, ), there exists a nonnegative constant C' such that, for all
zeC \ Sy,
| —=n7| < Ol ™,
L(L*(R™))
here and hereafter, for any normed linear space H, [|S||z(%) denotes the operator
norm of the linear operator S : H — H.
For u €[0, ) and o, 7 € (0, 00), let

H(Sg) :={f: fis a holomorphic function on Sg s

Hoo(S0) : = { € H(SD) + [ fllpoe(sp) < o0}
and

\IIGJ(SB) ::{f € H(SS) : there exists a positive constant C' such that,

for all € € S5, 1£(§)] < Cinf{je|”, €]} }.

It is known that every one-to-one operator T of type w in L?(R") has a unique
holomorphic functional calculus; see, for example, [53]. More precisely, let T' be
a one-to-one operator of type w, with w € [0, 7), p € (w, 7), 0,7 € (0, 00) and
fe \11077(52). The function of the operator T, f(T), can be defined by the Hy
functional calculus in the following way,

1
T)=— [ (I-T)"'f(&)d
AT) = 5 [ (€1 =T p©) e,

where T' := {re?” : oo >r > 0}U{re™ : 0 <r < oo}, v € (w, p), is a
curve consisting of two rays parameterized anti-clockwise. It is known that f(T) is
independent of the choice of v € (w, p) and the integral is absolutely convergent in
|+ lecrzmny) (see [53, 36]).

In what follows, we always assume w € [0, w/2). Then, it follows, from [36,
Proposition 7.1.1], that, for every operator T of type w in L?(R"), —T generates a
holomorphic Cy-semigroup {€7ZT}zeS?r/2_w on the open sector Sg/sz such that, for

all z € 82/2—w7 ||e_zT||L(L2(Rn)) < 1 and, moreover, every nonnegative self-adjoint
operator is of type 0.

Let \II(SE) = UG,T>0\IIUJ(5’2). It is well known that the above holomorphic
functional calculus defined on \I/(Sg) can be extended to H, O0(5’2) via a limit process
(see [53]). Recall that, for u € (0, 7), the operator T" is said to have a bounded
H 00(5’2) functional calculus in the Hilbert space H if there exists a positive constant
C such that, for all ¢ € Hoo(SY), 19(T)|| i) < CllYbll Lo (s0), and T'is said to have
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a bounded H, functional calculus in the Hilbert space H if there exists p € (0, m)
such that 7" has a bounded HOO(SIS)) functional calculus.

Throughout the whole article, we always assume that L satisfies the following
three assumptions:

Assumption (£);. The operator L is a one-to-one operator of type w in L*(R™)
with w € [0, m/2).

Assumption (L)s. The operator L has a bounded Ho functional calculus in
L2(R™).

Assumption (£)s. Let k € N. The operator L generates a holomorphic semigroup
{e7t} 50 which satisfies the k-Davies-Gaffney estimates, namely, there exist posi-

tive constants C and Cy such that, for all closed sets E and F in R™, t € (0, c0)
and f € L*(R"™) supported in E,

[dist(E, F)]*/ 35D
L2(F) sCexpy -G 1/ (2h-1) 1 fll 2y,
here and hereafter, for any p € (0, 00), || fllzr(E) = {fE |f(x)‘p dm}l/p and

dist(E, F) := re}ﬂngljeF |z — y|

o]

denotes the distance between E and F'.

In many cases, we also need the following assumption, which is stronger than
Assumption (£)s.
Assumption (£)4. Let k € Zy and (p—(L), p+(L)) be the range of exponents
p € [1, 0o] for which the holomorphic semigroup {e "}~ is bounded on LP(R™).
Then, for allp_(L) < p < q < ps (L), {e " }>0 satisfies the LP — L9 k-off-diagonal
estimates, namely, there exist positive constants Co and C3 such that, for all closed
sets E, F C R™ and f € LP(R"™) N L?(R™) supported in E,

P [dist(E, F)]**/@FY
< Cht2kta plexpd — Cgtl/(%*l) HfHLP(E)-

o]

La(F)

Remark 2.1. The notion of the off-diagonal estimates (or the so called Davies-
Gaffney estimates) of the semigroup {e "}, are first introduced by Gaffney [32]
and Davies [21], which serves as good substitutes of the Gaussian upper bound of
the associated heat kernel; see also [8, 5] and related references. We point out that,
when k = 1, the k-Davies-Gaffney estimates are the usual Davies-Gaffney estimates
(or the L? off-diagonal estimates or just the Gaffney estimates) (see, for example,
[38, 39, 40, 42, 41)).

Proposition 2.2 ([12]). Let L be the 2k-order divergence form homogeneous elliptic
operator as in (1.1). Then L satisfy Assumptions (L)1, (£)2, (£)3 and (L)a.

In order to make this article self-contained, we list the following three technical
lemmas which are needed in the proofs of our main results.
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Lemma 2.3 ([12]). Assume that the operator L defined on L*(R") satisfies As-
sumptions (L)1, (£)2 and (L)s. Then, for all m € N, the family of operators,
{(tL)™e "} y~0, also satisfy the k-Davies-Gaffney estimates.

Lemma 2.4 ([12]). Let {A:}+>0 and {Bi}i>0 be two families of linear operators
satisfying the k-Davies-Gaffney estimates. Then the families of linear operators
{ABi }1>0 also satisfy the k-Davies-Gaffney estimates.

Lemma 2.5 ([12]). Let M € N and L be as in (1.1). Then there exists a positive
constant C' such that, for all closed sets E, F in R™ with dist(E, F) > 0, f € L}(R")
supported in E and t € (0, 00),

HvkL—Uz( —tL) f‘

' M
SO\ ———= | I/l
L2(F) = ([dist(E, F)]2k> P

. M
<l ———— | fllr2m.
2(F) ([dist(E, F)]2k> 1722

2.2. The weak tent spaces W1T? (R1+1). In this subsection, we introduce the
weak tent space and establish its weak atomic characterization. This construction
constitutes a crucial component to obtain the weak atomic or molecular character-
izations of the weak Hardy space.

We first recall the notion of the tent space. Let F' be a function on R:‘_‘H =
R™ x (0,00). For all x € R", the A-functional A(F')(x) of F is defined by setting

and

Hvqu/Q (tLeftL> M

(2.) an@ = { [ |roof )
where
(22) D) = 1, ) € BRI Jy—a] < 1)

is a cone with vertex z. For all p € (0, 00), the tent space TP(R'™1) is defined by
(2.3)  TPR™TY) = {F RY™ > C: |l gy = IAF) | oeny < oo}.

For all open sets €, let O := R\ Uzerm\ol'(z) be the tent over (2. For all
xp € R" and rp € (0, ), let B := B(xp, rg) be the ball in R™. Tt is easy to
see that B = {(y, t) € R ¢ |y — 2| < rp —t}. For any p € (0, co) and
ball B, a function A defined on R} is called a TP(R'/*!)-atom associated to B if

supp A C B and
L] Jaw o 20 < i,
B

For p € (0, 00), let W LP(R"™) be the weak Lebesque space with the quasi-norm

||f”WLp(Rn) = [ sup ap’{x cR": | ( )| > a}H 1/p
a€(0,00)
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The weak tent space WTP(R';T1) is defined to be the collection of all functions F
on R”™! such that its A-functional A(F) € WLP(R"). For any F € WTP(R),
define its quasi-norm by HFHWTp(Riﬂ) = [AE) lw e me)-

For the weak tent space, we have the following weak atomic decomposition.
Theorem 2.6. Letp € (0, 1] and F € WTP(R'\™). Then there exists a sequence of
Tp(Rfrl)—atoms, {Aij}iez jez, . associated, respectively, to the balls {B; ;}icz, jez.,
such that

() F=> iz jezs NijAij pointwisely almost everywhere in R, where \; ; :=

CQ’]B ]|1/p and C is a positive constant independent of F';
(ii) there exists a positive constant C, independent of F, such that

sgg( Z yA”\P) e —

(iii) for alli € Z and j € Z+., let Bi,j =
are mutually disjoint.

ﬁBM' Then, for alli € 7Z, {Ei,j}j62+

In order to prove this theorem, we need the following Whitney decomposition
theorem (see, for example, [34, p. 463)).

Lemma 2.7. Let 2 be an open nonempty proper subset of R™. Then there exists a
family of closed cubes {Q;}jez, such that

(i) Ujez,Qj = Q and {Q;}jez, have disjoint interiors;

(ii) for all j € Zy, /nlg,; < dist(Qj, Qb < dy/nlq,, wherelg, denotes the length
of the cube Q;;

(iii) for any j, k € Zy, if the boundaries of two cubes Q; and Qy touch, then

1 QJ
by

(iv) for a given j € Z, there exist at most 12n different cubes Qy, that touch Q.

For any fixed v € (0, 1) and bounded open set € in R" with the complementary
set F, let Q7 := {x € R" : M(xo)(x) > 1 -1} and FJ := R"\ Q3 where M
denotes the usual Hardy-Littlewood mazximal function, namely, for all f € L1OC (R™)
and z € R",

(2.4) M) = s [ 1fldy,

B>z |B ’
where the supremum is taken over all balls containing x. We also need the following
auxiliary lemma.

Lemma 2.8 ([19]). Let a € (0, 00). Then there exist constant v € (0, 1), suffi-
ciently close to 1, and positive constant C' such that, for any closed set F', whose
complement (denoted by Q) has finite measure, and for any non-negative function

® on R,
/ (y, )" dydt < O/ / d(y, t) dy dt} dz,

where R(FY) := Uger:I'(z) and I'(z) for z € R" is as in (2.2).
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Proof of Theorem 2.6. We show this theorem in the order of (ii), (i) and (iii).
To show (ii), let '€ WTP(R"™). For all i € Z, let

O; = {z € R": A(F)(z) > 2'}.

It is easy to see that O;y1 C O;. Moreover, since F' € WTP (Rﬁ“), we readily see
that |O;| < oo. For fixed v € (0, 1) satisfying the same restriction as in Lemma 2.8,
let

(0:); ={z e R": M(xo0,)(z) >1-17}.

By abuse of notation, we simply write O} instead of (OZ):; Since O; is open, we easily
see that O; C O} and, by the weak (1,1) boundedness of M, we further know that
there exists a positive constant C(7), depending on ~, such that |Of| < C(v)|O;].
For each Of, using Lemma 2.7, we obtain a Whitney decomposition {Q;;} ez, of
O;. Let By j be the ball having the same center as Q;, ; with the radius 5v/nlg, ,,
where I, . denotes the length of Q; ;. By Lemma 2.7(ii), we immediately see that
By N (O} # 0.

Now, for all i € Z and j € Z;, let A;j := Ei,j N (Qs,; x (0, 00)) N (O* \ Oz+1)
Aij = CN’2i|BZ~7j|% and A;; = Fxa,;/Mij, where Eu and 5;‘ denote, respectively,
the tents over B; ; and O;, and Cisa positive constant independent of F', which

will be determined later. From the fact that supp F' C Ujez Ujez, A, it follows
that

(2.5) F(z,t) Z F(z,t)xa,;,;(w,t) Z NijAij(z, t)
1EL,JELy 1EL,JELy

pointwisely almost every (z, t) € Rﬁ“.
Moreover, for all ¢ € Z, by the definition of \; j, Lemma 2.7(i), the fact that
|O7| < C(v)|0;| and the definition of O;, we conclude that

> Piglr~ 2 3 [Bigl ~ 27 Y [Qigl S 2710 ~ 27|{x € R" : A(F)(x) > 21|
JEL+ JEL+ JEL+

(2.6) S Ay goqamy ~ 1y iy
which immediately implies (ii).

On the other hand, for any closed set F', let R(F') := UzepI'(z). For all (y, t) €
A; j, it follows, from the fact that OF = {(y, t) : dist(y, R"\ Of) >t} and Lemma
2.7(ii), that t < dist(y, R" \ Of) < rp,,;. Thus, for all H € T?(R") satisfying
| H || 72 ®"H) <1, by the fact that R"H\OHrl = R(R™"\Oj, ), the support condition

of A;j; (supp4; ; C B% j), Lemma 2.8, Holder’s inequality and the definitions of
A; j and O;y1, we see that

27) ’<Ai’j’ H>T2(R1+1)
dy dt

</ [Ais0, D, t)\m,j (v, 1) L=
R(R™O;f)

I dy dt
S OH @) xa,, (0, O | deo
/R”\O,_;,_l / /y m|<t b 7 t +1
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/ / / ‘ dy dt} de
y, y, XA; .%
2B; ;\Oit1 ly— 14<t Aig J t”+1

(L, o ool i iamie
1

s =271Bul [
C & 2B; ;\Oi41
1 3 1 11
S F2 Bl (2Bl ~ F 1Bl
C C
which, together with (T2(R7H)* = T2(RH), further implies that HAMHTQ(MH) <
1
g’Bi,j

deduce that Ai,j C Bi,j' Thus, by choosing C large enough such that

2

A

1

A(F)(2) ‘2 dr )’

. Moreover, from the definitions of A;; and O , and Lemma 2.7(ii), we

N|=

1
Py

||Ai,j”T2(Ri+1) < ’Bi,j|

then A;; is a TP(R’™)-atom associated to the ball B;;, which, combined with
(2.5), implies (i).

Observe that (iii) follows readily from Lemma 2.7(vi), which completes the proof
of Theorem 2.6. O

If a function F € WTP(R:T) also belongs to T?(R:1), then the weak atomic
decomposition obtained in Theorem 2.6 also converges in TQ(RT'I), which is the
conclusion of the following corollary.

Corollary 2.9. Let p € (0, 1]. For all F € WTP(RTT) N T3[R, the weak
atomic decomposition F = )" AijAij obtained in Theorem 2.6 also holds

true in T2(RT).

i€Z, €L

Proof. Let F' € WT? (R?fl) nT? (Rﬁ“). We use the same notation as in Theorem
2.6 and its proof. By Theorem 2.6, we see that the weak atomic decomposition
F=53. ez ez, MijAij holds true pointwisely almost everywhere in R’};H. Thus,
for all N1, N2 € N, from Fubini’s theorem, the definitions of A;; and A;; and the
bound overlap property of {A; ;}iez jez, , we deduce that

H Z )\’JAJ 2R / /n

|¢|>Ny or j>Na |7 |>N1 orj>Na

S
On

By letting N1, No — oo and using the condition that F € TZ(RT'I), we know
that F' = 3>",c; iz, Ai,jAi; holds true in T2(R¢+1), which completes the proof of
Corollary 2.9. |

2 dydt
t

XijAij(y, 1)

2 dydt
(y> t)XUMZNl oerNQAi,j (y7 t) T

Remark 2.10. Let k € Z, F € WTP(R}T), F # 0 and
O == {z e R": A(F)(z) > 2*}.
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Since F € WTP(R'H), it is easy to see that, for all k € Z, |Ok| < oo and |Og41| <
|Ok|. Observe that, for some k € Z, |Ok1| may equal to |Og|.

We now construct two index sets Z C Z and Z C Z, which both are needed in
establishing the dual theory of the weak Hardy space W HY (R™) in Section 4 below
and have the following properties: B

Case 1) If, for all k € Z, |Og| € (0, 00), in this case, we fix any iy € Z and ig = 0
and then choose {i;};cz\ {0y C Z and {i;};ecz\ {0y C Z such that

(i) Z:= {ij}jez C Z and 7= {Zj}jez C Z are strictly increase in j;
(ii) for all j € Z and i; € Z, |O;,,, | < |Oy];
(iti) for all j € N, i; € Z and 7, € Z,
04,1 € 27571104, 275104)
and B B
|0i_,1 € 277104, 277771041
Case 2) If there exists k € Z such that |Og| = 0, in this case, let
ip :=min{k —1 € Z: |04 = 0}.
Then choose {i;};cz\ (0} C Z and {;j}jEZ\{O} C Z such that
(i) for all j € Zy, ij € Z and Ej € i, let i; = ip and ?j =0;
(ii) for all j € Z\ Z,, choose i; € T and i; € T satisfy that |O;, | < [O;;| and
04,1 € 2797104 |, 27903
Indeed, to prove the above claim in Case 1), for any fixed igp € Z as in Case 1),
we let
i1 :=min{i € Z: |0;] < |0;,|}
and
i—1:=max{i € Z: |O;] > |0;,|}
From the facts lim;_,~ |O;] = 0 and lim;_,_, |O;| = 0o, we deduce that such i; and
i_1 do exist. o
Then choose i1, i—1 € Z satisfying

|Oi1| € [2_i1_1|0i0|7 2—i1|02,0’)
and ~ ~
|Oi—1’ € (2_171_1|Oi0|’ 2_Z71|Oi0|]'

By a simple calculation, it is easy to see that i_; < 19 < i1, 7_1 <0< ;1 and
‘Oh’ < |Oi0’ < |Oi71"
Now, let

iy :=min{i € Z: |0;] < 2717104},
i—g:=max{i € Z: |O;| > 277*1|O,‘O]}
and choose 22, i€l satisfying

|Ol2| S [2_i2_1‘0i0|7 2_i2|0i0’)
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and
|Oi—2’ € (2_i72_1|0i0|7 2_i72|0i0|]'

It is easy to see that i_o <i_1 < ig < i1 < 19, Z,g <7,1 <0 §;1 <Z2 and
|Olz| < |Oll| < |Oi0| < |Oi71’ < |OL2"

Continuing this process, we obtain a sequence {Oj;; }jez of strictly decreasing
open sets, and sequences {i;}jcz, {ij}jez of i increasing numbers. Denote the index
sets {i;}jez and {i; }JGN, respectively, by Z and Z, we conclude that Z and Z have
the desired properties in Case 1).

We now turn to Case 2). In this case, we define the index sets 7 := {i;};ez and
7= {z] }jez as follows. For all j € Z\ Z, since \OZU| > 0, we choose the indices i;
and 7; as in Case 1). For all j € Z4, let ij := iy and i; := 0. Observe that, for all
J € N, |O;;| = 0. By some calculations similar to those used in Case 1), we know
that 7 and Z also have the desired properties. Thus, both claims in Cases 1) and
2) hold true.

Finally, we point out that, by following the same line of the proof of Theorem
2.6, but replacing {O; }icz by {O;}icr defined here, we also obtain a weak atomic
decomposition of TP(R?FH) with the same properties. In this case, the achieved
atomic decomposition is of the following form

F = Z Z )\ivinvj’

i€T jE€Lt
here and hereafter, for notional simplicity, we denote i; € Z simply by i € Z.

Now, we establish another weak atomic decomposition of W1TP (R’}r“) which plays
an important role in establishing the dual theory of WHY (R™) in Section 4.

Theorem 2.11. Letp € (0, 1]. Then, for all F € WTP(RTFI), there exist an index
set T C Z and {A; j}ier jen, of Tp(RT“l)-atoms assoctated to balls {B; j}iet jen,
such that
(i)
F=2 > Xijdi,

i€l jGAi
pointwisely almost everywhere in RTFI, where, for alli € T, A; C Z4 is an index set

~ . 1 ~
depending on i and, for all j € A;, N; j := C2'|B; j|» and C is a positive constant
independent of F';

(ii) for alli € T and j € Ay, let r; == infjep {rp, ;} and EH = B; j. Then,

1
10v/n
foralli € I, r; >0 and {B;;}jen, are mutually disjoint;

(iii) there exists a positive constant C, depending only on n and p, such that, for

all 1 € T,
(>

JEA;

py +
disl '} < ClIF ey
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Proof. We first prove (i) and (ii) of Theorem 2.11. Let Z be as in Remark 2.10,
¢ € Z and O be as in the proof of Theorem 2.6. Without loss of generality, we
may assume that |O}| > 0; otherwise, we neglect the set O}, since we only need the
atomic decomposition to hold true almost everywhere in R’}fl.

For all i € Z, let € € (0, o) such that the open set

(2.8) O, := 0} U {:c e (0N . dist(z, 07) < e}

satisfies |Of | < 2|0f|. Let {Qi;}jez, be a Whitney decomposition of O} as in
Lemma 2.7. Assume that {Q; ;};ea, is the mazimal subsequence of {Q; ;};ez. such
that, for all j € A;, Q;; N O; # 0, where A; C Z,. Let I; := inf{lg, , j € A}, we
now claim that, for all ¢ € Z, [; > 0.

Indeed, if Q;, j N OO; # 0, then we see that, for all y € 00},

(2.9) dist((05 )%, v) > «.

Otherwise, if dist((OZE)E, y) < ¢, then there exists z € (O;G)C such that d(z, y) < e.

However, from the definition of (O;e)c, we deduce that d(z, y) > dist(z, 00}) > e.
This derives a contradiction. Thus, (2.9) holds true, which, together with Lemma
2.7(ii), implies that

1 . « \C €
4\/ﬁd18t(Ql7J7 (Oi,e) )2 4\/ﬁ

If Q;,;NOO; =0 and Q; ;NO; # 0, then Q;,; C (OF)°, where (Of)° denotes the
interior of OF. Moreover, for all y € Q; ;, take z € (O;E)C such that

(2.10) lg,; >

. X 1
dist(y, (07 )°) > 3y, 2),
which, together with Lemma 2.7(ii), implies that
1 . « \C 1
lQi,j Z4\/ﬁd15t(y7 (Oi,e) ) > ﬁd(% Z)
(2.11) Y .
> dist(O;, z) > —=e.

8v/n 8v/n

Thus, combined (2.10) and (2.11), we see that, for all j € A;,
l > 1
@i = 8/n

which shows that the above claim is true.

Now, for all ¢ € Z and j € A;, let B; ; be the ball having the same center as
Q;,; with the radius 5\/ﬁlQi’j. With the help of the above claim and Lemma 2.7,
we conclude that, for all i € Z, the sequence {B; ;};ca, of balls has the following
properties:

(i) Of C Ujen, Bi, 3

(ii) ri == inf{rp, ;, j € Ai} > 0;

(iii) let Bi j := 357 Bi,j- Then {Bj j}jea, are mutually disjoint;

(iv) there exists M € (0, co), independent of i € Z, such that > ..\ [B; ;| <

1
e and hence, fori € Z, [; > ——e¢,

8vn
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Now, for all € Z and j € A;, let

A= Biji() (Qi,j x (0, OO)) N (0* \ Oz+1>
For all F € WTP(R':H!), recall that
suppFCUU [ ﬂQ”x(O 00)) N O*\OZH}::UUAM.
€L jENA; €L jEN;

~ . 1 ~
Moreover, let \; ; := C2'|B; j|» and A; j := F'xa, /X, j, where OF denotes the tent
over O and C a positive constant independent of F', which will be determined

later. By following the same line of the proof of Theorem 2.6, if we choose C large

enough and independent of F', we then conclude that A4; ; is a T? (Riﬂ)—atom and,
Rn+1
+

t) = Z Z /\i7in7j(.ClI, t)

i€l jEAi

for almost every (z, t) €

pointwisely and, moreover,

sup (- |)\”|p> < ClF o,
S/ Jen;

which, together with the properties of {B; j};jea,, completes the proof of Theorem
2.11. [l

2.3. The weak Hardy spaces WH7(R"). In this subsection, we study the
weak Hardy space WHY (R™). First, we recall the definition of the classical weak
Hardy space from [31, 51, 52, 49]. Let p € (0, 1] and ¢ € S(R™) support in the unit
ball B(0, 1). The weak Hardy space W HP(R™) is defined to be the space

{f e S'R"): | fllwarm@n) = ztipo (aPHx eR": stgg) Oy * f(a:)‘ > a}‘)l/p< oo}.

Now, let L satisfy Assumptions (£)1, (£)2 and (£)3. For all f € L*(R") and
x € R", the L-adapted non-tangential square function St f is defined by

(2.12) Sy f(x // 2dy dt}1/27

tn+1
where I'(z) is as in (2.2).
Let p € (0, 1]. A function f € L*(R") is said to be in H} (R") if Sp.f € LP(R™);
moreover, define || f|| gz gny := | SLf||Lr(rn)- The Hardy space HY(R™) associated to

tQkL —t%Lf( )

L is then defined to be the completion of HY (R™) with respect to the quasi-norm
I N erp ey (see [12]).
Now, we introduce the notion of the weak Hardy space W HY (R™).

Definition 2.12. Let p € (0, 1] and L satisfy Assumptions (£)1, (£)2 and (£)z. A
function f € L*(R™) is said to be in WHY (R") if Sy, f belongs to the weak Lebesgue
space W LP(R"); moreover, define | f|ly #®n) == [[SLfllwrr@n). The weak Hardy
space W HY (R™) associated to L is then defined to be the completion of WHY (R™)
with respect to the quasi-norm || - ||y g &n)-
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Remark 2.13. We point out that, unlike the Hardy space HP(R"), with p € (0, 1],
in which the Lebesgue space L%(R") is dense (see, for example, [52, Proposition
3.2]), the space L%(R") is not dense in the weak Hardy space W HP(R™) in the sense
of Fefferman and Soria [31] (see also a very recent work of He [37]). Thus, when
L = —A, the weak Hardy space WH?” , (R™) defined as in Definition 2.12 coincides
with the space

WH? (R 1 LR e,

namely, the closure of WHP(R"™) N L*(R™) on the quasi-norm || - ||l gp(rny, which is
a proper subspace of W HP(R").

Now, let T be a nonnegative self-adjoint operator in L?(R") satisfying the Davies-
Gaffney estimates. It is known that T is a special case of operators L satisfying
Assumptions (£)1, (£)2 and (£)3. We first establish the weak atomic decomposition
of the weak Hardy space W HE.(R™).

Definition 2.14 ([38, 42]). Let p € (0, 1], M € N and B := B(xp, rg) be a ball
with x5 € R™ and rg € (0, 0c0). A function a € L?(R") is called a (p, 2, M)7-atom
associated to B if the following conditions are satisfied:

(i) there exists a function b belonging to the domain of 7™, D(TM), such that
a=TMp;
(i) for all £ € {0, ..., M}, supp (T*b) C B;
1 1
(iii) for all £ € {0, ..., MY}, [|(r5T) bl 2rny < rE|BI2 7.

For all p € (0,1] and M € N, let f € L*R") and {a;;}iczjez, be a
sequence of (p, 2, M)r-atoms associated to balls {B;;}icz jez,. The equality
f= iz jez, ijai; holding true in L?(R™) is called a weak atomic (p, 2, M)p-
representation of f if

(i) Aij = 6’2i\Bi7j]%, where C is a positive constant independent of f;

(ii) there exists a positive constant Cy, depending only on f, n, p, M and C , such
that

1

Sup( ) |/\m‘|p)p < Ch.
€L JEZ s

The weak atomic Hardy space WHY. ., (R™) is defined to be the completion of
the space
WHY , (R") :={f € L*(R™) : f has a weak atomic (p, 2, M)p-representation}
with respect to the quasi-norm

1
15 2, ey 3= i {5 (52 Dsl?) .
JEL+

where the infimum is taken over all the weak atomic (p, 2, M )p-representations of
f as above.
We have the following weak atomic characterization of W HE.(R™).
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Theorem 2.15. Let p € (0, 1] and T be a nonnegative self-adjoint operator on
L?(R™) satisfying the Davies-Gaffney estimates. Assume that M € N satisfies M >

%(% _ %) Then WHE(R™) = WHY . (R") with equivalent quasi-norms.

To prove this theorem, we need to recall some notions and known results from
[38].

Let C3 € [1, 00). Assume that ¢ € CX(R) is even, suppp C (—=Cj3', C3),
@ > 0 and there exists a positive constant C4 such that, for all ¢t € (—ﬁ, ﬁ),
@(t) > C4. Let M € N, ® be the Fourier transform of ¢ and W(t) := t2(M+Dd(t)
for all ¢ € [0, 00). For T as in Theorem 2.15, all F € T2(R"™!) and = € R™, define
the operator Iy r(F)(z) by setting

o dt
(2.13) My r(F)():= | CEVT)(F(,1)(x) e
0

From Fubini’s theorem and the quadratic estimates, it follows that Ily 7 is
bounded from T?(R:*!) to L?(R™). By using the finite speed of the propagation of
the wave equation and the Paley-Wiener theorem, Hofmann et al. [38] proved the
following conclusion.

Lemma 2.16 ([38]). Let p € (0, 1], M € N and T be a nonnegative self-adjoint
operator on L*(R™) satisfying the Davies-Gaffney estimates. Assume that A is
a TP(RTY)-atom associated to the ball B and Iy is as in (2.13). Then there
exists a positive constant C(M), independent of A, such that [C(M)] 'y r(A) is
a (p,2, M)p-atom associated to the ball 2B.

We also need the following superposition principle on the weak type estimate.

Lemma 2.17 ([59]). Let p € (0,1) and {f;}jcz, be a sequence of measurable

functions. If Zj€Z+
for all j € Zy and o € (0,00), [{x € R" : |fj(z)] > a}| < Ca™P, then there

exists a positive constant C, independent of {\;}jez, and {f;}jez. , such that, for
all a € (0, 00),

Hx eR™: ’ Z )\jfj(x)‘ > a}‘ < 6f:§a_p Z AP

JEZ+ JEL+

p
/\j’ < oo and there exists a positive constant C such that,

With these preparations, we now prove Theorem 2.15.
Proof of Theorem 2.15. In order to prove Theorem 2.15, it suffices to show that
(WHR(R") 0 L2(R™)) = WHE,, ,,(R")
with equivalent quasi-norms. We first prove the inclusion that
(WHB(R") N LX(R™) © WS,/ (R").

Let f € WHE(R™) N L?(R™). From its definition and the quadratic estimate, it
follows that t2Te T f € WTP(RTJ) N TQ(RTFI). By Theorem 2.6, there exist
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sequences {\; iz jez, C C and {4;;}iez jez, of TP(R!)-atoms associated to
the balls {B; ;}icz,jez. such that
t2T€_t2T(f) = Z )\i,in,j
i€L,jEL
pointwisely almost everywhere in R% \; i = C2'|B; ;|17 and

1
P 2, —t2T ~
(2.14) igzp(Z’M') ST T gy, ~ W e

where C is a positive constant independent of f. Moreover, by the bounded H.,
functional calculus in L*(R"), Corollary 2.9 and the fact that Ily 7 is bounded from
T%(R") to L?(R™), we conclude that there exists a constant C(¥), depending on
¥, such that

f = C(w) /0 S ST (T T f%
(2.15) = C(D) /OOO @(tﬁ)( > Ai,jAm)%

i€L,jEL
D AR TOG IV ES
lGZ,j€Z+
where the above equalities hold true in L?(R"). For all i € Z and j € Z, let
0 dt
(2.16) aij = / W(tVT)(Aij) -
0

By Lemma 2.16, we see that a;; is a (p, 2, M)p-atom associated to {2B; ;}icz jez.,
up to a harmless positive constant multiple. Thus, we conclude that f has a weak
atomic (p, 2, M )p-representation Aija;j and f € WHT at. v (R™). More-
over, from (2.14), we deduce that

1 flwrn @ S (sup 3 A

Zjen,
which immediately implies that (W HY.(R") N L*(R")) C WHE. . ,,(R™).
Now we prove the converse, namely,

WHY,  \(R") C (WHE(R™) N L*(R™)).

i€Z.GET,

1
) S Il o

Let f € WHT at.ar(R™). From its definition, it follows that there exists a sequence

{aij}iez jez, of (p, 2, M)p-atoms associated to the balls {B; ;}icz jez, such that
f=2ienjen, Nijaij in L?*(R™) and, for all i € Z,

P p
(2.17) EZZ |/\Z,J| N HfHWH%at,M(Rn)’
J +

where {\; ;}iez jez, = {52i\Bi,j]1/p}iez7jeZ+ and C is a positive constant indepen-
dent of f.
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Given a € (0, 00), let ig € Z satisfy that 2% < o < 20!, We then see that

F=> > Njaij+ > > =tfith

i=—00 jEZ i=ig+1 jEZ

holds true in L2(R").
We first estimate fa. Let B, := U2, | Ujez, 8B; ;. From the definition of A; ;
and (2.17), we deduce that

‘éz i > ‘Bm‘ < i 2’”’( > P\m!p>

i=ig+1 jEZ i=ig+1 JeZy

Z 2- lp”f”WHP (Rn N Hf”WHél tM(Rn)
1=i9+1

(2.18)

Now, for g € (0, p), we write

(2.19) fo = Z > (¢, 7)( |B”|5_5aw) = i 3" X

1= Zo+1]EZ+ i=i0+leZ+

By (2.17) and the fact that g € (0, p), we know that

i Z h\ i 9id Z ‘Bi,j N i 22‘(qu)( Z |)\i7j|p)

1,5
i=io+1jEZ+ i=io+l  jeZ. i=io+1 JEL
(o)
(2.20) < HfHWHp e Z 2ia—p) < gio(a—p) HfHWHp @)
1=ip+1

which, combined with (2.18), (2.19) and Lemma 2.17, implies that, to show that
St(f2) € WLP(R™), it suffices to prove that, for all a € (0, 00), i € Z N [ig + 1, 00)
and j € Z,

C " 1
(2.21) ‘{ZL‘ S (8B¢J‘) : ST((IZ'J‘)(IL‘) > Oé}‘ S &
Indeed, if (2.21) is true, then, for Ny € ZN[ip+1, oo) and Ny € Z,, by Chebychev’s
inequality, the sub-linearity of S7, Lemma 2.17 and the L?(R"™) boundedness of S,
we conclude that

fremtso(n)w>al| < [{rem: 30 3 Ruse(m)w = 2}

i=ig+1 j=0
n «
+ |3z eR": Sy E )\m-ai,j (3:) > 5
Ni+1<i<oo
orj>Nog+1
Ny
—2
S H E , Ai,j i, 9
L (R")
i=10+1 j=0 Np+1<i<oo

orj>No+1
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where
(o) (o] o0 o o0
)OI DD IEID DD DD DI D
Ni+1<i<oco i=N1+1j€Z4 i=10+1 j=Na+1 i=N1+1 j=Na+1
orj>No+1

By letting N1 and Ny — oo, the fact that fo = Zfiioﬂ Zj€Z+ Ai ja;,j holds true in
L?*(R™) and (2.20), we see that

{eer: so(f)@>a}[ga 3 %

i=ig+1jEZy

~ |9 1
.. p
A’h] 5 P HfHWHg’,at,M(Rn),

which is desired.
To prove (2.21), from Chebyshev’s inequality and Holder’s inequality, we deduce
that

(2.22) Hx c (SBM)B L Sr(a)(z) > a}‘

q

< a7t /( y [ST(ai,j)(a;)} dx

q
1-3

Sl(Bi,j)‘ :

where Sy(B; ;) :=2'B;; \ (2I71B, ;) for all | € N. For [ > 4, let

q

= { [, [srel o}
1
q

1
M PO o
bi’j =T Qg4 and bi,j = )Bi,j b@j.

By Minkowski’s inequality, we write I;; ; into

TBjj » 2 dy dt 4
Lij S {/ / 7/ ’tQTe*ﬁTam(y, t)‘ gﬂ dm}2
Sl(Bi,j) 0 |y*33‘<t t

dist(z, B'L,j)

1 dy dt 2
L] [
Si1(Bi,j) Jrs, ; ly—=z|<t ¢

& dy dt 3
+{/ / / dm} =: Jl7','+Kl,','+Ql"7~.
Sl(Bi,j) dls“(x:lBi,j) ly—a|<t tn—i—l 2] 2% 2,)

To estimate J;; j, notice that dist(S;(B; ), Bij) > 21*27"31.,]., when [ > 4. Let

E;j = {x e R": dist(z, S;(Bi;)) < er‘}'

We easily see that dist(E; ;, B; ;) > 2l_3rBi7j, which, together with Fubini’s theo-
rem, Lemma 2.3 and Definition 2.14, implies that there exists a positive constant
ag > 7(1 = §) such that

"Bi,;j o 2dydty 3
Jiig S {/ /E ‘tQTe a(y,t) T}Q
0 1,i,j
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[dist(El ) j)] ’

(2.23) < { /DrBi’j exp{ e2 o } %}
~1
(Bi;)

To estimate K ;;, let Fy;; = {x € R™ : dist(z, S;(B;;)) < W}.
is easy to see that dist(Fy;;, B;;) > 2l_37“3i1j. Moreover, by Fubini’s theorem,
Lemma 2.3 and Definition 2.14, we know that there exists a positive constant a; €
(z(1— 1), 2M) such that

z q

Qij
L2(B )

[0S

~ 9~ lgao—n(1-3)]

2M+1)pM+1 ,—t2T7, 2 dydt 3
koS {7 [, e ol i)
VisJ
q
[dist(Frj, Bij)] | dydt | * |~ |
5 { eXp{ C]_ t2 t4M+1 1,7 L2(Bi7j)
a1 dt 2 2Mq %_1
Y
21
< g~ laer—n(1-3) (Bij) 2
Similar to the estimates of (2.23) and (2.24), we obtain
q
Ql V6,7 N /21 27"3 /n 7]( ) HAM+1
dt % 7 -1 %71
< b < o~ tRgM-n(1-
~ {/2127'37;’]' t4M+1} " ( 7«]) ( ) ’

which, together with (2.22), (2.23) and (2.24), implies that, for all a € (0, c0),
i€ZNlip+1,00)and j € Zy,

Hw € <COBi,j)C 0 Sr(ag;)(x) > OZH Safl i (Jl,i,j + Ky + Ql,i,j) ‘Sl(Bi,j)‘lg
L 1—4
S

Thus, (2.21) is true.
We now turn to the estimates of fi. For any r € (1, 2), let b € (0, 1) such that

b <1— 2. By Holder’s inequality, we know that
i0 s io ry L
s { 85 2P LS [srlrt S vm)] )
1=—00 1=—00 JEZy

which, together with a ~ 2% Chebyshev’s inequality and the L"(R™) boundedness
of Sp (which can be deduced from the interpolation of HY.(R™); see [38, Proposition
9.5]), implies that there exists a positive constant C, independent of «, f and z,
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such that
{zer": Sr(fi)(@) > o}
< [{rem > s 2 N jai ) (@)] > 020001
et P
(2.25) ) Q(%b) Z ) Zbr/ e
=m0 JEL4

Now, let g € L' (R™) satisfying HgHLT/(Rn) < 1 such that

J.

For any k € N, let Sk(Bi7j) = 2kBi7j \ Qk_lBiJ' and S()(BZ‘J') = Bi,j- Let E@j =
ﬁBl’ j- By Holder’s inequality, Definition 2.19 and the definition of the Hardy-
Littlewood maximal operator M as in (2.4), we know that

r

i,jai,j(fﬂ)‘Tdﬁﬂ ~ ‘/n [ > )\i,jai,j(x)}de .
Ly JEL

1S Y [ Pt e

JELy
S Z/ uai,j(w)fx)’ da
JEZ4 kEZy
3 1
<JEZZ+ kEZZ-s-Q |Blj| {/ (Bi,5) ai’j(sv)rdx}z{/b”k(&,j) ‘g(fU)‘zdx}Q
2 1
Jezmgz;m”‘z k {|2kB il S, Jot] s}
S 3 2Bl it {ng‘z)(@}g
JELy
j L
Sjezzzrzl‘Bi7j‘{|§?j|/j§i,j [M(MQ )} d:c}

1

s X2 [, (o] @)’

JEL+
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which, together with Holder’s inequality, the uniformly bounded overlap of {El j}iezy
on j, the L"/2(R") boundedness of M, r < 2 and lgll ;- gy < 1, implies that

L S {Z 2By}’ 2/ M(|P?) >fdz}rl’
5{ > 2i(r_p)\ki,j\p};~

JEL+

Thus, by (2.25), (2.26), b € (0, "=2) and 2% ~ «, we conclude that

T

{eem: se()@) > a}| S sonr Z 2 1)

(2.26)

i=—00
1 & ‘
S T=DIERE PIE S
= oo JEZy
i(r—p—br)

220 9io(1—b)r ZZ_:OO2 Hf” ol,e,M(Rn)

1
< = p
S HfHWH%mol,e,M(Rn)’

which shows that f; € WHE(R") and
p
”fl”WH;(R") 5 ||f||WH5’,mol,s,M(Rn)'

Combining the estimates for f; and fo, we then complete the proof of Theorem
2.15. [

Remark 2.18. Observe that, in the proof of Theorem 2.15, if we use Theo-
rem 2.11 to replace Theorem 2.6 in the argument above (2.14), then, for all f €
W HE(R") N L*(R™), we obtain a weak atomic decomposition of f of the form f =
DoieT jen, Nij®iyg in L?(R™), where the index sets Z and A; are as in Theorem 2.11,
{aij}iez jen, is a sequence of (p, 2, M)r-atoms associated to balls {B; ;}icz jen,

~ . 1 ~
and \; j := C2'|B; j|», with C being a positive constant independent of f, satisfies

sup ( Z A P)” < Cll g

1€T
where C' is a positive constant independent of f.

Now, we try to establish the molecular characterization of WHY (R™). We first
recall the notion of (p, €, M)r-molecules.

Definition 2.19 ([12]). Let k € N, p € (0, 1], € € (0, 00), M € N and L satisfy
Assumptions (£)1, (£)2 and (£)3. A function m € L?(R") is called a (p, ¢, M) -
molecule if there exists a ball B := B(xp, rp), with xg € R" and rp € (0, ), such
that

(i) for each £ € {1, ..., M}, m belongs to the range of L’ in L?(R");
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(ii) for all i € Z4 and ¢ € {0, ..., M},

05727 ]

Definition 2.20. Let f € L?(R"), e € (0, 00), M € Z,, p € (0, 1] and L sat-
isfy Assumptions (L)1, (£)2 and (£)3. Assume that {m;;}icz jez, is a sequence
of (p, €, M)p-molecules associated to balls {B;;}icz jez, and {\;;}icz jez, C C
satisfying the conditions that

< (QiTB)n(%—%)Q—ie‘

~ . 1 ~
(i) for all i € Z and j € Z4, N\;; :== C2'|B; |7, C is a positive constant indepen-
dent of f;
(ii) there exists a positive constant Cs, depending only on f, n, p, € and M, such

that
N
sup( Z )\m' >p < 05.
€L jezy
Then
=2 Xigmiy
i€Z,jET 4

is called a weak molecular (p, €, M )r-representation of f if f = ZieZ,j€Z+ i j M j
holds true in L*(R™). The weak molecular Hardy space WHY . (R") is then
defined to be the completion of the space

WHZ mol, e, (R") :={f: [ has a weak molecular (p, €, M)L-representation}
with respect to the quasi-norm

. 1/p )
I lwrg . eey s=inf { sup ( > |)\i,j|p> bof= ) Aiymiyjis a weak
€ JEZy i€Z,5€7 1

molecular (p, €, M) L—representation},

where the infimum is taken over all the weak molecular (p, €, M)r-representations
of f as above.

We also have the following weak molecular characterization of WHY (R™).

Theorem 2.21. Letp € (0, 1], k € N, e € (0, 00), M € Z satisfy M > 2—’2(% -3
and L Assumptions (L)1, (L)2 and (L)s. Then WHY(R") = WHY mol, e, (R™)

with equivalent quasi-norms.
To prove Theorem 2.21, we need the following lemma from [10, Propostion 2.13].

Lemma 2.22 ([10]). Let L satisfy Assumptions (L)1, (L)2 and (L)s, and
(p—(L), p+(L)) be the range of exponents p € [1, 00| for which the holomorphic
semigroup {e~"}~¢ is bounded on LP(R™). Then, for all p_(L) < p < q < ps (L),
Sy, is bounded on LP(R™).

We now prove Theorem 2.21.
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Proof of Theorem 2.21. To prove this theorem, it suffices to prove
(WHz(Rn) N LQ(Rn)) = WH%, mol,e,M(Rn)

with equivalent quasi-norms. The inclusion that (WH?(R") N L*(R")) C
WH’i,mOL ‘. 1 (R™) follows from a similar argument to the corresponding part of the
proof of Theorem 2.15. We only remark that, in this case, the operator Ily 7 defined
in (2.13) is replaced by a new operator 11, s defined by setting, for all F € T? (R’f‘l)
and z € R",

dt

e P [T R T

where k is as in Assumption (£)s3. It is known, from [12, Lemma 4.2(ii)], that IIy, 5/
maps each TP(R"")-atom into a (p, ¢, M) -molecule up to a harmless positive
constant multiple.

Although the proof of the inclusion WHY |,/ (R") C (WH7(R") N L*(R"))
is also similar to the corresponding part of Theorem 2.15, in this case, we need
more careful calculations since the lack of the support condition for the molecules.
Let f € WH%mol o m(R™). From Definition 2.20, it follows that f has a weak
molecular (p, €, M)L-representation f= ZieZ,jeZ+ i jmi j, where {m;;}icz jez.
is a sequence of (p, €, M)r-molecules associated to the balls {Bi7j}iez,jez+ =
{B(xB,;, B; ;) Yier,jer > Nij = 521"31,’),’1/;;’ with C being a positive constant in-
dependent of f, and sup;cz (> i IV <A llw e (R™).

j€Z+ . . L,mol,e, M
For all a € (0, 00), let ig € Z satisfy 20 < o < 290+ We write f into

F=>0 Y Xigmij+ Y. > = fi+tfo

i=—00 jEZ i=io+1 €7,

As in the proof of Theorem 2.15, we first estimate fo. For fixed ¢ € (0, p), by

Definition 2.20, we write
io . 11 1_1 io -

(228)  fi= ) ). (CT Bij q)(?‘Bm' ’ qmm‘> = D > Aigiiye

1=—00 jEZ+ C i=—00 j€Z+

Moreover, from Definition 2.20 and the fact ¢ < p, we deduce that

o . o o
DD GIIS DD 29D Bl S YL 2 Y gl
i=io+1jEZ i=ig+1  jEZ, i=ig+1 je€z,4
[ee]
< p Z i(g—p)
~ HfHWHz,mol,e,l\/I(Rn) L= 2
i=19+1

g 220(q7p)‘|f”€[/[-[€ ol e M(Rn)v

which, together with Lemma 2.17, implies that, to show that Si(f2) € WLP(R"),
it suffices to show that, for all « € (0, ), 7 € ZN[ip+ 1, 00) and j € Z,

(2.29) {rer: S1(iy)(@) > o}| < %
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To prove (2.29), by Chebyshev’s inequality and Hélder’s inequality, we write
(2.30)

Hx eR": Sp(mj)(x) > a}‘ < iQ—ioq
1=0

1—

(SIS

90, [51B15)

For I € {0,...,4}, by Fubini’s theorem, the L?(R") boundedness of Sy, Definition
2.19 and (2.28), we conclude that

1

1_1
2 q,

(2.31) HSL(mi,j)‘

| <[y

: S Hﬁ”bu S |Bij

L2(S;(B;,; L2(Rn L2(Rm) ™

For [ > 5, let

~ "By _ 2 dy dt g
Jl,i,j = {/ [/ ’ / ‘tsze*t%Lmi’j(y)’ 37“} dl’}z,
Sl(Bi,j) 0 |y7m|<t t

dist(z,B;,;)/4
K= {/ [/ s / ‘(tQkL)M—i—le_t?kL
7Z7 T
! Sl(Bi,j) TBi,j |y—a:|<t

o 2 dydt 3
o (L Mmi,j)(y)‘ m} dx}Q

and

le — {/ [/oo / ‘(t%L)M-‘rle—tQ’“L
Si(Bi ) “Jdist(x,B; ;) /4 J|y—z|<t
To estimate jl,i,ja let Elm = {x e R": dist(z, Si(Bi;)) <rp,,} and
él,l’,j = {z e R": dist(z, El,i,j) < 2l_37“Bl.’j}.

It is easy to see that dist (R™ \ él,i,j,fll,i,j) > 21_47“31.’].. Moreover, by Fubini’s
theorem, the L?(R™) boundedness of Sy, Assumption (£)3, Definition 2.19 and

(2.28), we see that there exists a positive constant ag € (n(é — 1), 00) such that
~ TB; ; ok ~ 2 dydt 5
Jiig < {/ /~ ‘tsze ! L[X@l o+ XR\G, 4 ]m”(y) 7}2
0 iy g I t
< %—1 q q B %—1
‘ g Hmi’j L2(Gyj) + Hmi’j L2(Rn)‘ g
"Big [dist(R™ \ Guijy B )] 670 diyd
(2:32) < /0 e { -G 125/ (R 1) b
a_ a_
< {24@771(%71)] _’_27l[qa27n(17%)]}‘2lBi7j 51 < 2-laololp, | 1’

where € := max{eq —n(l — 1), gaz —n(1 - §)}.

The estimates for I?l,m- and le are deduced from a way similar to that of jlm.
We omit the details and only point out that, to obtain the needed convergence, we
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need M > (2 — 3), which, together with (2.30), (2.31) and (2.32), implies that
(2.29). Thus,

{re®: i@ > 0| £ 71,

We now turn to the estimates of fi. Let (p—(L), p+(L)) be the interior of the
maximal interval of the exponents p such that {e_tL}t>0 is LP(R™) bounded. For

D .
L,mol,e,M(Rn)

any r € (p—(L), 2), let a € (0, 1) such that a < 1 — 2. By Hélder’s inequality, we
know that
L § io ) ry L
St(fr) 5{ > ol } { > [SL(TW > )\i,jmi,j)] }r,
1=—00 1=—00 JEZ

which, together with a ~ 2% Chebyshev’s inequality and the L"(R"™) boundedness
of Sy, (see Lemma 2.22), implies that there exists a positive constant C' such that

Hx eR™: Sp(fi)(z) > O‘H
. Hx - i [SL (2% $ Ai’jmi,»(gj)r - Czio(ka)r}’

1=—00 JELy
(2.33)
—iar
S’210(1 a)r Z 2 / lJmZ] dI‘
1=—00 JEZL 4
r
— —iar
- 210 9ig(1—a)r Z 2 [ } ’
i=—00

The estimate for I; is similar to that of I; in the proof of Theorem 2.15. We also
obtain

(2.34) LS { > 2, m}i.

JELy
Thus, by (2.33), (2.34), a € (0, -2) and 2 ~ «, we conclude that

Haz eR™: Sp(fi)(z) > a} S QZO(%W i 2 {Ii]r

1=—00
5 20(1 a)r Z 2 wr{ Z 2Z(T 7 |>\ }
2 1=—00 JEZ4
LN~ gitrpean)
< i(r—p—ar p
~ 2i0(1_a)r Z 2 ||f||WH§,mol,e,l\/I(R")
i=—00
< 1

e
~ ap”fHWI_Iz,mol,e,l\/[(Rn)?
which shows that f; € WHY (R") and

Hfl”WHZ(R") < HngV ohent (R



WEAK HARDY SPACES ASSOCIATED TO OPERATORS 1233

Combining the estimates of f; and fs, we then complete the proof of Theorem
2.21. [l

Remark 2.23. (i) As was observed in the proof of Theorem 2.11, we know that
Assumption (L) is needed only when proving WHY | . \(R") C WH(R").
Thus, if L only satisfies Assumptions (£)1, (£)2 and (£)3, then WH?(R") C
WHIIj, mol, e, M(Rn)

(ii) Let (p—(L), p+(L)) be the interval of the exponents p for which the semigroup
{e7F}4~ is bounded on LP(R"). Assume that ¢ € (p_(L), p,(L)). Similar to the
notion of (p, €, M)-molecules as in Definition 2.19, we also define the (p, q, €, M) -
molecule as m € LI(R™) belonging to the range of L¢ for all ¢ € {0, ..., M} and
satisfying that there exist a ball B := (zp, rg), with g € R™ and rp € (0, c0),
and a positive constant C' such that, for all ¢ € Z,

| (3) " < o2y m)|

r m ;

o La(S:(B)) Z

Moreover, the corresponding weak molecular Hardy space WHY g 2 (R™) can be

defined analogously to Definition 2.20.

Assume further that L satisfies Assumption (£)4. By using the method similar
to that used in the proofs of [44, Proposition 4.2] and [10, Theorem 2.23], we
can also prove the equivalence between WHY (R™) and the molecular weak Hardy
space WHZmOl’q7E7M(R"). Recall that, in [10, Proposition 2.10] (see also Proposition
2.2), it was proved that, if L is the 2k-order divergence form homogeneous elliptic
operator as in (1.1), then L satisfies Assumption (£)4.

Let L be asin (1.1). Applying the weak molecular characterization, we now study

the boundedness of the associated Riesz transform V¥L~1/2 and the fractional power
L=/(2k) ag follows.

Theorem 2.24. Let k € N and L be as in (1.1). Then, for all p € (747, 1], the
Riesz transform VFLY/2 is bounded from W HY (R") to W HP(R").

Proof. Let f € WHY(R")NL?*(R"™). From Theorem 2.21, we deduce that there exist
sequences {\;;}iez,jez, C Cand {m;;}icz jez, of (p, €, M)r-molecules such that

[ = Z Z Ai M j
€T JET,

in L?(R") and
p) 1/p

sup< Z

€L jezy

Aij

~ | fllw e @ny-

By the proof of [12, Theorem 6.2], we know that, for all i € Z and j € Z,,
VFL=Y2(m; ;) is a classical HP(R")-molecule up to a harmless positive constant
multiple. From this and Remark 2.13, together with Theorem 2.21 in the case
L = —A, it follows that VFL='/2f ¢ W HP(R") and

|vrL=2 )| <sup (30

W HP(R™ i
(R™) €L jeZy

\ p) 1/p

1,J ~ ||fHWH§(Rn),
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which, together with a density argument, then completes the proof of Theorem
2.24. O

Theorem 2.25. Let k € N and L be as in (1.1). Then, for all0 < p <r <1
and o = n(% — 1), the fractional power L=/ is bounded from W HY(R™) to
W HT (R™).

Proof. Similar to the proof of [44, Theorems 7.2 and 7.3], we know that L~/(2k)
maps each (p, €, M)p-molecule to a (r, q, €, M)r-molecule with o = n(% — %), up
to a harmless positive constant multiple. This, together with the fact that L—®/(2k)
is bounded from L?(R") to L4(R") (see [10, Lemma 3.10]) and Remark 2.23, then

finishes the proof of Theorem 2.25. O

Remark 2.26. (i) The boundedness of the Riesz transform VFL=1/2 for k € N
and L as in (1.1), on the Hardy space H} (R™) associated to L is known. Indeed, it
was proved in [12, 13] that, for all p € (547, 1], V#L=1/2 is bounded from HY (R™)

to the classical Hardy space HP(R™) and, at the endpoint case p = nL—Hc’ VhkL~1/2

is bounded from HZ/ (ntk) (R™) to the classical weak Hardy space W H™ ("+5)(R").
(ii) The boundedness of the fractional power L=%/(%) for k € N and L as in
(1.1), on the Hardy space H7 (R™) associated to L is also well known. Indeed, it

was proved that, for all 0 <p <r <1and a = n(% - b, L=/(k) is bounded from

HY(R™) to H} (R™) (see [10, 41, 44]).

3. THE REAL INTERPOLATION OF INTERSECTIONS

In this section, we establish a real interpolation theorem on the weak Hardy
spaces WHY (R™) by showing that L*(R™) N WHY(R™) is an intermediate space
between the spaces L2(R™) N HY (R™) for different p € (0, 1]. To this end, we first
recall some basic results on the real interpolation (see [7, 62] for more details).

Let (Xo, X1) be a quasi-normed couple, namely, X and X; are two quasi-normed
spaces which are linearly and continuously imbedded in some Hausdorff topological
vector space X. Recall that, for any f € Xy + X; and t € (0, o), Peetre’s K-
functional K(t, f; Xo, X1) is defined by setting,

K(t, f; Xo, X1) == in{HfoHXO +tfillx, s f=fo+ f1, foe Xo, fr1 € X1}~

Then, for all § € (0, 1) and ¢ € [1, oo], the real interpolation space (Xo, X1)g,q is
defined to be all f € Xy + X; such that, for ¢ € [1, c0),

B M= { [ [ s 0] ) <
and
(3.2) | fllo,00 :=  sup [t‘eK(t, f; Xo, Xl)] < 00.

+1
(z,t)ERY

Definition 3.1. Let X be a quasi-Banach space whose elements are measurable
functions. The space X is said to have the lattice property if, for any g € X and
any measurable function f satisfying |f| < |g|, then f € X.
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Krugljak et al. [47] proved the following interesting result on the problem of
interpolation of intersections in the case of Banach spaces.

Proposition 3.2 ([47]). Let Xy, X1 and X be quasi-Banach spaces whose elements
are measurable functions and have the lattice property. Then, for all § € (0, 1) and
q € [1, oo,

XN (XQ, X1)97q = (X N Xp, X mX]_)Q’q,

where, for any two quasi-Banach spaces Y and Y1, the quasi-norm in Y NY7 is just
the restriction of the quasi-norm from Yi.

Proof. Recall that Proposition 3.2 in the case of Banach spaces was proved in [47].
To make it still be valid in the case of quasi-Banach spaces, we also give a proof
based on some ideas from [47] with some details.

The inclusion that

(X N Xp, X ﬂX1)97q cXn (Xo, X1)97q
follows immediately from the fact that, for all f € (X N Xy, X N X1)g, 4,
K(t, f; Xo, X1) < K(t, f; XN Xo, XN X7)

and (3.1).
We now turn to the proof of the converse inclusion. Let f € X N (X, X1)p,4. By
(3.1), it suffices to show that, for all ¢ € (0, c0),

(33) K(t) fa XﬂXOvaXl)SK(tv f7 Xo, Xl)
To prove (3.3), we make the claim: For any g € X N (Xo, X1)g, 4 and t € (0, 00),

(3.4) K(t, g; Xo, X1) = iﬂf{HgoHXo +tlgllx, : 9=90+ 91, 90 € Xo,

90l < lgl, 91 € X1, lon] < Jgl}.

Indeed, let g = go + g1 be any decomposition of g satisfying gy € X and g1 € X1. If
|g0] > |g|, then using the lattice property of Xy, we know g € X(. Thus, g = g + 0
is also a decomposition of g with g € Xy and 0 € X;. Moreover, for all ¢ € (0, c0),

l9llxo + 0], < [l90llx0 + g1l

which, together with the definition of Peetre’s K-functional, shows (3.4) is true.
This immediately proves the above claim.

We now continue the proof of (3.3) by estimating K (¢, f; Xo, X1). Let f = fo+fi
be any decomposition of f satisfying fy € Xg and f; € X;. By the above claim,
we may assume that |fo| < |f| and |f1] < |f|, which, together with the lattice
property of X, implies that fo € XgN X and f; € X; N X. This, together with the
definition of Peetre’s K-functional, shows (3.3) holds. Thus, (X N Xy, XNX1)p 4 C
X N (Xo, X1)g, q, which completes the proof of Proposition 3.2. O

Remark 3.3. Let Xy, X; and X be some quasi-Banach spaces. The problem of
interpolation of intersections asks the question that, under which conditions, does
we have the equality

XN (X(], X1)97q = (X NXp, X ﬂX1)97q.
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The answer for the above problem is still unknown in the general case (see [47]
and the references cited therein for more details). Proposition 3.2 shows that, if
Xp, X1 and X consist of measurable functions and have the lattice property, then
the problem of interpolation of intersections for X7, X5 and X has a positive answer.

Remark 3.4. For all p € (0, 00), let TP(R’:™) be the tent space as in (2.3).
Observe that, for all 0 < py < p1 < oo, TP(R), TP1(RTH) and T?(RH) have
the lattice properties. Thus, by the real interpolation of TP(R") (see [19] in the
case p € [1, 00) and [9] in the case p € (0, 1)) and Proposition 3.2, we conclude
that, for all 0 < po < p1 < o0, 6 € (0, 1) and ¢ € [1, o<,

(T@E) TR, TAREY) N TP (RE) q

= TR N (TP (R, TPH(RE))g, 4,
where p € (po, p1) satisfies 1% = 1p;00 + p%. In particular, if ¢ = oo, then
(Tpo (Riﬂ)a TP1 (R:L_+1))0,oo — WTP(R?FH),

Now, let L satisfy Assumptions (£)1, (£)2 and (£)4, and H7 (R™) be the Hardy
space associated to L defined as in Section 2.3. Our main result of this section is
as follows.

Theorem 3.5. Let 0 < pyg < p1 <1, 0 € (0, 1) and L satisfy Assumptions (L)1,
(L) and (L)4. Then

(LQ(R”) N HYO(R™), LA(R™) N HY! (R”))e = LP®)NWH®R"),
, 1_1-0 ., 0
where p € (0, 1] satisfies s=0
Remark 3.6. Recall that, in [29], Fefferman et al. showed that, for all 0 < py <
p1 <1,6€(0,1) and p € (0, 1] satisfies % = 1p;00 + p%’
(3.5) (1o (®"), BP! (R"))e — WHP(R™).

They proved (3.5) by only considering the Schwartz functions in S(R"). However,
as was pointed out in [31, 37], S(R™) may not dense in W HP(R™). Thus, there is a
gap in their proof of (3.5). Indeed, Fefferman et al. [29] proved

(S(R”) N HP(R"), S(R™) N HP! (]R”)) = S(R™) N W HP(R™).

0, 0o
Thus, Theorem 3.5 is a generalization of this result.
To prove Theorem 3.5, we need the following lemma.
Lemma 3.7. Let p € (0, 1] and L satisfy Assumptions (L)1, (L)2 and (L)s. Then,
for all M € N satisfying M > %(% — %),
HL,M(T2(]R<1+1) N WTP(RZH)) = LX(R™) N W HE (R"),

where 11y, s is the operator defined as in (2.27).



WEAK HARDY SPACES ASSOCIATED TO OPERATORS 1237

Proof. We first prove
(3.6) L2(R™) N WHE(R™) C T, (T2(1R<1+1) N WTP(RTl)).
Indeed, for any f € L?*(R™) N WHY(R™), by the bounded H..-functional calculus,

we know that

(3.7) f =15 00 QL(f),

where Qy, 1, := 2k Le=t""L_ Moreover, by the definition of WHY (R™) and k-Davies-

Gaffney estimates, we know that Q;, 1(f) € T>(RTTH)NWTP(R™). This, together

with (3.7), implies that f € I,y (T?(RETH) N WTP(RE)). Thus, (3.6) is true.
We now prove

(3.8) L, (TQ(R;L“) N WT”(RTl)) C LX(R™) N W HP (R™).
Indeed, for any g € I, s (T Q(R’}fl) NWTP (Riﬂ)), we know that there exists
G e T*(RT) nWTP(RY)

such that g = I »(G). Using the weak atomic decomposition of WTP (RTFI) (see
Theorem 2.6), we know that there exist {\; j}icz jez, C C and {4; ;}icz, jez, of
TP(R”)-atoms such that

G= > XA
i€Z, jEL

holds in TZ(R’}r“) and almost everywhere in ]R’}fl. Moreover,

1
(3.9) sup {7 i} ~ Gy gogay -
1E€EL JEZy
Using the boundedness of ITj, js from T2(R"™) to L2(R™) (which can be deduced

from the quadratic estimates, since L has a bounded H,, functional calculus), we
know that

9= D il am(4;)
1€L, jEL

in L?(R"), where, by the argument below (2.27), we know that II; p/(4; ;) is a
(p, €, M)r-molecule up to a harmless positive constant multiple. This, together
with Theorem 2.21, implies that g € L?(R™) N WHY(R") and hence (3.8) is true,
which completes the proof of Lemma 3.7. O

We now turn to the proof of Theorem 3.5.

Proof of Theorem 8.5. Let I, ar be defined as in (2.27) and Q1 := {2k L=t L
By the bounded H,.-functional calculus, we know that

(3.10) f=1 nm0oQL(f)
which implies that (L*(R™) N H°(R"), L*(R™) N HY*(R™)) is a retract of
(T?(RYH) N TP (RYM), T2(RET) N TP (RYH)),
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namely, there exist two linear bounded operators
Qi L*(R™) N HY(R") — T*(R) nTPi(RH)
and
Iy, 0 T2RET N TPH(RET) — LAR™) N HY(R™)
such that 1T pr 0 Q, , = I on each L*(R™) N HY'(R™), where i € {0, 1} . Thus, by
[46, Lemma 7.11], we see that

(LA(R") N HP(R™), LA(R™) 0 HY (R"))g, o0
=TI ((T2(RT1) A TP (R, T2(RTTY) A TP (Rfl))g,oo),
which, together with Lemma 3.7 and Remark 3.4, implies that
(L*(R™) N H*(R"), L*(R™) N H]' (R™))p, 0
= HL,M((TQ(R:L_+1) n1Tro (]Rffl), T2(]R7}r+1) nTPo (R1+1))9700>
— 1 (TZ(RTI) A (Tpo (R™HY), TP (Rrﬁl))a OO)
— I, v (TZ(RT“l) N WTP(M“)) = L2(R") N W H? (R").
This finishes the proof of Theorem 3.5. g

4. THE DUAL SPACE OF W HY (R™)

In this section, letting L be nonnegative self-adjoint and satisfy the Davies-
Gaffney estimates, we study the dual space of WHY(R™). It turns out that the
dual of W HY (R™) is some weak Lipschitz space, which can be defined via the mean
oscillation over some bounded open sets.

Before giving the definition of weak Lipschitz spaces, we first introduce a class
of coverings of all bounded open sets, which is motivated by the subtle covering,
appearing in the proof of Theorem 2.11, of the level sets of A-functionals, obtained
via the Whitney decomposition lemma.

Definition 4.1. Let 2 be a bounded open set in R™ and A an index set. A family
B := {Bj};eca of open balls is said to be in the class Weq if
(ii) r := infjep{rp,} > 0;
(iii) letting B; := ﬁBj, then {B;};ca are mutually disjoint;
(iv) there exists a positive constant Mo such that 3., [Bj| < 2Mo|9|.

From the argument below (2.8), it follows that, for any bounded open set 2 with
12| € (0, 00), Wq # 0.

Now, let o € [0, 00), € € (0,00), M € Zy satisfy M > (o + %) and L be
nonnegative self-adjoint in L?(R") and satisfy the Davies-Gaffney estimates. The
space M;AE(R”) is defined to be the space of all functions u in L?(R") satisfying

the following two conditions:
(i) for all £ € {0,..., M}, L™"u € L*>(R"™);
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(ii) letting Qo be the unit cube with its center at the origin, then

M
4.1 ; = 9~ I(5teta) L=t :
(A1)l pyes ny ez, { 2 2 H u) s |

J (=0
Let M?f;(R”) = Nee(o, OO)(M;]f(]R"))* For all r € (0, c0), let
M
(4.2) A = (I . e*TQL)

For any f € MLWL*(R”), bounded open set Q and N € (n(% — 1), 00), let On(f, Q)
be the mean oscillation of f over 2 defined by

Q—ZN{ 1 /
|Q\1+27a Si(B)

where r := infjep{rp,} and, for i € N,

(4.4) siB)=(UJ2)\ (U27'8)

JeEA JEA

(4.3) On(f, Q) := sup sup
i€Z+ éGWQ

ATf(x))zda:}é

and So(B) := UjeaBj. By the Davies-Gaffney estimates, we know that the above
integral is well defined.
For all § € (0, c0), define

(4.5) wpr(0) := sup On(f, Q).
92/=5

From its definition, it follows that w is a decreasing function on (0, co). Indeed,
assume that f € MyL*(R”), d € (0, 00) and € is an open set satisfying |Q2| = 9.
For all Be Waq, we know, from Definition 4.1, that there exists a positive constant
C € (1, 00) such that > ..\ |Bj| < %KZ\ This implies that, for all open sets
Q C Q satisfying that |Q| =: e [%, J),

> IBjl < 2Mo|Q,

JEA
which immediately shows that Be Weg. Thus, from its definition, it follows that

On(f, Q) < On(f, Q)

and hence war(9) < w/\/(g) for all § € [%, ). This implies that w is decreasing.
Now, we introduce the notion of the weak Lipschitz space associated to L.

Definition 4.2. Let a € [0, o), € € (0,00), M € Z, satisty M > %(a + %), and
L be nonnegative self-adjoint and satisfy the Davies-Gaffney estimates. The weak
Lipschitz space WAT A (R™) is defined to be the space of all functions f € Mi/[; (R™)
such that

* wn(d
1fllwag @n) = /O 5( ) 45 < o0,

where wy/(d) for 6 € (0,00) is as in (4.5) and N € (n(%7 — ), 00).




1240 J. CAO, D.-C. CHANG, H. WU, AND D. YANG

We also introduce the notion of the resolvent weak Lipschitz space. To this end,
we need another class of open sets as follows, which is a slight variant of the class
Wa.

Definition 4.3. Let ) be a bounded open set in R™ and A an index set. A family
B:= {Bj}jen of open sets is said to be in the class Wa if

i) QC UjeaBj;

i) r:= mfje/\{rB } > 0;

iii) letting B = 10\[
iv) there exists a positive constant My such that >

Bj, then {B }jea are mutually disjoint;

(
(
(
( 1B < 2M,)0).

JEA

It is easy to see that, for any bounded open set €2, WQ C Wey. For all a € [0, ),
and M € N satisfying M > (o + 2) and r € (0, 00), let

(4.6) B, = [I - (I + 7"2L>_1} v

Assume that f € Mi/[L*(R”) and 0 € (0, 00). Let

Orodtall 0= 2 oo [2_W{|Q\11+2“ /S(B (a )‘ }%],

€2+ Bew,

where N € (n(% —3), 00), r == infjep{rp,} and S;(B) is as in (4.4). Let also, for
any 0 € (0, 00),
(4.7) Wres, ' (0) 1= sup Ores A (f, 2).

1Q|=5
Definition 4.4. Let a € [0, o), € € (0,00), M € Z; satisfy M > F(a+ 2),
N e (n (f —2), 00), and L be nonnegative self-adjoint and satisfy the Davies-Gaffney
estlmates The resolvent weak Lipschitz space WAT | w(R™) is then defined to be
the space of all functions f € MM*(R") satisfying

. wres,./\/’((s)
g ey = [ 222 05 < .
We have the following relationship between the weak Lipschitz space and the
resolvent weak Lipschitz space.

Proposition 4.5. Let a € [0, o) and L be nonnegative self-adjoint and satisfy
the Davies-Gaffney estimates. Let N € (n(% — 1), 00). Then WAZ y(R") C
WA%,res,N(Rn)'

Proof. We prove this proposition by showing that, for all f € WAf v (R?),
4] <|7]

WA

chsN Rn) WA%N Rn)

By an argument similar to that used in the proof of [41, (3.42)], we see that

21/2p M M M
f=2M [rz/ s(I — 6782[/) ds + Z < ’ )TQLle&"QL
T =1
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M

(1) (S )]
—oM [r‘z /21/2 S(I —e” L)Mds]Mf

4 oM <]\14>41 L <MJ\{ 1>ZM_1 Z (607 .].\.4,€M>

Lo+ Hlpr=M
£o<M,Lpr <M

91/2,.2 M ‘
X [7“_2/ s(I—e_52L) ds] ’
T

-2 1—er2L = _ir2n\ 1M
) [ (T e ) (3D e ) [y
1=0
M—
+2M[r—2L—1e—€r2L< _ —r2L)<Ze—zr )}
=0

::A()f + Z AZQ,...,Z]yjf + AMf7

Lot Al =M
Lo<M,lpp<M

where (]\ZI) denotes the binomial coeflicients.

For alli € Z,, B € Wq and N € (n(% -

; 1
. 9—iN
i {\Q]Hzf /si(é)

1/2
~ 014+l 24/ %r 1
2 —2
AZOr’weM = (T L) Azo,...,éjw (T / 8./4.3 dS) .
T

From the functional calculus and the fact that {e~*"};~¢ satisfies the Davies-Gaffney
estimates, we deduce that B, satisfies the Davies-Gaffney estimates with t ~ 72,
namely, there exists a positive constant C; such that, for all closed sets E' and F' in

R", t € (0, c0) and f € L?(R") supported in F,

} [dlst(E F)] }

Moreover, from Lemmas 2.3 and 2.4, it follows that ggo,m,g o also satisfies the Davies-

Gaffney estimates with ¢t ~ r2. Similarly, (r—2L~1)fi++m B, also satisfies the

Davies-Gaffney estimates with ¢ ~ r2.

Now, let

3), 00), we first estimate

...,er(ﬂf)‘Qde’}é-

Let

11l (e

2(F) §exp{ -

21/2p M
(4.8) Fy:=— s(I - 6752[/) fds.
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By Minkowski’s inequality, the Davies-Gaffney estimates and Hoélder’s inequality,
we know that there exists a positive constant as € (0, co) such that

e O M L
b S [l

X K€o7...,€M (XS[(E)FS) (z) ‘2 dx}l/z] 2}%
i+1 }1/2

gQ*U\/{ |Q|11+27f‘ {ez |:/Se(§)

=i—1

+ 9—tN+az) /
Z [ Se(B)

LEL
£>i+2o0rl<i—2

1 i+1

fgrm[ X e 3 o]
n S,

f—i—1 =N +(B)
£>i+2o0rl<i—2

A 1
cow [ L
i€l Q1 Jsi(B)

We now estimate D. By (4.8), Minkowski’s integral inequality and the mean

dx

2
Fia)|

FS(LU)‘Q da:} 1/2}2}§

Fs(a:)rdx}%

2 1 ~
FS(:J:)‘ dx}2 —:D.

value theorem for integrals, we see that there exists a positive constant 7 € (r, 2%1")

such that
1 21/2 M 2 1
742/ s([ — e_SQL) f(zx) ds‘ da:}2

D < sup 2_”\[{ 12a/‘
<I — e_SQL)Mf(a:)‘Q d:lf}é ds]

1€ZL4
N 1

(4.9) <Ssup 2_“\/2/ s{m/

i€Ly e Jr QM Jsi(B)

[ 1 M 2 1
~ sup 2*”\[{ — / (I - e*ﬂL) f(a:)‘ da:} .
ieZy | Q1T Jsi(B)
Moreover, since B € WQ, if let Cy € (1, 21/2) satisfying ¥ = Cyr, then it is easy

to see that CoB := {CoBj}jen € Wq and

N =

T = Jlg/f\ {T’COB].} =Cor =T,
which, together with (4.9) and the fact that S;(CoB) C U;E_IS]-(COB?), implies
that

B 1 i+1
e (1
i€zt [ Q1+ j:zi:l 5;(B)

1

(I - e_FZL)Mf(JU)‘2 d:lc}5
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S sup. sup [TW{ \Q|11+2: /&(é) ’(I B e_T2L>Mf(x)‘2d$}§]’

i€Z+ EGWQ

where 7 := in/f\{rBj}. This, together with (4.3), implies that
jE

D 5 On(f, ).
Thus, for all {g + - - - + €3 = M satisfying ¢y < M and £3; < M, we have
Ores,NQ (AZO,...,ZMfu Q) = SUP SUB D 5 ON(fu Q)
€L EEWQ

This implies that ||Agoym,gMf”WA%’reS’N(Rn) S ||f||WA(I!‘7N(Rn). Similarly, we also have

[Aoflwas . @ S I1fllwag @&

and ”AMfHWA%,reS,N(R") < HfHWAiﬁN(R"% which completes the proof of Proposition

4.5. O
Now we state the main result of this section.

Theorem 4.6. Let p € (0, 1] and L be a nonnegative self-adjoint operator in

L?(R™) satisfying the Davies-Gaffney estimates. Then, for all N € (n(% — ), ),
L. |

WHL RN = WAL @Y.

To prove Theorem 4.6, we first introduce the following notion of weak Carleson
measures.

Definition 4.7. Let {2 be a bounded open set in R" and A an index set. A family
B:= {Bj}jen of open sets is said to be in the class Waq if

i) r:=infjepr{rp,} > 0;

iii) letting B; := ﬁBJF then {B;},ca are mutually disjoint;

iv) there exists a positive constant My such that ;.\ [B;| < 2Mo[€|.

(v) letting Q; for any j € A be the closed cube having the same center as B; with

(
(
(
(

the length %, then {Q;}jeca are mutually disjoint and {2Q;}jea have bounded
overlap. Moreover, 2 C UjeprQ;.

From the argument below (2.8), it follows that, for any bounded open set 2 with

12| € (0, ), WQ # (). Moreover, WQ C WQ C Wa.
Now, let a € [0, 00) and p be a positive measure on Ri“. For all bounded open
sets (0, let

Calp, Q) := sup {|Q11+25u< U B; N (Q; x (0, oo)))}z),

Bewq jEA

=

where WQ is as in Definition 4.7.
For all 6 € (0, o), let

(4.10) we(6) == sup Co(p, Q).
10|=5
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Then p is called a weak Carleson measure of order o, denoted by Cq, if

© wel(d
lulle. = [ ¢®) 45 < .
0

5

Recall that, if L is nonnegative self-adjoint and satisfies the Davies-Gaffney es-
timates, then L satisfies the finite speed propagation property for solutions of the
corresponding wave equation, namely, there exists a positive constant Cy such that

(4.11) (cos(tV'L) f1, f2) =0

for all closed sets Uy and Us, 0 < Cot < dist(Uy, Us), f1 € L*(U1) and fo € L*(Us)
(see, for example, [38]). Moreover, we have the following conclusion, which can be
deduced from [38, Lemma 3.5] with a slight modification, the details being omitted.

Lemma 4.8 ([38]). Let L be nonnegative self-adjoint and satisfy the Davies-Gaffney
estimates. Assume that ¢ € C$°(R™) is even, suppy C (—C;*, C1), where Oy €
(0, 1) is a positive constant. Let ® be the Fourier transform of ¢. Then, for all
k€ Zy andt € (0, 00), the kernel K 21 yig. 1) (%, y) of the operator (t?L)*®(t/L)

satisfies

n n C
(4.12) suppK(tQL)k(b(tﬁ)(x, y) C {(x, y) e R" x R": d(z, y) < at}

Proposition 4.9. Let a € [0, 0), M € N satisfy that M > %(% -3, N €

(n(% — %), o0), and L be a nonnegative self-adjoint operator satisfying the Davies-

Gaffney estimates. Assume that ¢ € C§(R") is even, suppp C (—C;', C11)
satisfies g—? € (0, ﬁ), where Cy is as in (4.11). Let ® be the Fourier transform
of ¢. Then, for all f € WAF \(R"),

up(e )= () 2V I) () detdt, v (2, 1) € RPH,

is a weak Carleson measure of order ac. Moreover, there exists a positive constant
C such that, for all f € WA%N(R”),

lgllea < Clifllwag @m)-

Proof. Let f € WAf ,(R"). For all bounded open sets {2 and B ={Bj}jes € Wa,
by the definition of weak Carleson measures, we need to estimate

1= { 12auf(UBng <0, 50) ).

‘Q|1+

To this end, let 7 := infjea{rp,; } and B, be as in (4.6). By Minkowski’s inequality,
we write

1~ ‘Q’HE //BQ - (22) "oy o 2

S |Q|1+27a //BHQJ (0, 00)) (2L>M‘I)(tﬁ)8rf(a:)‘2dxtdt}é
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{|Q|11+2: JEZA //Bjﬂ(ij(O, ) ’ (t2L)M®(t\FL) (I - Br)f(x) ‘2 dxtdt}E

=1 4+ Is.

To estimate 11, by Minkowski’s inequality again, we obtain

. S{ ‘Q|11+2a //B N(Q, % (0, 00)) (t2 )M(I)(t\FL) (XSi(Qj)BTf) (x)r

JEN i€l

" dxtdt }1/2} }5.

Now, let S;(B;) := 27+1B; \ 2772B;. By Lemma 4.8 with & € (0, om) b€
(0, rp, ;) and Q; = 5fBJv we know that supp {(tL )Mé(tf)(xs @)Brf)} C

5’1(@]-), which, together with Definitions 4.7 and 4.3, and the quadratic estimates,
implies that

L < {’ |11+2a
zl: // (0. > L>M¢(t‘@(szczn&f)(x)\?didt}ér}é
%;/ / t2 )Mq)(t\r)@(s Q) Br f)( )2?}5}2%}5
:U)‘Qd:v}zg{‘mli%? /UjEAQQj ! (:U)Fdx}i

e > L,
S; Ores,/\f(fa Q)7

~ 1 2.\
<sup sup |2 ZN{ a/ r (x)‘ dx}
< e [ o1 S

i€EZ BeWg

N

{rﬂ|1+2“

A

which is desired.
The estimate of I is similar to that for I;. In this case, we need the following
operator equality that, for any r € (0, 00),

(1= (o) ) = () T = G g ()

E:l

<

the details being omitted.
By combining the estimates for I; and Iz, we conclude that

Ca(ﬂf, Q) ,s Ores,./\/(fa Q)?

which, together with Proposition 4.5, shows that pf is a weak Carleson measure of
order a. This finishes the proof of Proposition 4.9. 0

We now turn to the proof of Theorem 4.6.
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Proof of Theorem 4.6. We first prove that

n(l_
WAL ® ¢ (WHLRY)".

For any € € (0, 00) and M > 2(1 — 1) let M

2\p
as in (4.1). For all g € WAL(/\/ R

ge [ WML R

€€(0, 00)

(1 ), L(R”) be the space defined

(R™), since

from the fact that all (p, 2, M)z-atoms a belong t0 Uee(o, o0) ./\/le(1 D, ,(R"), it fol-

lows that, for any (p, 2, M)z-atom a, (g, a) is well defined. Moreover for any f €

WH?(R") N L*(R"), by Remark 2.18, we see that f has a weak atomic (p, 2, M) -

representation Ziel,jeAi Aija;j such that {a; j}iez jen, is a sequence of (p, 2, M)p-
~ ~ . 1

atoms associated to the balls {B; j }iez jen, and { i }iez jen, = {C2|Bij|? VieT jeA,s

with C being a positive constant independent of f, satisfies

(4.13) sup (3 Rigl?) ™" < 17w g ey
1€l Jen;

By the definition of WHY (R™), we further know that t2Le "L} WTPR )N
T%(R"*). This, together with Theorem 2.11 and the proof of Theorem 2.15 (see
(2.15) and (2.16)), implies that there exist sequences {A; ;}iez jen, of TP(RTT)-
atoms, assoc1ated with balls {B; ;}iez jen,, and {Aij}iez jen;, C C satisfying \; j =

C’2 |B”|P with C being a positive constant independent of f, such that
tZLeft Lf = Z Z Ai,in,j
i€l jEAl‘
holds true pointwisely almost everywhere in RZLFH and in 72 (Riﬂ), where Z and

A; are as in Theorem 2.11. By (4.13) and the definitions of \; ; and Xi,j, we further
obtain

(4.14) sup (32 asl?)” S Il oo
€T JEZy
Now, for all i € Z, let Q; := Ujea,B;;. From the proof of Theorem 2.11
(see the argument below (2.11)), it follows that {B; j}jea, € WQ Moreover, by

1
comparing the quasi-norms between WA L( N )(R") and A "o )(R”), we see that

1_
WAL(N )(]R") AL( )(R”), where AL( )(]R") denotes the “strong” Lipschitz

space associated to L defined as in [41, (1.26)]. This, together with the Calderén
reproducing formula [39, Lemma 8.4], Theorem 2.6, Remark 2.10, Theorem 2.11
and Holder’s inequality, implies that

0. 0] ~| [, (72) "oy BaweEe T

t
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< [ () eevie@) [ X 3 215, A ]| 4

i€T jEA;
<2y |By

% // ‘GL ‘2 dxtdt}é
i€ jEA; N(supp Aj, ;)

X {//B\” ‘Ai,j(x,t)F @}5
=1

where, for all ¢ € (0, o) and = € R™, we let
Gr(t,x) = (PLYMo(tVL)g(x).

To estimate I, by Proposition 4.9, Hélder’s inequality, the definition of A; ; and

(4.14), we conclude that
1 1
2{|m 1//3 P ‘GLt x)‘ d:L‘tdt}z}

s (2,
are) 1 2drdts
ool S (S e ] et 2]

2 dxdtqs
<Z2Z|Q\p[ 271 // ~ ’GL(t,a:)’ v }2
P Ujea,; BijN(supp 4;, ;) t

1€

§HfHWH§(Rn) ch(\QiD-

1€T

From this, together with Remark 2.10, the fact that we < wps and the decreasing
property of war, where wys and we are, respectively, as in (4.5) and (4.10), we know
that

LS 1w D e (271%)

ijEI

_i  war(6
S Wl w10 S W w250
€L

~ f P (rn)||g n(l_
b ot
where both Zj and g are as in Remark 2.10, which, combined with a density argu-
ment, implies that

n(i— *
WAL ®) c (wHEEY)

Now, we prove the inclusion that (WHY (R™))* C WA L( I )(R”)

Let ¢ € (WHY(R™))*. For all (p, €, M)r-molecules m, from the fact that
Ml e @y < 1, it follows that |g(m)| < 1. By this and the fact that, for all

€ (0, ), M € N and mg € MeM(R”), mo is a (p, €, M)-molecule, we conclude
that g € Mf)\f; (R™).
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Now, we prove that |gf| 1)
A, P

& = ||g||(WH€(]Rn))*. By Definition 4.2, (4.3)
LN

and (4.5), we first write

JRE S yNCR

leZ
LN 1 2 1
(4.15) SZ sup sup sup 27" [ 5 1/ B Arg(l')‘ da:}
ez, 191=2"1 €2+ Bewq |Q» ™" /Si(B)

::Z sup sup sup Ay,
17, |Q=2"11€Z2+ Bew,

where A, and S;(B) are, respectively, as in (4.2) and (4.4).
To estimate A;, from the dual norm of L?(R"), we deduce that there exists
@1 € L*(R") satisfying 1]l L2mny < 1 such that

1

(4.16) Ay~ Kg, 2_W19|HAT (Xsi(ﬁ)w»m(m - K‘q’ fl>L2<R">

We now estimate the WH? (R™) quasi-norm of f;. For all a € (0, c0), by Cheby-
shev’s inequality, Holder’s inequality, the definition of S, and the fact that, for all
L€ Zy, |Si(B)| <29 ~ 227! we obtain

(4.17)

ap’{x eR": Sp(fi)(z) > a}‘

p

< [ Jsemw) dxség{él(é
4 r 20=3p 00

<> 2ZNP2M1€){</55<1§) [/o +/r +/2€—3J /{yemn: ly—al<t}

ez,
X ‘t2L€_t2Lv4r (Xsi(§)90l>(y)‘2 W)é}p =: Q1+ Q2 + Qs.

We first estimate Q1. For all £ € Z, let

s} st

(4.18) B = {x e R" : dist(S¢(B), z) < r}.

It is easy to see that, for all £ > i+ 1,
T < ot
dist(Ey, S;(B)) ~
where r is as in Definition 4.1(ii). Thus, by Fubini’s theorem, the quadratic es-

timates and the Davies-Gaffney estimates, we know that there exists a positive
constant ag, independent of 4, [ and ¢, such that

Qs 27in2%(17%){ [/OT/E ‘tzLe*fQLAr (szé)w)(y) 2 dytdt]%}p
4

€€Z+

)
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141
Sy Dy,
(=0
= [ dist (B, SB)P Y dh
+ D it 2)[/0 exp { - 2 } } Il s, )
t=it2
141
S Z 2_2/\/[’2&1 ||80l ” B’))
(=0
—iNpotn(1-2 LN ~+a
D R DS
—it

To estimate Qq, for all £ € Z, let
Fp = {x e R": dist(z, So(B)) < 2‘—37«}.

By Fubini’s theorem, the Davies-Gaffney estimates and the quadratic estimates, we
know that there exists a positive constant a7, independent of i, [ and ¢, such that
2% 2 dydt13\P
< 2€n(1fg)27i./\/’p{ [ t2L 7t2LA ( . ) ‘ Y i| 2 }
Q2 S Z g 5 € r\ Xs,;(B)¥! (y) /

(€T
(1B i M+1 -M 2
<Y gDy Np / /F tz tL<2L> A(xs( )w>(y)‘
€€Z+ 4
dydt 15 5y P
+AM+1

A < dt P

1
522““—%)2—““?{ [ i) P s el e

b3 oy [ |t e { - o4 (Fes SUEDEY
0=i+2 r

p
X HXSA§)¢IHL%RW)}

i+1
3 _b
<SS 20D sl g
/=0
i+1

I Z 2_1/\/’;;2471(1—%)2—“/\/'*'0‘7 ”XS QOZHL2 (R™)
<1.

Similar to the estimates of Q2, we also obtain Qs < 1. Thus, by (4.17) and the
estimates of Q1, Q2 and Q3, we see that

osz:): eR": Sp(fi)(x) > a}) <1,
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where the implicit positive constant is independent of I. Thus, {f; };cz are uniformly
bounded in WHY (R™), which implies that, for all N € N, Zf\;_N fi € WHY (R™).
By choosing & € (0, co) satisfying

N N
|55 ey =l 555 1))

and [y € N satisfying 2l < aP < 2+l we write

N
> fi= Zfl S Bt h
I=—N

I=lp+1

Here, without loss of generahty, we may assume that lg < N; otherwise, we only
need to estimate f;.

To estimate fi, let ¢ € (p, 2). By Chebyshev’s inequality, Minkowski’s inequality,
Holder’s inequality and the definition of f;, we know that

H:c eR": Sp(fi)(z) > a}‘

S| ar] ")’

2¢—3

r 00
4 / ]
263y

lo
~ 4 2G| 33+ )o w / / /
[ZZ 2 o5

=—N ez,

_ 2 dydtdry 34
x ’tZLe LA (xo s ) (y )‘ ayatax
/{yE]R": ly—=|<t} ( 5i(B) ) tntl } }

= Ql +Qz+@3-

We first estimate Q1. For all £ € Z, let E; be as in (4.18). It is easy to see that,
foralli e Nand £ >4+ 1,
r —t

— <2
dist(Ey, Si(EB))

Thus, by the fact || ~ 27!, Fubini’s theorem, the Davies-Gaffney estimates, the
quadratic estimates, ¢ € (p, 2) and the assumption 2o ~ &P, we conclude that

lo i+1

Ql <@_Q[ Z Z2£n% % 2 ZNH(PIHLQ ))j|q
—N /=0
n(L— 1y L1y s th,SiE 2 dt
D e e

q
< lleilzags, |
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sa | 30 0] wame 30 26 ] e

l=—00 l=—00

Similar to the estimates of Q; and Q2, we have QQ + Qg < a~P. Thus,
&p){x eR": Sp(fi)(z) > }) < graghG=a)a 1,

On the other hand, to estimate fo, let ¢ € (0, p). Then

yil{zerr: s 3 )@ > af|

I=lo+

Similar to the estimates of f1, we also obtain
J<a 1),

which implies that a”|{x € R™ : Si(f2)(z) > a}| S 1. Combining the estimates of
f1 and fo, we conclude that

| 5= Al =z 50 3 a3} 5

where the implicit constants are independent of N. Thus, by letting N — oo, we
obtain

[e.e]
il 1
H l;oo WH?(]R”)

Thus, from (4.15), (4.16) and the assumption that g € (WHT (R™))*, we deduce
that

N
wn(9)
~ oS 1
91, - L5 Jm o 2 )

11
which implies that g € WA L( N ) and

S lgllow a2 (myy =

1_ g p nY))* «
”g”WAZva b S gl e @ny)

1

1
This shows that (WH7 (R"))* C WAZ(j’v ) and hence finishes the proof of Theorem
4.6. U

Remark 4.10. By Theorem 4.6, we see that WAf ,,(R") for a € [0, oo) is inde-
pendent of the choice of N € (n(% —1), 00). Thus, we can write WAS p(R™) simply
by WA2 (R™).
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